TOPOLOGICAL SEMI-CONJUGACY AND CHAOTIC MAPPINGS

Inese Bula
Department of Mathematics, University of Latvia, Latvia, ibula@lanet.lv

Abstract

We analyze α_{m}-mappings ($m \geq 2$) in symbol space Σ_{2} and prove that the maps are chaotic in Σ_{2}. We show that there exists semi-conjugacy between $\alpha_{m}: I \rightarrow I$ ($I \subset \Sigma_{2}$) and corresponding class E_{m} of mappings in $[0,1[$. The topological semi-conjugacy and sensitive dependence on initial conditions guarantee that mappings E_{m} are chaotic.

Key words

Topological semi-conjugacy, symbol space, chaotic mapping, binary expansion.

1 Preliminaries

Our purpose is finding for classes of chaotic mappings in the segment $[0,1]$. We offer one of such possibilities. For this aim at first we reveal the class of chaotic mappings $\alpha_{m}(m \geq 2)$ in symbol space Σ_{2} and in subset $I \subset \Sigma_{2}$ too. At second we find corresponding class E_{m} ($m \geq 2$) of mappings in $[0,1[$. We show that there exists topological semi-conjugacy $\tau: I \rightarrow[0 ; 1[$ between α_{m} and E_{m} too. The topological semi-conjugacy and sensitive dependence on initial conditions guarantee that mappings E_{m} are chaotic.
Definition 1.1([Holmgren, 1996], [Robinson, 1995]). The set of all infinite sequences of symbols 0 and 1 is called the symbol space of 0 and 1 and is denoted by Σ_{2}, i.e.,

$$
\Sigma_{2}=\left\{s_{0} s_{1} s_{2} \ldots \mid s_{i}=0 \text { or } s_{i}=1, i=0,1,2, \ldots\right\} .
$$

We will refer to Σ_{2} as the space of sequence of two symbols. We introduce a metric structure on Σ_{2} by

$$
\begin{gathered}
\forall s=s_{0} s_{1} s_{2} \ldots, t=t_{0} t_{1} t_{2} \ldots \in \Sigma_{2}: \\
d(s, t)=\sum_{i=0}^{+\infty} \frac{\left|s_{i}-t_{i}\right|}{2^{i}} .
\end{gathered}
$$

This indeed is a metric (see, for example, [Holmgren, 1996]) therefore $\left(\Sigma_{2}, d\right)$ is a metric space. But this
metric is not unique. Σ_{2} forms a metric space if we replace number 2 with $\lambda>1$ as well (for example, in [Robinson, 1995] a case with $\lambda=3$ and $\lambda=4$ is examined, in [Holmgren, 1996], [Kitchens, 1998] or [Wiggins, 1988] $\lambda=2$).
We note again that the two sequences are close if they agree on a long initial symbol block in metric space $\left(\Sigma_{2}, d\right)$ too. The following lemma makes this precise.

Lemma 1.1.([Holmgren, 1996]) Let $s=s_{0} s_{1} s_{2} \ldots$ and $t=t_{0} t_{1} t_{2} \ldots$ be sequences of Σ_{2}. If $s_{i}=t_{i}$ for $i \leq n$, then $d(s, t) \leq \frac{1}{2^{n}}$. On the other hand, if $d(s, t) \leq \frac{1}{2^{n}}$, then $\forall i<n: s_{i}=t_{i}$.
The space $\left(\Sigma_{2}, d\right)$ has more specific and interesting properties (see, [Holmgren, 1996] , [Lind, Marcus, 1995] or [Wiggins, 1988]).
The term "chaos" in reference to functions was first used in Li and Yorke's paper "Period three implies chaos" ([Li, Yorke, 1975], 1975). We use the following definition of R. Devaney [Devaney, 1986]. Let (X, ρ) be metric space.
Definition 1.2.([Devaney, 1986]) The function f : $X \rightarrow X$ is chaotic if
a) the periodic points of f are dense in X,
b) f is topologically transitive,
c) f exhibits sensitive dependence on initial conditions.

