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Abstract  
  We perform nonlinear system identification of 
strongly nonlinear transient modal interactions 
occurring in a damped system possessing essential 
stiffness nonlinearity. The nonparametric 
identification is performed, (i) by slow –  fast 
partition of the transient dynamics through a 
complexification – averaging technique, and (ii) by 
Empirical Mode Decomposition (EMD) of the 
nonlinear time series of the responses, applied 
together with the numerical Wavelet Transform 
(WT). We show that the dominant intrinsic mode 
functions (IMFs) resulting from EMD coincide with 
the slow-flow responses. Based on this observation, 
we formulate a reduced – order modeling 
methodology that can find applicability to a broad 
range of applications involving nonlinear modal 
interactions. 
 
Key words  
Applications, Identification, Modeling 

1  Introduction 
The dynamics of passive energy transfer from a 

damped linear oscillator to an essentially nonlinear 
end attachment was studied recently [Kerschen et al., 
2005]. It was shown that complicated transitions in 
the damped dynamics can be interpreted based on the 
topological structure and bifurcations of the periodic 
solutions of the underlying undamped system. In this 
work, we study this system, in order to perform 
nonlinear system identification of the occurring 

strongly nonlinear transient modal interactions. We 
show the direct relationship between the slow flow 
dynamics (studied by a technique combining 
complexification and averaging) and the intrisic 
mode functions (IMFs) that resulting from 
application of empirical mode decomposition (EMD) 
in combination to Hilbert transform. Based on this 
relationship we identify the strongly nonlinear modal 
interactions in the system and formulate a reduced-
order modeling methodology, with wide range of 
applicability. 

2  Empirical Mode Decomposition (EMD) and the 
Hilbert Transformation 
The Empirical Mode Decomposition (EMD) 

decomposes a signal (time series) in terms of 
oscillatory components, termed Intrinsic Mode 
Functions (IMFs) [Huang et al., 1998, 2003]. The 
IMFs satisfy three main conditions, which are also 
used for their computation: 

(i) For the duration of the entire time series, the 
number of extrema and of zero crossings of each 
IMF should either be equal or differ at most by 
one. 

(ii) At any given time instant, the mean value 
(moving average) of the local envelopes of the 
IMFs defined by their local maxima and minima 
should be zero. 

(iii) The linear superposition of all IMFs should 
reconstruct the time series. 

By construction, the lowest-order IMFs contain the 
oscillatory components of the signal with the highest 



                                                    

frequency components. As the order of the IMFs 
increases, their frequency contents decrease 
accordingly. Hence, EMD analysis provides a 
decomposition of the signal over different time scales 
and, as such, is a useful computational tool for multi 
– scale system identification of the dynamics. Indeed, 
the EMD extracts oscillating modulations or modes 
embedded in the data. The essence of our method is 
to identify the intrinsic oscillatory modes that 
compose the data (time series), and to categorize 
them in terms of their characteristic time scales. 
Moreover, by Hilbert – transforming the IMFs one 

computes the temporal evolutions of their 
instantaneous amplitudes and phases (frequencies) 
which, in turn, can be used for the construction of the 
Hilbert spectrum of the signal [Huang et al., 1998, 
2003]. Denoting the Hilbert transform of a time 
series ( )c t  by, 
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we may produce the following complexified 
analytical signal: 

1/ 2ˆ( ) ( ) ( ) , ( 1)t c t j c t jΨ = + = −        (2) 
From (2) we compute the instantaneous amplitude 

( )A t , and phase, ( )tϕ , of the signal by employing 
the polar representation, 

( )( ) ( ) j tt A t e ϕΨ = = ( ) cos ( ) ( )sin ( )A t t jA t tϕ ϕ+  
thus expressing the signal in the form: 
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  The above representations enable one to compute 
also the instantaneous frequency ( )f t  of the signal 

( )c t  according to the following definition: 
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3  Slow – Flow Analysis 
Slow – flow analysis of the transient responses of 

strongly nonlinear systems can be performed by the 
complexification/averaging technique first introduced 
by Manevitch [1999]. This technique does not 
necessarily require weak nonlinearity, although for 
steady state responses it is similar to the (classical) 
method of averaging; once the proper ansatz 
regarding the frequency content and the slow-fast 
partition of the dynamics is included, it was 
numerically verified that the resulting slow-flows 
capture accurately the essential (important) dynamics 
of the original dynamical system, and provide good 
approximations of the original dynamics. 

