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Abstract
The dynamics and stability of the elastic elements of

vibration devices, modeled by a channel containing elas-
tic elements, are investigated. Inside the channel flows a
stream of stirred liquid. The model of the device with
two elastic elements is considered. The solution of the
aerohydrodynamic part of the problem, based on the
methods of the theory of functions of a complex vari-
able, is given. The solution of the original problem is
reduced to the study of a coupled system of partial differ-
ential equations for the deformations of elements, which
makes it possible to study their dynamics. On the basis
of the constructed functional for this system, the suffi-
cient conditions of stability are obtained. The conditions
impose restrictions on the parameters of the mechanical
system. Based on the Galerkin method, the numerical
experiments for specific examples of mechanical sys-
tems were carried out, confirming the reliability of the
investigations. A special case of the model of device
with one elastic element is considered. Based on this
case, a comparison with the model of the vibration de-
vice considered earlier is made.

Key words
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1 Introduction
For the design and exploitation of structures, devices,

mechanisms for various applications, interacting with
liquid, an important problem is to ensure the reliability
of their functioning and durability. Similar problems are
common to many branches of engineering. In particular,
such problems arise in missilery, aircraft construction,
instrumentation, and so on. A stability investigation of

the deformable elements has essential value in the cal-
culation of structures that interact with the liquid, as the
impact of the liquid may lead to its loss. Examples of
the loss of dynamic stability include: the flutter of an
airplane wing; panel flutter of plates and shells that are
streamlined by a gas or liquid, for example, flutter of
an aircraft or rocket skin panel; shear flutter of turbine
blades and propellers; oscillations of wires, ducts, sus-
pension bridges, and so on.

At the same time, for the operation of some techni-
cal devices, the phenomenon of excitation of vibrations
during aero-hydrodynamic effects, mentioned above as
negative, is necessary. Examples of such devices related
to the vibration technique and used to intensify techno-
logical processes are devices for preparing homogeneous
mixtures and emulsions, in particular, devices for sup-
plying coolant to the treatment area (see, for example,
[Velmisov et al., 1996]). The main part of a wide class
of such devices is a flow channel, on the walls of which
(or inside it) the elastic elements are located. The oper-
ation of such devices is based on the vibration of elastic
elements during the flow of liquid inside the channels.

Thus, for designing of the structures and devices inter-
acting with the liquid, it is necessary to solve problems
related to the investigation of stability required for their
functioning and operational reliability.

Many experimental and theoretical studies have been
devoted to stability analysis of elastic bodies interacting
with gas and liquid. Among them we should note [Ab-
delbaki et al., 2019; Blinkov et al., 2018; Kheiri and
Paidoussis, 2015; Kontzialis et al., 2017; Moditis et al.,
2016; Mogilevich et al., 2017; Mogilevich et al., 2018;
Moshkelgosha et al., 2017; Zvyagin and Gur’ev, 2017]
and many others. Among the works of the authors
of this article about fluid-structure interaction, note the
monograph and articles [Ankilov and Velmisov, 2013;



CYBERNETICS AND PHYSICS, VOL. 8, NO. 3, 2019 176

Ankilov and Velmisov, 2016; Velmisov and Ankilov,
2017; Velmisov and Ankilov, 2018; Velmisov and
Ankilov, 2018].

The goal of this work is to analyze stability of elastic
body correspond to the Lyapunov concept of stability of
dynamical systems. The problem can be formulated as
follows: for any values of the parameters characterizing
the system ”liquid-solid” (the main parameters are the
flow velocity, strength and inertial characteristics of the
body, compressive or tensile forces, friction forces) de-
termine whether small deformation of bodies at the ini-
tial time t = 0 (i.e. a small initial deviations from the
equilibrium position) correspond to small deformations
at any time t > 0.

In the work, the problems of the dynamics and stability
of the elastic elements of the vibration device are inves-
tigated. The study of the dynamic stability of the work-
ing elements of vibrating device is necessary for optimal
control of the parameters of the mechanical system in
order to increase the efficiency of its functioning. The
device is a flow channel with deformable elements, sim-
ulated by elastic plates, which can be located both on
the walls of the channel and inside it. The number and
location of elements are arbitrary. A subsonic flow of
an ideal compressible or incompressible medium flows
through the channel. To study the dynamics of elastic
elements, nonlinear equations are used that describe the
longitudinal-transverse oscillations of elastic plates. The
aerohydrodynamic load is determined from the asymp-
totic equations of aero-hydromechanics. At the inlet and
outlet of the channel, either the laws of pressure change,
or the velocity potential of the liquid, or the longitudinal
components of the velocity of the liquid are given. At
the inlet to the channel, the flow velocity of the liquid is
assumed to be constant and directed along the channel
axis (Figure 1).