At first we note
Definition 1.3. The function $f: X \rightarrow X$ is topologically transitive on X if

$$
\begin{aligned}
& \forall x, y \in X \forall \varepsilon>0 \exists z \in X \exists n \in \mathbf{N}: \\
& \quad \rho(x, z)<\varepsilon \& \rho\left(f^{n}(z), y\right)<\varepsilon .
\end{aligned}
$$

Definition 1.4. The function $f: X \rightarrow X$ exhibits sensitive dependence on initial conditions if

$$
\begin{aligned}
& \exists \delta>0 \forall x \in X \forall \varepsilon>0 \exists y \in X \exists n \in \mathbf{N}: \\
& \quad \rho(x, y)<\varepsilon \& \rho\left(f^{n}(x), f^{n}(y)\right)>\delta .
\end{aligned}
$$

Definition 1.5. Let $A, B \subseteq X$ and $A \subseteq B$. Then A is dense in B if for each point $x \in B$ and each $\varepsilon>0$, there exists $y \in A$ such that $d(x, y)<\varepsilon$.
Devaney's definition is not the unique classification of a chaotic map. For example, another definition can be found in [Robinson, 1995]. Also mappings with only one property - sensitive dependence on initial conditions - frequently are considered as chaotic (see, [Gulick, 1992]). Banks, Brooks, Cairns, Davis and Stacey [Banks, Brooks, Cairns, Davis, Stacey, 1992] have demonstrated that for continuous functions, the defining characteristics of chaos are topological transitivity and the density of periodic points. It means that we can not check up exhibits sensitive dependence on initial conditions of continuous mapping. This property follows from others.
The shift map $\sigma: \Sigma \rightarrow \Sigma$

$$
\forall s=s_{0} s_{1} s_{2} \ldots \in \Sigma_{2}: \sigma(s)=s_{1} s_{2} \ldots
$$

is well known example of a chaotic map (see [Holmgren, 1996], [Robinson, 1995], [Lind, Marcus, 1995] and others). But it is not unique chaotic map in space $\left(\Sigma_{2}, d\right)$.

$2 \alpha_{m}$-mappings ($m \geq 2$) in symbol space

Definition 2.1. The α_{m}-mapping $(m=2,3, \ldots) \alpha_{m}$: $\Sigma_{2} \rightarrow \Sigma_{2}$ is defined by

$$
\alpha_{m}\left(s_{0} s_{1} s_{2} \ldots\right)=s_{1} s_{2} \ldots s_{m-1} s_{m+1} s_{m+2} \ldots
$$

This mapping is not the k th iteration of the shift map, the α-mapping "forgets" two symbols of the sequence in every iteration. This mapping is simple (similar as shift map) but it is not investigate.
It is possible to prove that the every α_{m}-mapping ($m \geq 2$) is continuous, the set of periodic points of the α_{m}-mapping is dense in Σ_{2} and the α_{m}-mapping is topologically transitive on Σ_{2} too. By Banks, Brooks, Cairns, Davis and Stacey [Banks, Brooks, Cairns, Davis, Stacey, 1992] follows that the α_{m}-mapping is chaotic mapping. This proof is not complicated but it is long. If we observe that every α_{m}-mapping ($m \geq 2$) is increasing mapping, then it is much shorter proof of the fact that α_{m}-mapping is chaotic.
From now on A will denote a finite alphabet, i.e., a finite nonempty set

$$
\left\{a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right\}
$$

and the elements are called symbols. We assume that A contains at least two symbols. We consider infinite sequences of symbols over a finite set A. One-sided infinite sequence over A is any total map $\omega: \mathbf{N} \rightarrow A$. The set A^{ω} contains all infinite sequences. Let
$f_{\omega}(x)=x_{f(0)} x_{f(1)} x_{f(2)} \ldots x_{f(i)} \ldots, \quad i \in \mathbf{N}, x \in A^{\omega}$.

