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Abstract
We analyzeαm-mappings (m ≥ 2) in symbol space

Σ2 and prove that the maps are chaotic inΣ2. We show
that there exists semi-conjugacy betweenαm : I → I
(I ⊂ Σ2) and corresponding classEm of mappings
in [0,1[. The topological semi-conjugacy and sensitive
dependence on initial conditions guarantee that map-
pingsEm are chaotic.
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1 Preliminaries
Our purpose is finding for classes of chaotic mappings

in the segment [0,1]. We offer one of such possibilities.
For this aim at first we reveal the class of chaotic map-

pingsαm (m ≥ 2) in symbol spaceΣ2 and in subset
I ⊂ Σ2 too. At second we find corresponding classEm

(m ≥ 2) of mappings in [0,1[. We show that there ex-
ists topological semi-conjugacyτ : I → [0; 1[ between
αm andEm too. The topological semi-conjugacy and
sensitive dependence on initial conditions guarantee
that mappingsEm are chaotic.

Definition 1.1([Holmgren, 1996], [Robinson, 1995]).
The set of all infinite sequences of symbols 0 and 1 is
called the symbol space of 0 and 1and is denoted by
Σ2, i.e.,

Σ2 = {s0s1s2... |si = 0 or si = 1, i = 0, 1, 2, ...}.
We will refer to Σ2 as the space of sequence of two

symbols. We introduce a metric structure onΣ2 by

∀s = s0s1s2..., t = t0t1t2... ∈ Σ2 :

d(s, t) =
+∞∑
i=0

|si−ti|
2i .

This indeed is a metric (see, for example, [Holmgren,
1996]) therefore(Σ2, d) is a metric space. But this

metric is not unique.Σ2 forms a metric space if we
replace number 2 withλ > 1 as well (for example,
in [Robinson, 1995] a case withλ = 3 and λ = 4
is examined, in [Holmgren, 1996], [Kitchens, 1998] or
[Wiggins, 1988]λ = 2).
We note again that the two sequences are close if they

agree on a long initial symbol block in metric space
(Σ2, d) too. The following lemma makes this precise.

Lemma 1.1.([Holmgren, 1996]) Lets = s0s1s2...
and t = t0t1t2... be sequences ofΣ2. If si = ti
for i ≤ n, thend(s, t) ≤ 1

2n . On the other hand, if
d(s, t) ≤ 1

2n , then∀ i < n : si = ti.

The space(Σ2, d) has more specific and interesting
properties (see, [Holmgren, 1996] , [Lind, Marcus,
1995] or [Wiggins, 1988]).
The term”chaos” in reference to functions was first

used in Li and Yorke’s paper”Period three implies
chaos” ([Li, Yorke, 1975], 1975). We use the following
definition of R. Devaney [Devaney, 1986]. Let(X, ρ)
be metric space.

Definition 1.2.([Devaney, 1986]) The functionf :
X → X is chaoticif
a) the periodic points off are dense inX,
b) f is topologically transitive,
c) f exhibits sensitive dependence on initial conditions.

At first we note

Definition 1.3. The functionf : X → X is topologi-
cally transitiveonX if

∀x, y ∈ X ∀ε > 0 ∃z ∈ X ∃n ∈ N :
ρ(x, z) < ε & ρ(fn(z), y) < ε.

Definition 1.4. The functionf : X → X exhibits
sensitive dependence on initial conditionsif

∃δ > 0 ∀x ∈ X ∀ε > 0 ∃y ∈ X ∃n ∈ N :
ρ(x, y) < ε & ρ(fn(x), fn(y)) > δ.



Definition 1.5. Let A,B ⊆ X andA ⊆ B. ThenA
is dense in B if for each pointx ∈ B and eachε > 0,
there existsy ∈ A such thatd(x, y) < ε.

Devaney’s definition is not the unique classification of
a chaotic map. For example, another definition can be
found in [Robinson, 1995]. Also mappings with only
one property — sensitive dependence on initial con-
ditions — frequently are considered as chaotic (see,
[Gulick, 1992]). Banks, Brooks, Cairns, Davis and
Stacey [Banks, Brooks, Cairns, Davis, Stacey, 1992]
have demonstrated that for continuous functions, the
defining characteristics of chaos are topological transi-
tivity and the density of periodic points. It means that
we can not check up exhibits sensitive dependence on
initial conditions of continuous mapping. This property
follows from others.
The shift mapσ : Σ → Σ

∀ s = s0s1s2... ∈ Σ2 : σ(s) = s1s2....

is well known example of a chaotic map (see [Holm-
gren, 1996], [Robinson, 1995], [Lind, Marcus, 1995]
and others). But it is not unique chaotic map in space
(Σ2, d).