Figure 1. Model of the vibration device.

As an example, let us consider a mathematical model
of a hydrodynamic emitter – a vibration device designed
to prepare homogeneous mixtures and emulsions. The
main components of the device are two elastic elements
located on the walls of the flow channel. The oscillations
of elastic elements lead to mixing of the inhomogeneous
medium supplied to this channel.

2 Model of Device with Two Elastic Elements
2.1 Mathematical Model

A flat flow in a straight line channel J=
{

(x, y)∈R2 :
0 < y < y0} is considered (Figure 2).

It is assumed that the longitudinal size of the chan-
nel considerably exceeds its transverse size, which leads
to the absence of disturbances at a point sufficiently far
from the elements. The velocity of the undisturbed flow
will be considered equal V and directed along the axis
Ox. Suppose that the elastic parts are located on the
walls y = 0 and y = y0 at x ∈ [a, b] (Figure 2).

Figure 2. A channel whose walls contain deformable elements

We introduce the following notation: ui(x, t), wi(x, t)
are elastic displacement of insert plates in the direction
of axes Ox and Oy walls y = 0 at i = 1 and y = y0
at i = 2; φ(x, y, t) is potential of the velocity of the
disturbed flow.

Functions wi(x, t) ∈ C4,2 {[a, b]×R+}, i.e. it be-
longs to four times continuously differentiable func-
tions with respect to the variable x on the interval (a, b)
and twice continuously differentiable with respect to the
variable t at t ≥ 0 and takes real values.

Functions ui(x, t) ∈ C2,2 {[a, b]×R+}, i.e. it be-
longs to twice continuously differentiable functions with
respect to the variable x on the interval (a, b) and twice
continuously differentiable with respect to the variable t
at t ≥ 0 and takes real values.

Function φ(x, y, t) ∈ C2,1 {J ×R+}, i.e. it belongs
to twice continuously differentiable functions with re-
spect to the variables x, y in the area J and continuously
differentiable with respect to the variable t at t ≥ 0 and
takes real values.

In a model of an ideal incompressible medium the po-
tential φ of the disturbed flow satisfies the Laplace equa-
tion:

∆φ ≡ φxx + φyy = 0, (x, y) ∈ J. (1)

The linearized boundary conditions arising from the con-
dition of impermeability have form:

φy(x, yi, t) = 0, x ∈ (−∞, a]
⋃

[b,+∞); (2)

φy(x, yi, t) = ẇi(x, t) + V w′i(x, t), x ∈ (a, b), (3)
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where i = 1, 2, y1 = 0, y2 = y0. The conditions for
the absence of disturbances at an infinitely distant point:(

φ2x + φ2y + φ2t
)
x=±∞ = 0, y ∈ (0, y0). (4)

The boundary conditions corresponding to rigid fixing of
the ends of the plates:

ui(a, t) = wi(a, t) = w′i(a, t) = ui(b, t) =

= wi(b, t) = w′i(b, t) = 0, i = 1, 2.
(5)

Generalizing the nonlinear equations of small oscilla-
tions of elastic plates obtained in [Shmidt, 1978], we
write them in the form

−EiFi
(
u′i(x, t) + 1

2w
′
i
2
(x, t)

)′
+

+Miüi(x, t) = 0,

−EiFi
[
w′i(x, t)

(
u′i(x, t) + 1

2w
′
i
2
(x, t)

)]′
+

+Miẅi(x, t) +Diw
′′′′
i (x, t)+

+Ni(t)w
′′
i (x, t) + β0iwi(x, t) + β1iẇi(x, t)+

+β2iIiẇ
′′′′
i (x, t) = (−1)i (P0 − P∗−

−ρ (φt(x, yi, t) + V φx(x, yi, t))) ,

i = 1, 2, x ∈ (a, b).