In this case the function f is called the generator function of mapping f_{ω}.
Definition 4.2. ([Bula, Buls, Rumbeniece, 2006]) A function $f: \mathbf{N} \rightarrow \mathbf{N}$ is called positively increasing function if

$$
0<f(0) \text { and } \forall i \forall j: \quad i<j \Rightarrow f(i)<f(j) .
$$

The mapping $f_{\omega}: A^{\omega} \rightarrow A^{\omega}$ is called increasing mapping if its generator function $f: \mathbf{N} \rightarrow \mathbf{N}$ is positively increasing.
Theorem 2.1. ([Bula, Buls, Rumbeniece, 2006]) The increasing mapping $f_{\omega}: A^{\omega} \rightarrow A^{\omega}$ is chaotic in the set A^{ω}.

In our case $A^{\omega}=\Sigma_{2}$ and α_{m}-mapping is increasing mapping because its generator function $f: \mathbf{N} \rightarrow \mathbf{N}$ is positively increasing:

$$
f(x)=\left\{\begin{array}{l}
x+1, x=0,1,2, \ldots, m-2, \\
x+2, x=m-1, m, m+1, \ldots
\end{array}\right.
$$

Corollary 2.1. The α_{m}-mapping is chaotic in the symbol space $\Sigma_{2}, m=2,3, \ldots$.

3 Topological semi-conjugacy

At second we use properties of topological semiconjugacy and show that there exists for every $\alpha_{m^{-}}$ mapping corresponding mapping $E_{m}:[0,1] \rightarrow[0,1]$ such that it is chaotic in unit segment $[0,1], m=$ $2,3, \ldots$.

Definition 3.1. ([Robinson, 1995]). Let $f: A \rightarrow$ A and $g: B \rightarrow B$ be functions. A map $h: A \rightarrow$ B is called a topological semi-conjugacy from f to g provided 1) h is continuous, 2) h is onto, and 3) $h \circ f=$ $g \circ h$. The map h is called a topological conjugacy if it is homeomorphism and $h \circ f=g \circ h$.
Essential result for our purpose is following:
Theorem 3.1. ([Peitgen, Juergen, Saupe, 1994]) Let A and B be subsets of the metric spaces, $f: A \rightarrow$ $A, g: B \rightarrow B$, and $\tau: A \rightarrow B$ be a topological semi-conjugacy of f to g. If f is chaotic on A, then g is topologically transitive on B and has dense set of periodic points in B. If $\tau: A \rightarrow B$ be a topological conjugacy of f and g, then f is chaotic on A if and only if g is chaotic on B.
In [Peitgen, Juergen, Saupe, 1994] is shown that for chaotic shift map corresponding chaotic mapping in unit segment is

$$
S(x)= \begin{cases}2 x \bmod 1, & x \in[0,1[\\ 1, & x=1\end{cases}
$$

This result suggest to find for chaotic α_{m}-mapping corresponding chaotic mapping in unit segment.
Now we consider binary expansion of numbers from segment $[0,1]$. Every number x from $[0,1]$ it is possible to write in form $x=a_{0} a_{1} a_{2} \ldots$ where $a_{k} \in\{0,1\}$
and $x=a_{0} 2^{-1}+a_{1} 2^{-2}+a_{2} 2^{-3}+\ldots$. For example, $\frac{1}{2}=1000 \ldots$ or $\frac{1}{7}=\overline{001} \ldots$ (infinite sequence which periodically repeat after some fixed length will be denoted by the finite length sequence with an overline). But we has one problem: for example, the number $\frac{1}{2}$ has two binary expansions $1 \overline{0}$ and $0 \overline{1}$. We assume that we consider only first variant of binary expansion. Therefore we consider set $I=\Sigma_{2} \backslash J$, where

$$
J=\left\{s_{0} s_{1} s_{2} \ldots \in \Sigma_{2} \mid \exists N \geq 0 \forall i \geq N s_{i}=1\right\} .
$$