2 αm-mappings (m ≥ 2) in symbol space
Definition 2.1. Theαm-mapping(m = 2, 3, ...) αm :

Σ2 → Σ2 is defined by
αm(s0s1s2...) = s1s2...sm−1sm+1sm+2...

This mapping is not thekth iteration of the shift map,
theα-mapping”forgets” two symbols of the sequence
in every iteration. This mapping is simple (similar as
shift map) but it is not investigate.
It is possible to prove that the everyαm-mapping

(m ≥ 2) is continuous, the set of periodic points of
theαm-mapping is dense inΣ2 and theαm-mapping is
topologically transitive onΣ2 too. By Banks, Brooks,
Cairns, Davis and Stacey [Banks, Brooks, Cairns,
Davis, Stacey, 1992] follows that theαm-mapping is
chaotic mapping. This proof is not complicated but it
is long. If we observe that everyαm-mapping (m ≥ 2)
is increasing mapping, then it is much shorter proof of
the fact thatαm-mapping is chaotic.
From now onA will denote a finitealphabet, i.e., a

finite nonempty set

{a0, a1, a2, ..., an}

and the elements are calledsymbols. We assume that
A contains at least two symbols. We consider infinite
sequences of symbols over a finite setA . One-sided
infinite sequence overA is any total mapω : N → A.
The setAω contains all infinite sequences.
Let

fω(x) = xf(0)xf(1)xf(2) . . . xf(i) . . . , i ∈ N, x ∈ Aω.

In this case the functionf is calledthe generator func-
tion of mappingfω.

Definition 4.2. ([Bula, Buls, Rumbeniece, 2006]) A
function f : N → N is calledpositively increasing
functionif

0 < f(0) and∀i ∀j : i < j ⇒ f(i) < f(j) .
The mappingfω : Aω → Aω is called increasing

mappingif its generator functionf : N → N is posi-
tively increasing.

Theorem 2.1.([Bula, Buls, Rumbeniece, 2006]) The
increasing mappingfω : Aω → Aω is chaotic in the set
Aω.

In our caseAω = Σ2 andαm-mapping is increasing
mapping because its generator functionf : N → N is
positively increasing:

f(x) =
{

x + 1, x = 0, 1, 2, ...,m− 2,
x + 2, x = m− 1,m, m + 1, ...

Corollary 2.1. Theαm-mapping is chaotic in the sym-
bol spaceΣ2, m = 2, 3, ....

3 Topological semi-conjugacy
At second we use properties of topological semi-

conjugacy and show that there exists for everyαm-
mapping corresponding mappingEm : [0, 1] → [0, 1]
such that it is chaotic in unit segment[0, 1], m =
2, 3, ....

Definition 3.1. ([Robinson, 1995]). Letf : A →
A andg : B → B be functions. A maph : A →
B is called atopological semi-conjugacy fromf to g
provided 1)h is continuous, 2)h is onto, and 3)h◦f =
g ◦ h. The maph is called atopological conjugacyif it
is homeomorphism andh ◦ f = g ◦ h.

Essential result for our purpose is following:

Theorem 3.1. ([Peitgen, Juergen, Saupe, 1994]) Let
A and B be subsets of the metric spaces,f : A →
A, g : B → B, andτ : A → B be a topological
semi-conjugacy off to g. If f is chaotic onA, then
g is topologically transitive onB and has dense set of
periodic points inB. If τ : A → B be a topological
conjugacy off andg, thenf is chaotic onA if and only
if g is chaotic onB.

In [Peitgen, Juergen, Saupe, 1994] is shown that for
chaotic shift map corresponding chaotic mapping in
unit segment is

S(x) =
{

2x mod1, x ∈ [0, 1[,
1, x = 1 .

This result suggest to find for chaoticαm-mapping cor-
responding chaotic mapping in unit segment.
Now we consider binary expansion of numbers from

segment[0, 1]. Every numberx from [0, 1] it is possi-
ble to write in formx = a0a1a2... whereak ∈ {0, 1}



andx = a02−1 + a12−2 + a22−3 + .... For example,
1
2 = 1000... or 1

7 = 001... (infinite sequence which pe-
riodically repeat after some fixed length will be denoted
by the finite length sequence with an overline). But we
has one problem: for example, the number1

2 has two
binary expansions10 and01. We assume that we con-
sider only first variant of binary expansion. Therefore
we consider setI = Σ2 \ J , where

J = {s0s1s2... ∈ Σ2|∃N ≥ 0 ∀i ≥ N si = 1}.