(6)

The indices x, y, t below denote partial derivatives
with respect to x, y, t; the bar and the point denote
the partial derivatives with respect to x and t, respec-
tively; ρ is density of liquid; Ii = h3i /(12(1 − ν2i ));
Di = EiIi are flexural stiffness of plates; hi are thick-
nesses of plates; Mi = hiρpl are linear masses of plates;
Fi = hi/(1− ν2i ); Ei, ρpl are elasticity modulus and the
linear density of the plates; νi are Poisson coefficients;
Ni(t) are compressing (Ni > 0) or tensile (Ni < 0)
forces of the plates; β2i, β1i are coefficients of internal
and external damping; β0i are stiffness coefficients of
the bases (beds); P0 is pressure in a uniform flow; P∗ is
external distributed load acting on the channel walls.

Compressive (tensile) forces Ni(t) elements may de-
pend on time. For example, if a non-stationary heat ex-
posure to the plate the Ni(t) is as follows:

Ni (t) = N0i +
EiαTi
1− νi

hi/2∫
−hi/2

Ti (z, t) dz,

where αTi are the temperature coefficients of linear ex-
pansion, Ti(z, t) are the laws of temperature change over
the thickness of the plates, N0i are the constant compo-
nents of forces generated when fixing plates.

A nonlinear boundary value problem (1) – (6) was ob-
tained for determining five unknown functions – the de-
formations of elastic elements ui(x, t), wi(x, t), i = 1, 2
and the velocity potential φ(x, y, t) of the liquid.

2.2 Determination of the Flow Force
In the region J , we introduce the complex potential

W = f(z, t) = φ + iψ, z = x + iy and consider the
analytic function fz(z, t) = φx + iψx = φx − iφy . Us-
ing the function ζ = −e−πz/y0 , we conformally map the
strip J to the upper half-plane H = {ζ : Im ζ > 0} of
the complex variable ζ = ξ + iη. In this case, the seg-
ments [−α,−β], [β, α] on the real axis will correspond
to the elastic plates, where β = e−πb/y0 , α = e−πa/y0 .
According to the boundary conditions (2), (3) we will
have

Re{ifz(z(ζ), t)} = φy =

=

0, ξ /∈ [−α,−β] ∪ [β, α],
w̄1(x(ξ), t), ξ ∈ [−α,−β],
w̄2(x(ξ), t), ξ ∈ [β, α],

(7)

where

w̄1 = ẇ1 +V w′1, w̄2 = ẇ2 +V w′2, x(ξ) = −y0
π

ln |ξ| .

According to (4), applying the Schwartz integral, we ob-
tain

fz(z(ζ), t) = − 1

π

 −β∫
−α

w̄1(x(τ), t)

τ − ζ
dτ+

+

α∫
β

w̄2(x(τ), t)

τ − ζ
dτ

+ C(t),

(8)

where C(t) is arbitrary function of the variable t.
As fz = φx − iφy → C(t) at ζ → ∞ (x → −∞),

then from (4) it follows that C(t) ≡ 0. By virtue of the
same condition at ζ → 0 (x→ +∞), from (8) we have

−β∫
−α

w̄1(x(τ), t)

τ
dτ +

α∫
β

w̄2(x(τ), t)

τ
dτ = 0.

or, given that x(τ) = −y0
π

ln |τ |,

b∫
a

(
∂w1

∂t
+ V

∂w1

∂x

)
dx =

b∫
a

(
∂w2

∂t
+ V

∂w2

∂x

)
dx.

According to the boundary conditions (5) we obtain

b∫
a

∂w1

∂t
dx =

b∫
a

∂w2

∂t
dx. (9)

The physical meaning (9) is that the gas flow through the
boundary of region J equal to zero, which corresponds
to the model of an incompressible medium.
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Further, since Wζ = fz
dz
dζ

= −fz y0πζ , integrating by
ζ and differentiating by t, according to (4) we obtain:

Wt = ft(z(ζ), t) = − y0
π2

 −β∫
−α

w̄1t(x(τ), t)

τ
× (10)

× ln (τ − ζ) dτ +

α∫
β

w̄2t(x(τ), t)

