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Abstract metric is not unique.X; forms a metric space if we
We analyzer,,,-mappings £» > 2) in symbol space  replace number 2 withh > 1 as well (for example,

Y, and prove that the maps are chaoti&in We show in [Robinson, 1995] a case with = 3 and\ = 4

that there exists semi-conjugacy betwegpn : I — I is examined, in [Holmgren, 1996], [Kitchens, 1998] or
(I C %) and corresponding class,, of mappings [Wiggins, 1988]\ = 2).

in [0,1]. The topological semi-conjugacy and sensitive We note again that the two sequences are close if they
dependence on initial conditions guarantee that map-agree on a long initial symbol block in metric space

pings E,,, are chaotic. (32, d) too. The following lemma makes this precise.

Lemma 1.1([Holmgren, 1996]) Lets = spsissa...
Key words andt = tptita... be sequences df;. If s; = ¢;
Topological semi-conjugacy, symbol space, chaotic for i < n,lthend(szt) < g7 On the other hand, if
mapping, binary expansion. d(s,t) < g, thenVi <n: s; =t;.

The spacgX., d) has more specific and interesting
properties (see, [Holmgren, 1996] , [Lind, Marcus,
1995] or [Wiggins, 1988]).

The term”chao$ in reference to functions was first
used in Li and Yorke's papetPeriod three implies
chao$ ([Li, Yorke, 1975], 1975). We use the following
definition of R. Devaney [Devaney, 1986]. LEX, p)
be metric space.

1 Preliminaries

Our purpose is finding for classes of chaotic mappings
in the segment [0,1]. We offer one of such possibilities.

For this aim at first we reveal the class of chaotic map-
pingsa,, (m > 2) in symbol spacé&, and in subset
I C ¥, too. Atsecond we find corresponding cldgs

(m > 2) of mappings in [0,1[. We show that there ex-
ists topological semi-conjugaay: I — [0; 1| between Definition 1.2.([Devaney, 1986]) The functiorf :
a, and E,, too. The topological semi-conjugacy and X — X is chaoticif
sensitive dependence on initial conditions guaranteea) the periodic points of are dense X,
that mappings,,, are chaotic. b) f is topologically transitive,

Definition 1.1([Holmgren, 1996], [Robinson, 1995]).  €) / exhibits sensitive dependence on initial conditions.
The set of all infinite sequences of symbols 0 and 1is At first we note
calledthe symbol space of 0 andahd is denoted by
Yo, i.e.,

Yo = {505182... ‘SL =0ors; =1,:=0,1,2, }

We will refer to X5 as the space of sequence of two

symbols. We introduce a metric structure Bnby Vi,ye XVe>03z€ X Inc N:
p(x,2) <e & p(f"(2),y) <e.

Definition 1.3. The functionf : X — X is topologi-
cally transitiveon X if

Vs = 508152..., t = totita... € g :

d(s, 1) = +ZO:O |si—t4] Definition 1.4. The functionf : X — X exhibits
’ = sensitive dependence on initial conditiohs

This indeed is a metric (see, for example, [Holmgren, I >0Vre XVe>03dye X Ine N:
1996]) therefore(X,, d) is a metric space. But this p(z,y) < e & p(f(z), f*(y)) > 6.



Definition 1.5. Let A,B C X andA C B. ThenA4
is densein B if for each pointz € B and eaclx > 0,
there existy € A such thatd(z,y) < e.

Devaney'’s definition is not the unique classification of

In this case the functiolf is calledthe generator func-
tion of mappingy.,.

Definition 4.2. ([Bula, Buls, Rumbeniece, 2006]) A
function f : N — N is calledpositively increasing

a chaotic map. For example, another definition can be functionif

found in [Robinson, 1995]. Also mappings with only

0< f(O)andViVj: i<j= f(i) < f(j).

one property — sensitive dependence on initial con- The mappingf,, : AY — A“ is calledincreasing

ditions — frequently are considered as chaotic (see,

[Gulick, 1992]). Banks, Brooks, Cairns, Davis and

mappingif its generator functiorf : N — N is posi-
tively increasing.