Then we has second problem with number 1 , its binary expansion $\overline{1} \notin I$. But $\alpha_{m}(\overline{1})=\overline{1}$ - this point is fixed point for every mapping $\alpha_{m}, m=2,3, \ldots$ and all iterations are same. Finally we consider set I as binary expansion of numbers from segment $[0,1[$.
The mapping $\tau: \Sigma_{2} \rightarrow[0,1[$ defined by equality
$\forall s=s_{0} s_{1} s_{2} \ldots \in I \quad \tau(s)=s_{0} 2^{-1}+s_{1} 2^{-2}+s_{2} 2^{-3}+\ldots$
is onto, continuous (see, for example, [Peitgen, Juergen, Saupe, 1994] and [Kudrjavcev, 1988]) but it is not one-to-one. The mapping $\tau: I \rightarrow[0,1[$ is onto, continuous and one-to-one. Here are more possibilities how the number from segment $[0,1[$ transforms to binary expansion. We use method from [Peitgen, Juergen, Saupe, 1994]:

$$
\begin{gathered}
x \in\left[0,1\left[\quad \tau^{-1}(x)=s_{0} s_{1} s_{2} \ldots,\right. \text { where }\right. \\
s_{i}=\left\{\begin{array}{l}
0, z(x)_{i}<\frac{1}{2}, \\
1, z(x)_{i} \geq \frac{1}{2},
\end{array}\right.
\end{gathered}
$$

$$
z(x)_{0}=x, z(x)_{i}=2 z(x)_{i-1} \bmod 1, i=1,2, \ldots
$$

For example, if $x=\frac{1}{7}$, then
$z(x)_{0}=x=\frac{1}{7}<\frac{1}{2} \Rightarrow s_{0}=0$,
$z(x)_{1}=2 z(x)_{0} \bmod 1=\frac{2}{7} \bmod 1=\frac{2}{7}<\frac{1}{2} \Rightarrow s_{1}=$ 0 ,
$z(x)_{2}=\frac{4}{7} \bmod 1=\frac{4}{7} \geq \frac{1}{2} \Rightarrow s_{2}=1$,
$z(x)_{3}=\frac{8}{7} \bmod 1=\frac{1}{7}<\frac{1}{2} \Rightarrow s_{3}=0$,..., i.e., $\frac{1}{7}=\overline{001}$.
If we consider $\tau: I \rightarrow[0,1[$, then the inverse map τ^{-1} is not continuous. For example, the sequence $x_{n}=\frac{1}{2}-\frac{1}{2^{n}}, n=1,2, \ldots$, converges to $\frac{1}{2}$ but the sequence $\tau^{-1}\left(x_{n}\right), n=1,2, \ldots$, converges to $0 \overline{1} \notin I$. Therefore $\tau: \Sigma_{2} \rightarrow[0,1[$ and $\tau: I \rightarrow[0,1[$ are not homeomorphisms and not topological conjugacy.
In Section 2 we has shown that α_{m}-mapping is chaotic in symbol space Σ_{2}. It is chaotic in set I too? Indied, notice that $\alpha_{m}: J \rightarrow J$ and $\alpha_{m}: I \rightarrow I$. The $\alpha_{m}{ }^{-}$ mapping is increasing mapping in I too. It follows that α_{m}-mapping is chaotic in subset $I \subset \Sigma_{2}$.

We assume that for the α_{m}-mapping exists corresponding chaotic mapping in segment $[0,1]$. What can we find for α_{m}-mapping corresponding mapping E_{m} in segment $[0,1]$? For this aim we make numerical experiment: at first, we write number x from segment [0,1 [(with step, for example, 0.01) in its binary expansion $s \in I$, at second, we consider $\alpha_{m}(s)$, at thirdly, we write $\alpha_{m}(s)$ in its decimal expansion $E_{m}(x)$ and make graph. Finally for $m=2$ we find

$$
E_{2}(x)=\left\{\begin{array}{l}
4 x, \quad 0 \leq x<\frac{1}{8} \\
4 x-\frac{1}{2}, \frac{1}{8} \leq x<\frac{3}{8} \\
4 x-1, \frac{3}{8} \leq x<\frac{4}{8} \\
4 x-2, \frac{4}{8} \leq x<\frac{5}{8} \\
4 x-\frac{5}{2}, \frac{5}{8} \leq x<\frac{7}{8} \\
4 x-3, \frac{7}{8} \leq x<1
\end{array}\right.
$$

Fig.1. Graph of E_{2}.