τ
ln (τ − ζ) dτ

+

+C1(t),

where C1(t) is arbitrary function of the variable t. Ac-
cording to (4) the condition φt → 0 at ζ → ∞ (x →
−∞) is also satisfied, therefore from (10) it follows
that ReC1(t) ≡ 0. And from condition φt → 0 at
ζ → 0 (x→ +∞) we have

−β∫
−α

w̄1t(x(τ), t)

τ
ln (−τ) dτ+

+

α∫
β

w̄2t(x(τ), t)

τ
ln (τ) dτ = 0,

or, given that x(τ) = −y0
π

ln |τ |,

b∫
a

x

(
∂w1

∂t
+ V

∂w1

∂x

)
dx=

b∫
a

x

(
∂w2

∂t
+ V

∂w2

∂x

)
dx.

Using the integral representations (8), (10), we trans-
form the right-hand side of the second equation of sys-
tem (6). To this end, in (8), (10) we pass to the limits at
ζ → ξ ∈ (−α,−β) (z → x+ i · 0, a < x < b) and
ζ → ξ ∈ (β, α) (z → x+ i · y0, a < x < b). Applying
the Sokhotsky’s formula , we obtain

ρ (φt(x, yi, t) + V φx(x, yi, t)) =

= −y0ρ
π2

 −β∫
−α

∂w̄1(x(τ), t)

∂t

ln |τ − ξ|
τ

dτ+

+

α∫
β

∂w̄2(x(τ), t)

∂t

ln |τ − ξ|
τ

dτ

− (11)

−ρV
π

 −β∫
−α

w̄1(x(τ), t)

τ − ξ
dτ+

α∫
β

w̄2(x(τ), t)

τ − ξ
dτ

 ,

ξ = (−1)ie−πx/y0 , i = 1, 2, a < x < b,

Substituting ξ, τ , we write the expressions (11) in the
form

ρ(−1)i (φt(x, yi, t) + V φx(x, yi, t)) =

=
ρV

π

 b∫
a

(ẇi(τ, t) + V w′i(τ, t))
∂K1(τ, x)

∂x
dτ−

−
b∫
a

(
ẇ3−i(τ, t) + V w′3−i(τ, t)

) ∂K2(τ, x)

∂x
dτ

+

+
ρ

π

 b∫
a

(ẅi(τ, t) + V ẇ′i(τ, t))K1(τ, x)dτ− (12)

−
b∫
a

(
ẅ3−i(τ, t) + V ẇ′3−i(τ, t)

)
K2(τ, x)dτ

 ,

i = 1, 2, x ∈ (a, b),

where

K1(τ, x) = ln

∣∣∣∣∣∣
2 exp

(
−πa
y0

)
exp

(
−πτ
y0

)
− exp

(
−πx
y0

)
∣∣∣∣∣∣ ,

K2(τ, x) = ln

∣∣∣∣∣∣
2 exp

(
−πa
y0

)
exp

(
−πτ
y0

)
+ exp

(
−πx
y0

)
∣∣∣∣∣∣ ,

K(τ, x) = K1(τ, x)−K2(τ, x), τ 6= x.

It is easy to see that the kernels are symmetric
Ki(τ, x) = Ki(x, τ), i = 1, 2, K(τ, x) = K(x, τ).
Besides K1(τ, x) ≥ K(τ, x) ≥ K2(τ, x) ≥ 0. The
expressions (12) are obtained for any methods of fixing
elastic plates.

Substituting (12) into (6), we obtain a system of differ-
ential equations with four unknown functions u1(x, t),
w1(x, t), u2(x, t), w2(x, t):

−EiFi
(
u′i(x, t) +

1

2
w′i

2
(x, t)

)′
+Miüi(x, t) = 0,

−EiFi
[
w′i(x, t)

(
u′i(x, t) +

1

2
w′i

2
(x, t)

)]′
+

+Miẅi(x, t) +Diw
′′′′
i (x, t) +Ni(t)w

′′
i (x, t)+

+β0iwi(x, t) + β1iẇi(x, t) + β2iIiẇ
′′′′
i (x, t) = (13)

= −ρV
π

 b∫
a

(ẇi(τ, t) + V w′i(τ, t))
∂K1(τ, x)

∂x
dτ−

−
b∫
a

(
ẇ3−i(τ, t) + V w′3−i(τ, t)

) ∂K2(τ, x)

∂x
dτ

−
− ρ
π

 b∫
a

(ẅi(τ, t) + V ẇ′i(τ, t))K1(τ, x)dτ−
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−
b∫
a

(
ẅ3−i(τ, t) + V ẇ′3−i(τ, t)

)
K2(τ, x)dτ

 ,

i = 1, 2, x ∈ (a, b).