Stacey [Banks, Brooks, Cairns, Davis, Stacey, 1992] ta4rem 2.1, ([Bula, Buls, Rumbeniece, 2006]) The

have demonstrated that for continuous functions, the

increasing mapping,, : A — A is chaotic in the set

defining characteristics of chaos are topological transi- A

tivity and the density of periodic points. It means that

we can not check up exhibits sensitive dependence on N our caseA® = X, anda,,-mapping is increasing

initial conditions of continuous mapping. This property
follows from others.
The shiftmap : ¥ — %

V s = 508182... € Xa: 0(8) = $182....

is well known example of a chaotic map (see [Holm-
gren, 1996], [Robinson, 1995], [Lind, Marcus, 1995]

and others). But it is not unique chaotic map in space

(X9, d).

2 «a,,-mappings (n > 2) in symbol space
Definition 2.1. The a,,,-mapping(m = 2,3, ...) a,, :
Yo — 35 is defined by
m (808182...) = 8182.--Sm—1Sm+1Sm+2---

This mapping is not théth iteration of the shift map,
the a-mapping”’forgets two symbols of the sequence
in every iteration. This mapping is simple (similar as
shift map) but it is not investigate.

It is possible to prove that the every,,-mapping
(m > 2) is continuous, the set of periodic points of
thea,,,-mapping is dense iR, and thew,,,-mapping is
topologically transitive ort; too. By Banks, Brooks,
Cairns, Davis and Stacey [Banks, Brooks, Cairns,
Davis, Stacey, 1992] follows that the,,-mapping is
chaotic mapping. This proof is not complicated but it
is long. If we observe that every,,,-mapping {n > 2)
is increasing mapping, then it is much shorter proof of
the fact thatv,,,-mapping is chaotic.

From now onA will denote a finitealphabet i.e., a
finite nonempty set

{CL(), a1,Aa2, ..., an}

and the elements are callsgmbols We assume that
A contains at least two symbols. We consider infinite
sequences of symbols over a finite get One-sided
infinite sequence ovet is any total mapy : N — A.

The set4A“ contains all infinite sequences.
Let

fw(l‘):(Ef(o)l'f(l)l'f(g)...l'f(i)..., 1 €N, x € A“.

mapping because its generator functiopn N — N is
positively increasing:

)=

Corollary 2.1. The «,,,-mapping is chaotic in the sym-
bol spacey, m = 2,3, ....

r+1,2=0,1,2,....m — 2,
r+2,x=m-—1mm-+1,..

3 Topological semi-conjugacy

At second we use properties of topological semi-
conjugacy and show that there exists for evety-
mapping corresponding mappidg,, : [0,1] — [0, 1]
such that it is chaotic in unit segmefi, 1], m =
2,3, ...

Definition 3.1. ([Robinson, 1995]). Letf : A —
Aandg : B — B be functions. Amap : A —
B is called atopological semi-conjugacy frorfi to g
provided 1)k is continuous, 2) is onto, and 3fo f =
g o h. The maph is called aopological conjugacyf it
is homeomorphism ankdo f = g o h.

Essential result for our purpose is following:

Theorem 3.1. ([Peitgen, Juergen, Saupe, 1994]) Let
A and B be subsets of the metric spacgs,; A —

A, g: B — B,andTt : A — B be a topological
semi-conjugacy off to g. If f is chaotic onA, then

g is topologically transitive orB and has dense set of
periodic points inB. If 7 : A — B be a topological
conjugacy off andg, thenf is chaotic onA if and only

if g is chaotic onB.

In [Peitgen, Juergen, Saupe, 1994] is shown that for
chaotic shift map corresponding chaotic mapping in
unit segment is

S(x) = {

This result suggest to find for chaotig,-mapping cor-
responding chaotic mapping in unit segment.