It is necessary to show $\tau \circ \alpha_{2}=E_{2} \circ \tau$.
Let $s=s_{0} s_{1} s_{2} \ldots \in I$, then

$$
\begin{aligned}
& \alpha_{2}\left(s_{0} s_{1} s_{2} \ldots\right)=s_{1} s_{3} s_{4} \cdots \\
& \tau\left(\alpha_{2}(s)\right)=s_{1} 2^{-1}+s_{3} 2^{-2}+s_{4} 2^{-3}+\ldots
\end{aligned}
$$

For the right side $E_{2}(\tau(s))$ we remark that value of
$\tau\left(s_{0} s_{1} s_{2} s_{3} \ldots\right)=s_{0} 2^{-1}+s_{1} 2^{-2}+s_{2} 2^{-3}+s_{3} 2^{-4}+\ldots$
belongs to one of 8 segments depending of $s_{0}, s_{1}, s_{2} \in$ $\{0,1\}$:

1) If $s_{0}=s_{1}=s_{2}=0$ and by assumption all $s_{i} \neq$ $1, i>2$, then

$$
\tau(s)=s_{3} 2^{-4}+s_{4} 2^{-5}+s_{5} 2^{-6}+\ldots \in\left[0, \frac{1}{8}[.\right.
$$

Therefore

therefore
$E_{2}(\tau(s))=4 \tau(s)=2^{2}\left(s_{3} 2^{-4}+s_{4} 2^{-5}+s_{5} 2^{-6}+\ldots\right)=$
$=s_{3} 2^{-2}+s_{4} 2^{-3}+s_{5} 2^{-4}+\ldots=\tau\left(\alpha_{2}(s)\right)$.
2) If $s_{0}=s_{1}=0, s_{2}=1$ and by assumption all $s_{i} \neq 1, i>2$, then

$$
\tau(s)=2^{-3}+s_{3} 2^{-4}+s_{4} 2^{-5}+s_{5} 2^{-6}+\ldots \in\left[\frac{1}{8}, \frac{2}{8}[.\right.
$$

Therefore

$$
\begin{aligned}
& E_{2}(\tau(s))=4 \tau(s)-\frac{1}{2}= \\
& =2^{2}\left(2^{-3}+s_{3} 2^{-4}+s_{4} 2^{-5}+s_{5} 2^{-6}+\ldots\right)-\frac{1}{2}= \\
& =2^{-1}+s_{3} 2^{-2}+s_{4} 2^{-3}+s_{5} 2^{-4}+\ldots-\frac{1}{2}= \\
& =s_{3} 2^{-2}+s_{4} 2^{-3}+s_{5} 2^{-4}+\ldots=\tau\left(\alpha_{2}(s)\right) .
\end{aligned}
$$

3) If $s_{0}=s_{2}=0, s_{1}=1$ and by assumption all $s_{i} \neq 1, i>2$, then

$$
\tau(s) \in\left[\frac{2}{8}, \frac{3}{8}[\right.
$$

therefore

$$
\begin{aligned}
& E_{2}(\tau(s))=4 \tau(s)-\frac{1}{2}= \\
& =2^{2}\left(2^{-2}+s_{3} 2^{-4}+s_{4} 2^{-5}+s_{5} 2^{-6}+\ldots\right)-\frac{1}{2}= \\
& =2^{-1}+s_{3} 2^{-2}+s_{4} 2^{-3}+s_{5} 2^{-4}+\ldots-\frac{1}{2}= \\
& =s_{3} 2^{-2}+s_{4} 2^{-3}+s_{5} 2^{-4}+\ldots=\tau\left(\alpha_{2}(s)\right) .
\end{aligned}
$$

4) If $s_{0}=0, s_{1}=s_{2}=1$ and by assumption all $s_{i} \neq 1, i>2$, then

$$
\tau(s) \in\left[\frac{3}{8}, \frac{1}{2}[\right.
$$

therefore

$$
\begin{aligned}
& E_{2}(\tau(s))=4 \tau(s)-1= \\
& =2^{2}\left(2^{-2}+2^{-3}+s_{3} 2^{-4}+s_{4} 2^{-5}+s_{5} 2^{-6}+\ldots\right)-1= \\
& =2^{-1}+s_{3} 2^{-2}+s_{4} 2^{-3}+s_{5} 2^{-4}+\ldots= \\
& =2^{-1} s_{1}+s_{3} 2^{-2}+s_{4} 2^{-3}+s_{5} 2^{-4}+\ldots=\tau\left(\alpha_{2}(s)\right) .
\end{aligned}
$$

