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Abstract
We suggest a general approach to investigate a prob-

lem of synthesis of spatial stochastic attractors of non-
linear dynamic systems. Our technique is based on
stochastic sensitivity function (SSF) and a concept of
invariant manifolds. Corresponding notions of accessi-
bility and full controllability are introduced and stud-
ied.
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1 Introduction
Many nonlinear phenomena of mechanics, electronic

generators, lasers, biophysics observed under transition
from the order to chaos are frequently connected with
a chain of bifurcations: a stationary regime (equilib-
rium point) - periodic regime (limit cycle) - quasiperi-
odic regime (torus) - chaotic regime (strange attrac-
tor). Each such transition is accompanied by the loss
of stability of simple attractor and new more compli-
cated stable attractor birth. Under the random dis-
turbances deterministic attractor is transformed to the
stochastic counterpart. Stability analysis of appropri-
ate invariant manifolds is a key for the understanding of
the complex behavior of nonlinear stochastic dynami-
cal systems. A synthesis of multi-dimensional attrac-
tors with wishful parameters is a challenging problem
of the modern control theory. A case of the equilib-
rium point is well-studied. Now the research interest is
moved to a study of limit cycles, tori and another spatial
attractors ([Fradkov and Pogromsky, 1998], [Chen and
Yu, 2003]). In order to investigate these different cases
from a common viewpoint, we use a general approach
based on invariant manifolds. The compact invariant
manifolds are useful general mathematical models for
various important regimes of nonlinear dynamical sys-
tems. A study of the compact invariant manifolds at-

tracts an attention of many researchers and leads to the
several important mathematical problems in the stabil-
ity and control theory.
An extension of Lyapunov function technique for the

stability analysis of the invariant manifolds of a de-
terministic system was considered in ([Ryashko and
Shnol, 2003]). Stochastic stability analysis for com-
mon invariant manifolds was presented in ([Ryashko,
2003]). In this paper, we investigate a control problem
for stochastically forced invariant manifolds with the
help of stochastic sensitivity function technique. This
technique was developed and successfully applied for
stochastic limit cycles in ([Bashkirtseva and Ryashko,
2000], [Bashkirtseva and Ryashko, 2004], [Bashkirt-
seva and Ryashko, 2005]). Here corresponding notions
of accessibility and full controllability for stochastic
manifolds are introduced and studied.

2 Synthesis of Stochastic invariant manifolds
Consider the deterministic system

dx = f(x, u) dt, x, f ∈ Rn, u ∈ Rl. (1)

Here a smooth vector function f(x, u) depends on a
control parameter u. Suppose the system (1) for u = 0
has a smooth compact invariant manifold M. Stability
of the manifold M is not supposed.
Consider a set F of the admissible feedback controls

u = u(x). A function u(x) ∈ F if the following con-
dition

u(x)|M = 0 (2)

holds and for a closed system

dx = f(x, u(x)) dt



the manifold M is exponentially stable in an invariant
vicinity U.
The condition (2) means that the manifold M remains

invariant for all admissible controls. Thus, operating
the system (1) we do not interfere in the dynamics of
its solutions lying on the invariant manifold M.
Consider along with (1) a corresponding stochastic

system

dx = f(x, u)dt + εσ(x, u)dw(t). (3)

Here w(t) is n-dimensional Wiener process, σ(x, u)
is a smooth n× n-matrix function characterizing a de-
pendence of disturbances on a state and control, ε is a
scalar parameter of the noise intensity.
To describe the dynamics of deviations of the random

trajectories of the system (3) from the manifold M we
will use a linear extension system

dx = f(x, u) dt,

dz = F (x, u)zdt + εσ(x, u)dw(t),

x ∈M, z ∈ Rn,

(4)

where

F (x, u) =
∂f

∂x
(x, u) +

∂f

∂u
(x, u)

∂u

∂x
(x).

System (4) for u ∈ F with the condition (2) can be
written as

dx = f0(x) dt,

dz = (A(x) + B(x)K(x))zdt + εG(x)dw,

x ∈M, z ∈ Rn,

(5)

where

f0(x) = f(x, 0), A(x) =
∂f

∂x
(x, 0),

B(x) =
∂f

∂u
(x, 0), G(x) = σ(x, 0), K(x) =

∂u

∂x
(x).