The system (13) is homogeneous and obtained under the
assumption that P0 = P∗.

2.3 Stability Investigation
Introduce the following notation: λ1i, η1i are the

smallest eigenvalues of the boundary value problems for
the equations ψ′′′′ = −λψ′′, ψ′′′′ = ηψ, x ∈ [a, b] with
boundary conditions corresponding (5) for the functions
wi(x, t), i = 1, 2;

G = sup
x∈[a,b]

b∫
a

|K1(τ, x) + g1(x) + g1(τ)| dτ,

K = sup
x∈[a,b]

b∫
a

|K2(τ, x) + g2(x) + g2(τ)| dτ,
(14)

where g1(x), g2(x) are the arbitrary functions integrable
over a segment [a, b] chosen for reasons of attaining the
smallest possible values G, K. Further an example of
the choice of functions g1(x), g2(x) is given.

Theorem 2.1. Let the conditions

β0i ≥ 0, β1i + β2iIiη1i ≥ 0, Ṅi(t) ≥ 0, (15)

Mi ≥
2ρK

π
, Ni(t) < Diλ1i −

ρV 2 (G+K)

π
(16)

be fulfilled. Then the solutions wi(x, t) (i = 1, 2) of
the system of equations (13) are stable with respect to
the perturbations of the initial values wi(x, 0), u̇i(x, 0),
ẇi(x, 0), u′i(x, 0), w′i(x, 0), w′′i (x, 0) (i = 1, 2), if the
functions ui(x, t), wi(x, t) (i = 1, 2) satisfy the bound-
ary conditions (5).

Proof. We introduce the functional

Φ(t) =

2∑
i=1

b∫
a

{
EiFi

(
u′i(x, t) +

1

2
w′i

2
(x, t)

)2

+

+Mi

(
u̇2i (x, t) + ẇ2

i (x, t)
)

+Diw
′′
i
2
(x, t)− (17)

− Ni(t)w
′
i
2
(x, t)+ β0iw

2
i (x, t)

}
dx+

3∑
i=1

(Ii(t)+Ji(t)),

where

Ji(t) = −ρV
2

π

b∫
a

dx

b∫
a

w′i(x, t)w
′
i(τ, t)K1(τ, x)dτ,

Ii(t) =
ρ

π

b∫
a

dx

b∫
a

ẇi(x, t)ẇi(τ, t)K1(τ, x)dτ, i = 1, 2,

(18)

J3(t) =
2ρV 2

π

b∫
a

dx

b∫
a

w′1(x, t)w′2(τ, t)K2(τ, x)dτ,

I3(t) = −2ρ

π

b∫
a

dx

b∫
a

ẇ1(x, t)ẇ2(τ, t)K2(τ, x)dτ.

Find the derivative of Φ by t

Φ̇(t) = 2

2∑
i=1

b∫
a

{
EiFi

((
u′i +

1

2
w′i

2
)2
)
t

+

+Miu̇iüi +Miẇiẅi +Diw
′′
i ẇ
′′
i −

1

2
Ṅi(t)w

′
i
2− (19)

−Ni(t)w′iẇ′i + β0iwiẇi} dx+

3∑
i=1

(İi + J̇i),

We will integrate by parts taking into account the
boundary conditions (6):

b∫
a

ẇi

[
w′i

(
u′i +

1

2
w′i

2
)]′

dx+

b∫
a

u̇i

(
u′i +

1

2
w′i

2
)′
dx=

=
1

2

 b∫
a

(
u′i +

1

2
w′i

2
)2

dx


t

,

b∫
a

ẇiw
′′′′
i dx =

=

b∫
a

ẇ′′i w
′′
i dx,

b∫
a

ẇiẇ
′′′′
i dx =

b∫
a

ẇ′′i
2dx,

b∫
a

ẇiw
′′
i dx = −

b∫
a

ẇ′iw
′
idx,

b∫
a

dx

b∫
a

ẇi(x, t)ẇi(τ, t)
∂K1(τ, x)

∂x
dτ =

= −
b∫
a

dx

b∫
a

ẇi(x, t)ẇ
′
i(τ, t)K1(τ, x)dτ, i = 1, 2.