The technique will be demonstrated by considering 
the following two-degree-of-freedom (DOF) strongly 
nonlinear, dissipative system [Kerschen et al., 2005], 

3
1 2( ) ( ) 0y y y y v C y vλ λ+ + + − + − =&& & & &  

     3
2 ( ) ( ) 0v v y C v yε λ+ − + − =&& & &               (5) 

where 0 1ε< <<  is a small parameter. This 
represents a linear oscillator (LO) with a strongly 
nonlinear, lightweight attachment. We wish to 
identify the nonlinear modal interactions governing 
targeted energy transfer (TET) in this system, 
whereby energy from the LO gets irreversibly and 
passively transferred to the nonlinear attachment, 
which acts, in essence, as nonlinear energy sink 
(NES) [Tsakirtzis, 2006; Georgiades, 2006]. 
  Specifically, we will study 1:3 subharmonic 
interactions between the two oscillators in (5) by 
expressing the damped transient responses in the 
form, 

 1 1/3 1 1/3( ) ( ) ( ) , ( ) ( ) ( )y t y t y t v t v t v t= + = +      (6) 
where index 1 denotes terms possessing fast 
frequency ω , and index 1/ 3  those with fast 
frequency / 3ω . We introduce the complex variables, 
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where ( )i tφ  represent ‘slowly’ varying (complex) 

modulations of the ‘fast’ frequency components j te ω  
and ( /3)j te ω . Expressing the transient responses in 
terms of the new complex variables, 
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substituting into (5), and averaging over each of the 
two fast frequencies ω  and / 3ω , we derive the set 
of modulation equations that govern the slow-flow 
dynamics of the transient responses of the system in 
the form: 

4 4( ; ) , :g g C Cφ φ ε= →&                 (9) 
The explicit expressions of the slow-flow equations 
can be found in [Kerschen et al., 2005]. The slow-
flow dynamics capture the nonlinear resonance 
captures that occur in the dynamics of system (5); 
then the responses of the original system can be 
estimated by inversing the applied coordinate 
transformations.  
  In the next Section we demonstrate the direct 
relation between the slow-flow dynamics and the 
results of EMD of the time series of the exact 
dynamics. 



                                                    

4  Relation Between EMD Analysis and Slow-Flow 
Dynamics and Reduced-order Models 
  We consider EMD analysis of the transient response 
of system (5) for initial conditions (0) (0) 0v y= =  
and (0) 0.01499, (0) 0.059443v y= = −& & , e.g., with 
initial energy being confined mainly in the LO. The 
time series of the LO and the NES are depicted in 
Figures 1b and 2c, respectively. It turns out that the 
response of the LO possesses a single dominant IMF, 

1( )LOc t , whereas the response of the NES possesses 
two, 1( )NESc t  and 2 ( )NESc t . In Figures 1a and 2a,b 
we depict the instantaneous frequencies of the 
dominant IMFs resulting from EMD analysis, 
superimposed to the corresponding WT spectra. In 
particular, in the time interval t∈ [0,100], both 

1( )NESc t  and 2 ( )NESc t  are needed to reconstruct the 
response of the NES, whereas, for t∈  [100,1000] 
only 1( )NESc t  is needed. Regarding the LO, only 

1( )LOc t  is needed to reconstruct the response over 
the entire time window considered in the study. 
We now show that the dominant IMFs of the LO 

and NES responses are directly related to the slow-
flow responses of system (9). Indeed, integrating the 
slow-flow with the corresponding initial conditions 
[Kerschen et al., 2005] 1(0)ϕ =  0.0577,−  2 (0)ϕ =  
0.0016 , 3(0) 0.0017,ϕ =− 4 (0) 0.0134ϕ =  and ω =  
1.0073 , we make the following comparison. We plot 
the slow-flow modulations iφ  in the complex plane 
for varying time, together with the complexified 
analytical signals 1 1( ), ( )LO NESt tΨ Ψ  and 2 ( )NES tΨ  
resulting from the Hilbert transform of the dominant 
IMFs, 1( )LOc t , 1( )NESc t  and 2 ( )NESc t , respectively. 
Considering the complex plots of Figure 3, we note 
that the complexifications of the dominant IMFs of 
the LO and the NES correspond closely to the 
complex modulations 1φ  and 43φ , respectively, of 
the slow-flow. This is more clearly inferred from the 
plots of Figure 4, where it is shown that the 
complexification 1( )LO tΨ  matches closely the slow 
modulation 1φ  of the fast frequency component at 
frequency ω  over the entire time window of the 
dynamics (cf. Figure 4a). On the contrary, two 
complexifications 1( )NES tΨ  and 2 ( )NES tΨ  are 
needed to approximate the slow modulation 43φ  (cf. 
Figures 4b,c). This fact is not a numerical artifact of 
the numerical EMD algorithm, but is related to the 
dynamics of the problem. 
Indeed, from the complex plot of Figure 5, where 

the slow modulation 43φ  of the NES response 
corresponding to fast frequency / 3ω  is plotted, we 
note that there exist two different regimes in the 
dynamics: an initial regime for 0 100t< < , and the 
main regime for 100t > . This is consistent with the 

findings of [Kerschen et al., 2005], where it was 
shown that in the initial regime of the dynamics there 
occurs 1:1 transient resonance capture (TRC) 
between the LO and the NES, during which energy 
gets transferred from the fundamental component of 
the response of the LO ( 1φ ) to the fundamental 
component of the response of the NES ( 2φ ). After 
this initial regime there occurs a 1:3 subharmonic 
TRC during which there occurs strong TET from the 
fundamental component of the LO to the 
subharmonic component of the NES ( 4φ ). The EMD 
analysis captures both regimes, as indicated by the 
IMF instantaneous frequency plots of Figure 2, and 
the results of Figures 3 and 4. It follows that through 
EMD it is possible to perform system identification 
of the strongly nonlinear modal interactions that 
occur between the LO and the NES, over different 
time windows of the response. Moreover, the results 
of Figures 3 and 4 indicate that the dominant IMFs of 
the two subsystems have a direct physical meaning: 
they are approximately coincident with the slow-flow 
responses of the system, over different time windows 
of the dynamics. 
Based on the previous system identification of the 