Now we consider binary expansion of numbers from
segmenf0, 1]. Every number: from [0, 1] it is possi-
ble to write in formz = apajias... whereay, € {0,1}

2z mod1, z € [0, 1],
1 rz=1 ’

)



andz = 27! + a1272 + a2272 + .... For example, We assume that for the.,,-mapping exists corre-
% = 1000... or% = 001... (infinite sequence which pe-  sponding chaotic mapping in segmétl]. What can
riodically repeat after some fixed length will be denoted we find for «,,,-mapping corresponding mappirig,,

by the finite length sequence with an overline). But we in segmenf0, 1]? For this aim we make numerical ex-
has one problem: for example, the numkéelnas two periment: at first, we write humber from segment
binary expansion$0 and01. We assume that we con- [0, 1] (with step, for example, 0.01) in its binary expan-
sider only first variant of binary expansion. Therefore sions € I, at second, we consider,,(s), at thirdly,
we consider sef = X5 \ J, where we write ., (s) in its decimal expansiot,, (x) and

make graph. Finally forn = 2 we find

J = {808182... € 22|3N >0Vi>Ns; = ].}

4x, 0<z< %,

. . . 1 1 3

Then we has second problem with number 1, its binary dr—3, 5 <2<y,
expansionl ¢ I. Buta,,(1) = 1 - this point is fixed ~ Jdr -1, % <z < %,
point for every mappingy,,, m = 2,3,... and all it- Ba@) =\ g9 d<p<s
erations are same. Finally we consider 5eis binary s s >
i dr— 3,3 <z <g,
expansion of numbers from segmémtl|. 23 8
The mapping- : X5 — [0, 1] defined by equality dr =3, g <z <l

Vs = sps182... € I 7(s) = 502 1451272 4502734 Y )

is onto, continuous (see, for example, [Peitgen, Juer- 1+
gen, Saupe, 1994] and [Kudrjavcev, 1988]) but it is

not one-to-one. The mapping: I — [0, 1] is onto,
continuous and one-to-one. Here are more possibili-

ties how the number from segmdft 1] transforms to

binary expansion. We use method from [Peitgen, Juer-

gen, Saupe, 1994]:

N[

r€[0,1[ 7 (z) = sps152..., where

0 1
8 2 1 z

) Fig.1. Graph offs.
z(x)o =z, z(x); = 2z(x);—y modl, i =1,2,....

_ . It is necessary to showo as = Es o 7.
For example, ifr = 7 then Lets = sps1s9... € I, then
z@o=z=1<% = s9=0,

_ _ 2 _ 2 1 o
g(w)l =2z(r)omodl = modl =2 < 5 = s = Qa2 (805152...) = §18354.00,

' _ —1 -2 -3
da)y=dmodl =2 >1 = 5, =1, T(a2(8)) = 81271 + 83272 + 54270 + ...
Z(z)3 = $modl = 1 < 1 = s3 =0,.,ie,

% = 001. For the right sidess(7(s)) we remark that value of

If we considerr : I — [0, 1], then the inverse map

7~! is not continuous. For example, the SEqUENCEe (g s sosa..) — 502 L L5122+ 5,273 L 52241
T, = 3 — 35, n = 1,2,..., converges to} but the (s0518283...) = 8027+ 127 024 852 F
sequence !(x,), n = 1,2, ..., converges td1 ¢ I.
Thereforer : ¥, — [0,1[ andT : I — [0, 1] are not (0, 1}:
homeomorphisms and not topological conjugacy. P

In Section 2 we has shown that,-mapping is chaotic 1) If so = s; = s2 = 0 and by assumption ali; #
in symbol space:s. It is chaotic in sefl too? Indied, 1,4 > 2, then

notice thato,,, : J — J anda,, : I — I. Theay,-

mapping is increasing mapping irtoo. It follows that

1
_ —4 —5 —6
am-mapping is chaotic in subsétc 3. T(s) =832 + 54277 +5527" + ... € [0, 3 [

belongs to one of 8 segments depending©Qk, so €



Therefore

Ea(1(s)) = 47(s) =22 (5327  + 54277 + 55270 + ..) =

=53272 454273 + 5527 + . = 7(a(9)).