5) If $s_{0}=1, s_{1}=s_{2}=0$ and by assumption all $s_{i} \neq 1, i>2$, then

$$
\tau(s) \in\left[\frac{1}{2}, \frac{5}{8}[\right.
$$

$$
\begin{aligned}
& E_{2}(\tau(s))=4 \tau(s)-2= \\
& =2^{2}\left(2^{-1}+s_{3} 2^{-4}+s_{4} 2^{-5}+s_{5} 2^{-6}+\ldots\right)-2= \\
& =s_{3} 2^{-2}+s_{4} 2^{-3}+s_{5} 2^{-4}+\ldots=\tau\left(\alpha_{2}(s)\right)
\end{aligned}
$$

6) If $s_{1}=1, s_{0}=s_{2}=0$ and by assumption all $s_{i} \neq 1, i>2$, then

$$
\tau(s) \in\left[\frac{5}{8}, \frac{6}{8}[,\right.
$$

therefore

$$
\begin{aligned}
& E_{2}(\tau(s))=4 \tau(s)-\frac{5}{2}= \\
& =2^{2}\left(2^{-1}+2^{-3}+s_{3} 2^{-4}+s_{4} 2^{-5}+s_{5} 2^{-6}+\ldots\right)-\frac{5}{2}= \\
& =s_{3} 2^{-2}+s_{4} 2^{-3}+s_{5} 2^{-4}+\ldots=\tau\left(\alpha_{2}(s)\right) .
\end{aligned}
$$

7) If $s_{2}=0, s_{0}=s_{1}=1$ and by assumption all $s_{i} \neq 1, i>2$, then

$$
\tau(s) \in\left[\frac{6}{8}, \frac{7}{8}[,\right.
$$

therefore

$E_{2}(\tau(s))=4 \tau(s)-\frac{5}{2}=$
$=2^{2}\left(2^{-1}+2^{-2}+s_{3} 2^{-4}+s_{4} 2^{-5}+s_{5} 2^{-6}+\ldots\right)-\frac{5}{2}=$
$=s_{1} 2^{-1}+s_{3} 2^{-2}+s_{4} 2^{-3}+s_{5} 2^{-4}+\ldots=\tau\left(\alpha_{2}(s)\right)$.
7) If $s_{0}=s_{1}=s_{2}=1$ and by assumption all $s_{i} \neq$ $1, i>2$, then

$$
\tau(s) \in\left[\frac{7}{8}, 1[,\right.
$$

therefore
$E_{2}(\tau(s))=4 \tau(s)-3=$
$=2^{2}\left(2^{-1}+2^{-2}+2^{-3}+s_{3} 2^{-4}+s_{4} 2^{-5}+s_{5} 2^{-6}+\ldots\right)-3=$
$=s_{1} 2^{-1}+s_{3} 2^{-2}+s_{4} 2^{-3}+s_{5} 2^{-4}+\ldots=\tau\left(\alpha_{2}(s)\right)$.

Similary we find E_{3} :

$$
E_{3}(x)= \begin{cases}4 x, & 0 \leq x<\frac{1}{16}, \\ 4 x-\frac{1}{4}, & \frac{1}{16} \leq x<\frac{3}{16} \\ 4 x-\frac{1}{2}, & \frac{3}{16} \leq x<\frac{5}{16}, \\ 4 x-\frac{3}{4}, & \frac{5}{16} \leq x<\frac{7}{16}, \\ 4 x-1, & \frac{7}{16} \leq x<\frac{8}{16}, \\ 4 x-2, & \frac{8}{16} \leq x<\frac{9}{16}, \\ 4 x-\frac{9}{4}, & \frac{9}{16} \leq x<\frac{11}{16}, \\ 4 x-\frac{5}{2}, & \frac{11}{16} \leq x<\frac{13}{16}, \\ 4 x-\frac{11}{4}, & \frac{13}{16} \leq x<\frac{15}{16}, \\ 4 x-3, & \frac{15}{16} \leq x<1\end{cases}
$$