nonlinear modal interactions in the dynamics, and the 
knowledge that the dominant IMFs derived by the 
EMD of the time series coincide approximately with 
the slow flow dynamics, we can formulate a reduced-
order methodology to model the nonlinear resonance 
interactions between the LO and the NES. This 
methodology consists of the following steps: 
(i) Analysis of the measured nonlinear time series by 

numerical WT and computation of the 
corresponding WT spectra. 

(ii) Analysis of the measured nonlinear time series by 
EMD, and derivation of the IMFs of the 
responses. 

(iii) By comparing the instantaneous frequencies of 
the responses with the corresponding WT spectra, 
identification of the set of dominant IMFs for 
each time series; identifications of the fast 
frequencies at different time windows of the time 
series. 

(iv) By comparing the instantaneous frequencies of 
the dominant IMFs of the two interacting systems, 
determination of the transient or sustained 
resonance captures that occur at different regimes 
of the transient responses. 

(v) In the corresponding time windows where 
resonance captures occur, due to the 
correspondence between the complexified IMFs 
and the slow-flow dynamics, modeling of the 
resonance modal interactions by slow and fast 
components. In the example considered above, 
there exist two different regimes of the motion 
(where transient resonance interactions occur), 
during which the transient responses of the LO 
and the NES are approximated as follows, 



                                                    

     Regime 1 ( 0 100t< < ): 
[ ]1 1( ) ( ) sin ( ) ,LO LOy t t t tβ≈ Ψ +  
[ ]1 1( ) sin ( )NES NESv t t tβ≈ Ψ + +          (10) 

                      [ ]2 2( ) sin ( / 3) ( )NES NESt t tβΨ +  
     Regime 2 ( 100t > ): 

[ ]1 1( ) ( ) sin ( ) ,LO LOy t t t tβ≈ Ψ +  
[ ]1 1( ) sin ( / 3) ( )NES NESv t t tβ≈ Ψ +          (11) 

where the phases in the trigonometric functions 
are the phases of the complexified IMFs in the 
time windows indicated. These reduced-order 
representations are consistent with the results 
depicted in Figures 1 and 2. 

(vi) The reduced-order models of step (v) can be 
regarded as responses of coupled modal 
oscillators; then, reduced-order models in terms 
of ordinary differential equations can be derived 
with responses being equal to (10) and (11), and 
modeling the previous resonance modal 
interactions in the two regimes. 

5 Conclusions 
We performed nonlinear system identification of 
strongly nonlinear transient modal interactions 
occurring in systems possessing essentially nonlinear 
attachments. Nonparametric system identification 
was performed, by performing slow – fast partitions 
of the transient dynamics through a complexification 
– averaging technique, and by applying Empirical 
Mode Decomposition and Wavelet Transforms of the 
measured nonlinear time series. We showed that the 
dominant IMFs resulting from EMD have direct 
physical interpretations, as they approximately 
coincide with the slow-flow dynamics of the system. 
This observation enabled us to formulate a general 
reduced-order methodology, which, since it deals 
directly with measured time series and does not rely 
on any parametric models of the system, can find 
applicability applied to a broad range of problems 

where identification of nonlinear modal interactions 
is needed. 
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            (a)             (b) 
Figure 1. Transient response of the LO: (a) instantaneous frequency of the dominant IMF superimposed to the 
WT spectrum; (b) signal reconstruction using the first dominant IMF. 
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            (a)                (b) 
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(c)  
Figure 2. Transient response of the NES: (a) instantaneous frequency of the two dominant IMFs superimposed to 
their WT spectra; (b) signal reconstruction based on superposition of the two dominant IMFs. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

       (a)               (b) 
Figure 3. Comparison of IMF complexifications and slow-flow modulations in the complex plane: (a) 1( )LO tΨ  
(solid line) compared to 1( )tφ  (dashed line), 0 1000t< < , (b) 1( )NES tΨ  (solid line), 100 1000t< < , and 

2 ( )NES tΨ  (ooooooo), 0 100t< < , compared to 43 ( )tφ (dashed line), 0 1000t< < . 
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   (c) 

Figure 4. Comparison of envelopes of IMF complexifications and moduli of the slow-flow modulations: (a) 
envelope of 1( )LO tΨ  and 1φ ; (b,c) envelopes of 1( )NES tΨ  and 2 ( )NES tΨ , and modulus 43 φ . 
 
 

 
Figure 5. Plot in the complex plane of the subharmonic slow-flow component 43φ  of the NES; the two regimes 
of the dynamics can be clearly noted. 
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