Similar to the last equality, it is possible to obtain
equalities for all integrals with integrands containing
∂Ki(τ, x)

∂x
, i = 1, 2.
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Taking into account the symmetry of the kernels
K1(τ, x) = K1(x, τ), K2(τ, x) = K2(x, τ), we obtain

J̇i(t) = −2ρV 2

π

b∫
a

dx

b∫
a

ẇ′i(x, t)w
′
i(τ, t)K1(τ, x)dτ,

İi(t) =
2ρ

π

b∫
a

dx

b∫
a

ẇi(x, t)ẅi(τ, t)K1(τ, x)dτ,

i = 1, 2,

İ3(t) = −2ρ

π

b∫
a

dx

b∫
a

ẇ1(x, t)ẅ2(τ, t)K2(τ, x)dτ−

−2ρ

π

b∫
a

dx

b∫
a

ẇ2(x, t)ẅ1(τ, t)K2(τ, x)dτ,

J̇3(t) =
2ρV 2

π

b∫
a

dx

b∫
a

ẇ′1(x, t)w′2(τ, t)K2(τ, x)dτ+

+
2ρV 2

π

b∫
a

dx

b∫
a

ẇ′2(x, t)w′1(τ, t)K2(τ, x)dτ.

According to the obtained equalities for functions
ui(x, t), wi(x, t), i = 1, 2, that are solutions of the sys-
tem of equations (13), the equality (19) takes the form:

Φ̇(t) =

= −2
2∑
i=1

b∫
a

{
β1iẇ

2
i + β2iIiẇ

′′2
i + 1

2Ṅi(t)w
′
i
2
}
dx.

Consider boundary value problems for equations
ψ′′′′ = −λψ′′, ψ′′′′ = ηψ, x ∈ (a, b) with boundary
conditions (5) for the functions wi(x, t). These prob-
lems are positively defined and fully defined. For the
functionwi(x, t), using the Rayleigh [Kollatz, 1968] and
Cauchy-Bunyakovsky inequalities, we obtain estimates

b∫
a

ẇ′′i
2

(x, t)dx ≥ η1i

b∫
a

ẇ2
i (x, t)dx,

b∫
a

w′′i
2
(x, t)dx ≥

≥λ1i

b∫
a

w′i
2
(x, t)dx,

w2
i (x, t)

(b− a)
≤

b∫
a

w′i
2
(x, t)dx, (20)

where λ1i =

(
2π

b− a

)2

, η1i ≈
(

4, 73

b− a

)4

are smallest

eigenvalues of boundary value problems [Ankilov and
Velmisov, 2013].

Using the first inequality in (20), we obtain

Φ̇(t) ≤

≤ −2
2∑
i=1

b∫
a

{
(β1i + β2iIiη1i) ẇ

2
i + 1

2Ṅi(t)w
′
i
2
}
dx.

Let conditions (15) be fulfilled, then we finally obtain
Φ̇(t) ≤ 0. Integrating from 0 to t, we obtain the inequal-
ity

Φ(t) ≤ Φ(0). (21)

Let us estimate the repeated integrals (18) in the expres-
sion for Φ(0), using the equality K1(τ, x) = K(τ, x)+
+K2(τ, x), the inequality proved earlier [Ankilov and
Velmisov, 2013]

b∫
a

dx

b∫
a

f(x)f(τ)K(τ, x)dτ ≥ 0, (22)

valid for any continuous functions f(x) on an inter-
val [a, b], an obvious inequality ±2cd ≤ c2 + d2,
as well as symmetry and non-negativity of kernels
K1(τ, x),K2(τ, x), as follows:

Ii(0) ≤ ρ

π

b∫
a

dx

b∫
a

ẇ2
i (x, 0)K1(τ, x)dτ, i = 1, 2, (23)

I3(0) ≤

≤ ρ

π

b∫
a

dx

b∫
a

(
ẇ2

1(x, 0) + ẇ2
2(x, 0)

)
K2(τ, x)dτ,

(24)

Ji(0) ≤

≤ ρV 2

π

b∫
a

dx

b∫
a

w′i
2
(x, 0)K2(τ, x)dτ, i = 1, 2,

(25)

J3(0) ≤ ρV 2

π
×

×
b∫
a

dx

b∫
a

(
w′1

2
(x, 0) + w′2

2
(x, 0)

)
K2(τ, x)dτ.