Then we has second problem with number 1, its binary
expansion1 /∈ I. But αm(1) = 1 - this point is fixed
point for every mappingαm, m = 2, 3, ... and all it-
erations are same. Finally we consider setI as binary
expansion of numbers from segment[0, 1[.
The mappingτ : Σ2 → [0, 1[ defined by equality

∀s = s0s1s2... ∈ I τ(s) = s02−1+s12−2+s22−3+...

is onto, continuous (see, for example, [Peitgen, Juer-
gen, Saupe, 1994] and [Kudrjavcev, 1988]) but it is
not one-to-one. The mappingτ : I → [0, 1[ is onto,
continuous and one-to-one. Here are more possibili-
ties how the number from segment[0, 1[ transforms to
binary expansion. We use method from [Peitgen, Juer-
gen, Saupe, 1994]:

x ∈ [0, 1[ τ−1(x) = s0s1s2..., where

si =

{
0, z(x)i < 1

2 ,

1, z(x)i ≥ 1
2 ,

z(x)0 = x, z(x)i = 2z(x)i−1 mod1, i = 1, 2, ....

For example, ifx = 1
7 , then

z(x)0 = x = 1
7 < 1

2 ⇒ s0 = 0,
z(x)1 = 2z(x)0 mod1 = 2

7 mod1 = 2
7 < 1

2 ⇒ s1 =
0,
z(x)2 = 4

7 mod1 = 4
7 ≥ 1

2 ⇒ s2 = 1,
z(x)3 = 8

7 mod1 = 1
7 < 1

2 ⇒ s3 = 0,..., i.e.,
1
7 = 001.
If we considerτ : I → [0, 1[, then the inverse map

τ−1 is not continuous. For example, the sequence
xn = 1

2 − 1
2n , n = 1, 2, ..., converges to1

2 but the
sequenceτ−1(xn), n = 1, 2, ..., converges to01 /∈ I.
Thereforeτ : Σ2 → [0, 1[ andτ : I → [0, 1[ are not
homeomorphisms and not topological conjugacy.
In Section 2 we has shown thatαm-mapping is chaotic

in symbol spaceΣ2. It is chaotic in setI too? Indied,
notice thatαm : J → J andαm : I → I. Theαm-
mapping is increasing mapping inI too. It follows that
αm-mapping is chaotic in subsetI ⊂ Σ2.

We assume that for theαm-mapping exists corre-
sponding chaotic mapping in segment[0, 1]. What can
we find for αm-mapping corresponding mappingEm

in segment[0, 1]? For this aim we make numerical ex-
periment: at first, we write numberx from segment
[0, 1[ (with step, for example, 0.01) in its binary expan-
sion s ∈ I, at second, we considerαm(s), at thirdly,
we write αm(s) in its decimal expansionEm(x) and
make graph. Finally form = 2 we find

E2(x) =





4x, 0 ≤ x < 1
8 ,

4x− 1
2 , 1

8 ≤ x < 3
8 ,

4x− 1, 3
8 ≤ x < 4

8 ,

4x− 2, 4
8 ≤ x < 5

8 ,

4x− 5
2 , 5

8 ≤ x < 7
8 ,

4x− 3, 7
8 ≤ x < 1.
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Fig.1. Graph ofE2.

It is necessary to showτ ◦ α2 = E2 ◦ τ .
Let s = s0s1s2... ∈ I, then

α2(s0s1s2...) = s1s3s4...,

τ(α2(s)) = s12−1 + s32−2 + s42−3 + ... .

For the right sideE2(τ(s)) we remark that value of

τ(s0s1s2s3...) = s02−1 +s12−2 +s22−3 +s32−4 + ...

belongs to one of 8 segments depending ofs0, s1, s2 ∈
{0, 1}:
1) If s0 = s1 = s2 = 0 and by assumption allsi 6=
1, i > 2, then

τ(s) = s32−4 + s42−5 + s52−6 + ... ∈
[
0,

1
8

[
.



Therefore

E2(τ(s)) = 4τ(s) = 22
(
s32−4 + s42−5 + s52−6 + ...

)
=

= s32−2 + s42−3 + s52−4 + ... = τ(α2(s)).

2) If s0 = s1 = 0, s2 = 1 and by assumption all
si 6= 1, i > 2, then

τ(s) = 2−3 + s32−4 + s42−5 + s52−6 + ... ∈
[
1
8
,
2
8

[
.

Therefore

E2(τ(s)) = 4τ(s)− 1
2 =

= 22(2−3 + s32−4 + s42−5 + s52−6 + ...)− 1
2 =

= 2−1 + s32−2 + s42−3 + s52−4 + ...− 1
2 =

= s32−2 + s42−3 + s52−4 + ... = τ(α2(s)).