Fig.2. Graph of E_{3}.
Similarly we can find $E_{4}, E_{5}, .$. and finally we give formula for $E_{m}, m \geq 2$, in general case.

$$
E_{m}(x)= \begin{cases}4 x, & 0 \leq x<\frac{1}{2^{m+1}} \\ 4 x-\frac{1}{2^{m-1}}, & \frac{1}{2^{m+1}} \leq x<\frac{3}{2^{m+1}} \\ 4 x-\frac{2}{2^{m-1}}, & \frac{3}{2^{m+1}} \leq x<\frac{5}{2^{m+1}} \\ \cdots & \cdots, \\ 4 x-\frac{i}{2^{m-1}}, & \frac{2 i-1}{2^{m+1}} \leq x<\frac{2 i+1}{2 m+1} \\ \cdots & \cdots, \\ 4 x-1, & \frac{2^{m}-1}{2^{m+1}} \leq x<\frac{1}{2}=\frac{2^{m}}{2^{m+1}} \\ 4 x-2, & \frac{1}{2} \leq x<\frac{2^{m}+1}{2^{m+1}}, \\ 4 x-\frac{1}{2^{m-1}}-2, & \frac{2^{m}+1}{2^{m+1}} \leq x<\frac{2^{m}+3}{2^{m+1}} \\ \cdots & \cdots, \\ 4 x-3, & \frac{2^{m+1}-1}{2^{m+1}} \leq x<1\end{cases}
$$

Obviously similarly as for $m=2$ we can prove equality $\tau \circ \alpha_{m}=E_{m} \circ \tau$, i.e., $\tau: I \rightarrow[0,1[$ is topological semi-conjugacy from α_{m} to E_{m}. Similarly as for tent map it is possible to prove that $E_{m}:[0 ; 1] \rightarrow[0 ; 1]$ $\left(E_{m}(1)=1\right)$ exibits sensitive dependence on initial conditions. We conclude

Theorem 3.2. Let $E_{m}(1)=1$. The every mapping $E_{m}:[0,1] \rightarrow[0,1], m=2,3, \ldots$, is chaotic in $[0,1]$.

References

Banks, J., Brooks, J., Cairns, G., Davis, G. and Stacey, P. (1992) On Devaney's definition of chaos. Amer.Math. Monthly, V. 99, pp. 29-39.
Bula, I., Buls, J. and Rumbeniece, I. (2006). On chaotic maps in symbol space of one sided infinite sequences. Abstracts of Tenth Prague topological Symposium, pp. 71-72, Prague, August 13-19,
or Bula, I., Buls, J. and Rumbeniece, I. Why can we detect the chaos? (submitted).
Devaney, R. (1986). An introduction to chaotic dynamical systems. Benjamin \backslash Cummings: Menlo Park, CA.
Gulick, D. (1992). Encounters with chaos. McGrawHill, Inc.
Holmgren,R. A. (1996). A first course in discrete dynamical systems. Springer-Verlag.
Kitchens, B. P. (1998). Symbolic Dynamics. Onesided, two-sided and countable state Markov shifts. Springer-Verlag.
Kudrjavcev, L. D. (1988). Kurs matematiceskogo analiza. Vissaja skola, Moskva, Tom I, (russian).
Lind, D. and Marcus, B. (1995). An introduction to symbolic dynamics and coding. Cambridge University Press.
Li, T. Y. and Yorke, J. A. (1975). Period three implies chaos.Amer.Math. Monthly, V.82(12), pp. 985-992.
Peitgen, H. O., Juergen, H. and Saupe, D. (1994). CHAOS. Bausteine der Ordnung. Klett-Cotta/Springer-Verlag.
Robinson, C. (1995). Dynamical systems. Stability, symbolic dynamics, and chaos. CRS Press.
Wiggins, S. (1988). Global bifurcations and chaos. Analytical methods. Applied Mathematical Sciences V.73, Springer-Verlag.