(26)

From (17), (18), (23) – (26) follows

Φ(0) ≤
2∑
i=1

b∫
a

{
EiFi

(
u′0i +

1

2
w′0i

2
)2

+Miu̇
2
0i+

+

(
Mi +

ρ (K0 +G0)

π

)
ẇ2

0i +Diw
′′
0i

2
+ (27)

+

(
2ρV 2G0

π
−Ni(0)

)
w′0i

2
+ β0iw

2
0i

}
dx,

where w0i = wi(x, 0), u̇0i = u̇i(x, 0), ẇ0i = ẇi(x, 0),
u′0i = u′i(x, 0), w′0i = w′i(x, 0), w′′0i = w′′i (x, 0),

K0 = sup
x∈(a,b)

b∫
a

K1(τ, x)dτ, G0 = sup
x∈(a,b)

b∫
a

K2(τ, x)dτ.
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Let us estimate the repeated integrals (18) in the ex-
pression for Φ(t), using (22), equality K1(τ, x) =
= K(τ, x) + K2(τ, x), inequality ±2cd≥ −(c2 + d2)
as well as symmetry and non-negativity of the kernels
K1(τ, x),K2(τ, x).

Using the conditions (5), we obtain

Ji(t) ≥ −
ρV 2

π

b∫
a

dx

b∫
a

w′i
2
(x, t)×

× |K1(τ, x) + g1(x) + g1(τ)| dτ, i = 1, 2,

(28)

J3(t)≥−ρV
2

π

b∫
a

dx

b∫
a

(
w′1

2
(x, t)+w′2

2
(x, t)

)
×

× |K2(τ, x) + g2(x) + g2(τ)| dτ,

(29)

where g1(x), g2(x) are the arbitrary functions integrable
over a segment [a, b].

Using the condition (9), we obtain

3∑
i=1

Ii(t) ≥
2∑
i=1

b∫
a

dx

b∫
a

ẇi(x, t)ẇi(τ, t)K2(τ, x)dτ+

+I3(t) ≥ −2

b∫
a

dx

b∫
a

(
ẇ2

1(x, t) + ẇ2
2(x, t)

)
× (30)

× |K2(τ, x) + g2(x) + g2(τ)| dτ.

Thus, according to (17), (18), (28) – (30), we obtain the
inequality

Φ(t) ≥
2∑
i=1

b∫
a

{
EiFi

(
u′i +

1

2
w′i

2
)2

+

+

(
Mi −

2ρK

π

)
ẇ2
i +Miu̇

2
i +Diw

′′
i
2

+ β0iw
2
i−

−
(
ρV 2 (G+K)

π
+Ni(t)

)
w′i

2
}
dx,

from which, using the first inequalities from (15), (16)
and the second inequality from (20), we obtain

Φ(t) ≥
2∑
i=1

b∫
a

(
Diλ1i−

−ρV
2 (G+K)

π
−Ni(t)

)
w′i

2
dx.

(31)

Let the second condition (16) be fulfilled, then, using the
third inequality (20), taking into account (21), (27), (31),
we obtain the inequality

2∑
i=1

(
Diλ1i −

ρV 2 (G+K)

π
−Ni(t)

)
w2
i (x, t)

(b− a)
≤

≤
2∑
i=1

b∫
a

{
EiFi

(
u′0i +

1

2
w′0i

2
)2

+Miu̇
2
0i+

+

(
Mi +

ρ (K0 +G0)

π

)
ẇ2

0i +Diw
′′
0i

2
+ (32)

+

(
2ρV 2G0

π
−Ni(0)

)
w′0i

2
+ β0iw

2
0i

}
dx.

Thus, if the conditions (15), (16) are satisfied, then
Φ(t) ≥ 0, Φ̇(t) ≤ 0. From (32) it follows that the solu-
tion wi(x, t) (i = 1, 2) of the system of equations (13)
is stable with respect to the perturbations of the initial
values wi(x, 0), u̇i(x, 0), ẇi(x, 0), u′i(x, 0), w′i(x, 0),
w′′i (x, 0) (i = 1, 2).