3) If s0 = s2 = 0, s1 = 1 and by assumption all
si 6= 1, i > 2, then

τ(s) ∈
[
2
8
,
3
8

[
,

therefore

E2(τ(s)) = 4τ(s)− 1
2 =

= 22(2−2 + s32−4 + s42−5 + s52−6 + ...)− 1
2 =

= 2−1 + s32−2 + s42−3 + s52−4 + ...− 1
2 =

= s32−2 + s42−3 + s52−4 + ... = τ(α2(s)).

4) If s0 = 0, s1 = s2 = 1 and by assumption all
si 6= 1, i > 2, then

τ(s) ∈
[
3
8
,
1
2

[
,

therefore

E2(τ(s)) = 4τ(s)− 1 =
= 22(2−2 + 2−3 + s32−4 + s42−5 + s52−6 + ...)− 1 =
= 2−1 + s32−2 + s42−3 + s52−4 + ... =
= 2−1s1 + s32−2 + s42−3 + s52−4 + ... = τ(α2(s)).

5) If s0 = 1, s1 = s2 = 0 and by assumption all
si 6= 1, i > 2, then

τ(s) ∈
[
1
2
,
5
8

[
,

therefore

E2(τ(s)) = 4τ(s)− 2 =
= 22(2−1 + s32−4 + s42−5 + s52−6 + ...)− 2 =
= s32−2 + s42−3 + s52−4 + ... = τ(α2(s)).

6) If s1 = 1, s0 = s2 = 0 and by assumption all
si 6= 1, i > 2, then

τ(s) ∈
[
5
8
,
6
8

[
,

therefore

E2(τ(s)) = 4τ(s)− 5
2 =

= 22(2−1 + 2−3 + s32−4 + s42−5 + s52−6 + ...)− 5
2 =

= s32−2 + s42−3 + s52−4 + ... = τ(α2(s)).

7) If s2 = 0, s0 = s1 = 1 and by assumption all
si 6= 1, i > 2, then

τ(s) ∈
[
6
8
,
7
8

[
,

therefore

E2(τ(s)) = 4τ(s)− 5
2 =

= 22(2−1 + 2−2 + s32−4 + s42−5 + s52−6 + ...)− 5
2 =

= s12−1 + s32−2 + s42−3 + s52−4 + ... = τ(α2(s)).

7) If s0 = s1 = s2 = 1 and by assumption allsi 6=
1, i > 2, then

τ(s) ∈
[
7
8
, 1

[
,

therefore

E2(τ(s)) = 4τ(s)− 3 =
= 22(2−1 + 2−2 + 2−3 + s32−4 + s42−5 + s52−6 + ...)− 3 =
= s12−1 + s32−2 + s42−3 + s52−4 + ... = τ(α2(s)).

Similary we findE3:

E3(x) =





4x, 0 ≤ x < 1
16 ,

4x− 1
4 , 1

16 ≤ x < 3
16

4x− 1
2 , 3

16 ≤ x < 5
16 ,

4x− 3
4 , 5

16 ≤ x < 7
16 ,

4x− 1, 7
16 ≤ x < 8

16 ,

4x− 2, 8
16 ≤ x < 9

16 ,

4x− 9
4 , 9

16 ≤ x < 11
16 ,

4x− 5
2 , 11

16 ≤ x < 13
16 ,

4x− 11
4 , 13

16 ≤ x < 15
16 ,

4x− 3, 15
16 ≤ x < 1.
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Fig.2. Graph ofE3.

Similarly we can findE4, E5,.. and finally we give
formula forEm, m ≥ 2, in general case.

Em(x) =





4x, 0 ≤ x < 1
2m+1 ,

4x− 1
2m−1 , 1

2m+1 ≤ x < 3
2m+1

4x− 2
2m−1 , 3

2m+1 ≤ x < 5
2m+1 ,

... ...,
4x− i

2m−1 , 2i−1
2m+1 ≤ x < 2i+1

2m+1 ,

... ...,

4x− 1, 2m−1
2m+1 ≤ x < 1

2 = 2m

2m+1 ,

4x− 2, 1
2 ≤ x < 2m+1

2m+1 ,

4x− 1
2m−1 − 2, 2m+1

2m+1 ≤ x < 2m+3
2m+1 ,

... ...,

4x− 3, 2m+1−1
2m+1 ≤ x < 1.

Obviously similarly as form = 2 we can prove equal-
ity τ ◦ αm = Em ◦ τ , i.e.,τ : I → [0, 1[ is topological
semi-conjugacy fromαm to Em. Similarly as for tent
map it is possible to prove thatEm : [0; 1] → [0; 1]
(Em(1) = 1) exibits sensitive dependence on initial
conditions. We conclude

Theorem 3.2. Let Em(1) = 1. The every mapping
Em : [0, 1] → [0, 1], m = 2, 3, ..., is chaotic in[0, 1].
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