In a character of the dependence of system (5) on a
control, we note the following feature. The system (5)

dynamics depends on the values of derivatives
∂u

∂x
on

the manifold M only.
For each x ∈ M, denote by Tx the tangent subspace

to M at x. Denote by Nx the orthogonal complement
to Tx in Rn. Let Px be the operator of the orthogonal
projection onto the subspace Nx.

Due to (2), for K(x) =
∂u

∂x
(x) a condition

∀x ∈M K(x)Px = K(x). (6)

holds.
Here, without lost a generality we restrict a consider-

ation by the following control functions

u(x) = K(γ(x))∆(x), (7)

where

γ(x) = argminy∈M‖x− y‖, ∆(x) = x− γ(x),

‖ · ‖ is Euclidean norm, γ(x) is a point of the manifold
M that is nearest to x, ∆(x) = x− γ(x) is a vector of
a deviation of the point x from M.
A necessary and sufficient condition of the exponen-

tial stability of the manifold M for the deterministic
system (1) with the control (7) is P -stability of the
linear extension system ([Ryashko and Shnol, 2003])

dx = f0(x) dt,

dz = (A(x) + B(x)K(x))zdt.
(8)

Consider a set K of l × n-matrix functions K(x)
satisfying the condition (6) for which the system (8) is
P -stable. Between the set of admissible controls F
and the set K there are following simple connections.

Lemma 1. In order to u(x) ∈ F , it is necessary and

sufficient that
∂u

∂x
(x) ∈ K.

Lemma 2. In order to u(x) = K(γ(x))∆(x) ∈ F
it is necessary and sufficient that K(x) ∈ K. We as-
sume that the set K is not empty. For any K(x) ∈ K,
in the closed stochastic system (3), (7) near the man-
ifold M the bundle of random trajectories is formed.
As shown in ([?]) a distribution of the trajectories in
this bundle can be described by stochastic sensitivity
function defined on M. Values of this function depend
on a choice of a feedback coefficient K(x) of the regu-
lator (7). Now our main aim is to study possibilities of
the control of this function by a variation of regulator
parameters.
Consider a parametrical description of stochastic sen-

sitivity function. For this purpose we take any fixed
point x ∈ M and consider a solution x(t) = X(t, x)
of the equation

dx = f0(x) dt

with the initial condition X(0, x) = x.



Define the following functions

A(t) = A(x(t)), B(t) = B(x(t)),

G(t) = G(x(t)), S(t) = G(t)G>(t),

P (t) = Px(t), K(t) = K(x(t))

and the set

Kx = {K(t) | K(t) = K(x(t)), K(x) ∈ K}.

Note that due to (6) for all K(t) ∈ Kx the following
identity

∀t ∈ R1 K(t)P (t) = K(t) (9)

holds.
For the system (3), the stochastic sensitivity function

at the points of the trajectory x(t) is determined by a
matrix W (t).
This matrix for any x ∈ M and K(t) ∈ Kx is a

unique solution of the equation

Ẇ = (A(t) + B(t)K(t))W+

+W (A(t) + B(t)K(t))> + P (t)S(t)P (t).
(10)

The matrix W (t) is connected by the formula

lim
t→+∞

(P (t)V (t)P (t)−W (t)) = 0

with a covariation matrix V (t) = cov(y(t), y(t)) of an
arbitrary solution y(t) of the linear stochastic system

dy = (A(t)y + B(t)v)dt + P (t)G(t)dw (11)

with a regulator

v = K(t)y. (12)

For the small noise, the matrix W (t) gives us a pre-
cise description of the distribution of random trajecto-
ries near the manifold M. The value ε2W (t) is a first
approximation of the covariance matrix for intersection
points of random trajectories of the nonlinear stochas-
tic system (3) with a hyperplane that is orthogonal to
the manifold M at the point x(t) ∈M.
The stochastic sensitivity function W (t) of the man-

ifold M depends on a choice of a feedback matrix

K(t). Under these circumstances, the following con-
trol problem is a main point of this paper interest.
Consider a family of solutions X(t, x) of the deter-

ministic system (1) with initial condition X(0, x) = x.
For any fixed point x ∈M the solution x(t) = X(t, x)
defines a t-parametrization of the all points of the man-
ifold M. Let us introduce a set

Kx = {V (t)|V (t) = V (X(t, x)), t ∈ R1},

where V (x) is P -positive matrix function. A symmet-
ric matrix function V (x) is called P -positive if the fol-
lowing condition holds

∀x ∈M ∀z ∈ Rn Pxz 6= 0 ⇒ (z, V (x)z) > 0.