2)”50281:0,52:
s; # 1,4 > 2, then

1 and by assumption all

12
7(s) = 273—|—S3274+$4275—|—s52*6+... S [8’ 3 {

Therefore

Ey(1(s)) = 47(s) — 5 =
=222 45327 + 5020 + 55270 +.) - 1 =
=271 453272+ 5,23 455270+ - L =

2
=53272 + 54273 + 5527 + . = 7(a(9)).

3)”50252:0,51:
s; # 1,4 > 2, then

1 and by assumption all

therefore

Ba(7(s)) = 47(5) — 5 =
=22(272 + 5327 + 5427° + 55270 + .
=271 453272 4523 455274+ - L =

= 832_2 + 842_3 + 852_4 +...= 7'(0(2(5

= ~—
I

(SIS
|

~ N
~—

4 If sp = 0, s1 = s2 = 1 and by assumption all
s; # 1,4 > 2, then

therefore

Es(1(s)) =4r(s) — 1=

=22(272 4273 + 53274 45427 +5527 06+ .) 1=
=271 453272 4 54273 455274+ ... =

=278 +53272 + 54270 + 5527 + = 7(a(s)).

5)|f80 = 1,81 =
si # 1,1 > 2,then

ss = 0 and by assumption all

therefore

Es(1(s)) =47(s) —2 =
=22(27 4+ 8327 + 54270 + 55270+ ) -2 =
=53272 + 54273 + 5527 + . = 7(a(9)).

6)|f51 = 1,50:
s; # 1,4 > 2,then

T(s) € [5 6{,

sy = 0 and by assumption all

therefore

Ey(1(s)) = 47(s) — § =
=222 4278 4 5327 + 5,270 + 55270 + ) - 5 =
= 53272 + 54273 + 5527 + ... = T(a(9)).

7)|f82 :0,802
si # 1,1 > 2,then

re)e ga|

s1 = 1 and by assumption all

8’8
therefore

By(r(s)) = 47(s) = § =
=222 4272 45327 + 5420 +5527 0 + ) - 2 =

=527 + 53272 + 5,270 + 5527 + = 7(a(s)).

7) If sg = s1 = s = 1 and by assumption al; #
1,4 > 2, then

therefore

Ey(7(s)) =47(s) —3 =
=22(271 42724273 45327 4 54275 455276 +..) -3 =
=512 + 83272+ 54273 + 5527+ . = 7(aa(s)).

Similary we findEs:

4x, 0§x<1—16,
4x—i, %6§x<f’—6
490—%, %§x<15—6,
4x—%, 1—56§x<%,
-1, £<z< £,
B(z) = do—2, S <<
» 16 = 162
41:—%, %§x<%,
4%7%, %§x<%,
4x %,%§x<%,
4 —3, L <zr<l.

=
[=2]
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3 1
Fig.2. Graph ofEs.
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Similarly we can findE,, E5,.. and finally we give
formula for E£,,,, m > 2, in general case.

4z, 0<z< yn%»
1 1 3
41" T om—1> om+1 S T < m+1
2 3 . 5
dx — am—T1) ot ST < 5T,
ey
g 2i-1 2i+1
4z 2m—1; 2m+1 S < 2m—+17
En(z) = § - pe i L
4x - 17 om+1 S T < 2 - om+1
1 om 41
dx — 2, 5 << Snfrs
p 1 2m+1 2m+3
dx — gm—T — 2, St <& < St
ey
m+1__

Obviously similarly as forn = 2 we can prove equal-
ity 7oy, = Ey o7, i€.,7: I — [0, 1] is topological
semi-conjugacy frona,, to E,,. Similarly as for tent
map it is possible to prove thdf,, : [0;1] — [0;1]
(Em(1) 1) exibits sensitive dependence on initial
conditions. We conclude

Theorem 3.2. Let E,,(1) = 1. The every mapping
E,, :10,1] — [0,1], m = 2,3, ..., is chaotic in[0, 1].
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