Consider a set of admissible stochastic sensitivity
functions

Mx = Kx ∩C1(R1).

Main Problem.
Let W̄ (t) ∈ Mx be a desired stochastic sensitivity

matrix. It is required to find such matrix K ∈ Kx that
a matrix WK(t) is a solution of the equation (10). It
means that for any t ∈ R1 the following identity

WK(t) = W̄ (t). (13)

holds.
This Main Problem is a problem of the synthesis of the

required stochastic sensitivity function. The solution
of this problem assumes a fitting of a suitable feedback
matrix K(t) in the regulator (12).
Let us fix some matrix W̄ (t) ∈ Mx. If to put

W (t) = W̄ (t) in the (10), we have an equation

B(t)K(t)W̄ (t) + W̄ (t)K>(t)B>(t) =

=
d

dt

[
W̄ (t)

]−A(t)W̄ (t)− W̄ (t)A>(t)−

−P (t)S(t)P (t).

(14)

for the unknown matrix K(t).
Thus, the Main Problem of a formation of the desir-

able stochastic sensitivity function is reduced to the de-
cision of the matrix algebraic equation (14).
Solvability of this equation is connected with proper-

ties of the matrix B(t).
Lemma 3. Let for any t ∈ R1 the matrix B(t) is

quadratic (n = l) and nonsingular ( rankB = n). Then
the system (14) has the solution

K̄(t) = B−1(t)
(

d

dt

[
W̄ (t)

]
W̄+(t)+



+
1
2
W̄ (t)

d

dt

[
W̄+(t)

]− 1
2
P (t)S(t)W̄+(t)−A(t)

)
,

where ”+” means a pseudoinversion. Really, for the
matrix K̄(t) due to formulas

W̄+W̄ = W̄W̄+ = P,

d

dt

[
W̄

]
=

d

dt

[
W̄

]
P + P

d

dt

[
W̄

]
+ W̄

d

dt

[
W̄+

]
W̄

the following relations hold

BK̄W̄ + W̄ K̄>B> =
d

dt

[
W̄

]
P+

+
1
2
W̄ (t)

d

dt

[
W̄+

]
W̄ − 1

2
PSP −AW̄+

+P
d

dt

[
W̄

]
+

1
2
W̄

d

dt

[
W̄+

]
W̄ − 1

2
PSP − W̄A> =

=
d

dt

[
W̄

]− PSP −AW̄ − W̄A>.

It means that K̄ is a solution.
If rankB < n, the system (14) not always has a solu-

tion.

3 Accessibility and Controllability
Let us introduce the concepts of an accessibility and

full controllability.
Definition 1. If an element W̄ ∈ Mx for some K ∈

Kx for all t satisfies the equality WK(t) = W̄ (t) then
W̄ is called accessible in the system (3). A set of all
accessible elements

Wx = {W̄ ∈ Mx | ∃K(t) ∈ Kx WK(t) = W̄ (t)}

is called a set of accessibility of the system (3).
Definition 2. The manifold M is named fully

stochastic controllable in the system (3), if

∀ x ∈M ∀ W ∈ Mx ∃ K ∈ Kx WK(t) ≡ W (t).

In this case, we will speak shortly that the system (3)
is fully stochastic controllable.

Directly from these definitions the Proposition fol-
lows.

Proposition 1. The manifold M is fully stochastic
controllable if and only if

∀ x ∈M Wx = Mx.

Now the sufficient condition of full stochastic control-
lability on the basis of the Lemma 3 can be written as
follows.

Proposition 2. The condition

∀ x ∈M rank
∂f

∂u
(x, 0) = n = l

is sufficient for a full stochastic controllability of the
system (3).

Remark. The constructive application of this general
theory for the case of equilibrium points and limit
cycles with a physically meaningful examples can
be found in ([Bashkirtseva and Ryashko, 2005],
[Bashkirtseva and Ryashko, 2008]).
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