The theorem is proved.
Remark. In a similar way, we can prove that theorem

2.1 is also true, if the functions ui(x, t), wi(x, t), i =
1, 2 satisfy any combination of the following boundary
conditions:

1) rigid fastening:

wi(x1, t) = w′i(x1, t) = ui(x1, t) = 0;

2) hinged fastening:

wi(x1, t) = w′′i (x1, t) = ui(x1, t) = 0,

where x1 = a or x1 = b.

2.4 An Example of a Mechanical System
Let us give examples of calculating the stability region

on the plane of two parameters (V ,Ni). We assume that
the flow of liquid (ρ = 1000), and the elements are made
of steel (Ei = 20, 6 · 1010, ρni = 7850). Other param-
eters of the mechanical system: a = 0; b = 1; y0 = 1;
νi = 0, 25; β0i = 4; β1i = 0, 4; β2i = 0, 4; hi = 0, 01
(all values are given in the SI system). Making calcula-
tions we obtain λ1i = 4π2; Mi = 78, 5; Di ≈ 18311, 1.

According to conditions (16) it is necessary to find the
coefficients K, G. For the calculation, the functions

g1(x) = −1, 25 sin
πx

2
+ 0, 23 cos

πx

2
− 0, 37,

g2(x) = −πx
2
− 0, 21

√
x(1− x) + 0, 198

were selected and the coefficients (14): K ≈ 0, 243;
G ≈ 0, 956 were found using the Mathcad mathematical
system. The first condition (16) is satisfied, and from the
second condition we obtain

Ni(t) ≤ 722893, 252− 381, 654 · V 2. (33)

If the points (V ,Ni(t)) for any t ≥ 0 do not go be-
yond the stability region (gray area in Figure 3 below
the parabola), then the solutions wi(x, t), i = 1, 2 of
the system of equations (13) are stable with respect to
the perturbations of the initial values wi(x, 0), u̇i(x, 0),
ẇi(x, 0), u′i(x, 0), w′i(x, 0), w′′i (x, 0), i = 1, 2.
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Figure 3. Stability region.

Figure 4. Character of the oscillations at V=40.

Figure 5. Character of the oscillations at V=40.

Figure 6. Character of the oscillations at V=51.

2.5 Numerical Experiment
The solution of the system of equations (13) was found

by the Galerkin-Petrov method, subjecting the desired
functions wi(x, t), ui(x, t) to the boundary conditions
(5). At Ni(t) = 0 in accordance with (16), the condition

V <

√
Diλ1iπ

ρ(G+K)
≈ 43, 52

must be fulfilled.
We take the initial conditions in the form

u1(x, 0) = u̇1(x, 0) = u2(x, 0) = u̇2(x, 0) = 0,

w1(x, 0) = w2(x, 0) = 0, 001ψ(x),

ẇ1(x, 0) = ẇ2(x, 0) = −0, 0005ψ(x),

where

ψ(x) = sin γx− sinh γx− 1, 018(cos γx− cosh γx),

γ = 0, 73 (case of synchronous vibrations). The figure
shows the character of the oscillations of the elastic el-
ements at the point x0 = 1/2 for the value V = 40,
that lies in the stability region, and the value V = 51,
that does not lies in the stability region. Obviously, at
V = 40 the stability is observed in the figures 4,5 and
in the figure 6 – instability at V = 51. The numer-
ical experiments confirm the accuracy of the produced
research.

3 Model of Device with One Elastic Element
We consider the model of device with one elastic ele-

ment (Figure 7).

Figure 7. A channel whose wall contain deformable element

We obtain a special case the nonlinear boundary value
problem (1) – (6) at w1(x, t) = 0, w2(x, t) = w(x, t),
u1(x, t) = 0, u2(x, t) = u(x, t). Hence, from (13) we
obtain a system of differential equations with two un-
known functions u(x, t), w(x, t):

−EF
(
u′(x, t) +

1

2
w′

2
(x, t)

)′
+Mü(x, t) = 0,

−EF
[
w′(x, t)

(
u′(x, t) +

1

2
w′

2
(x, t)

)]′
+

+Mẅ(x, t) +Diw
′′′′(x, t) +N(t)w′′(x, t)+

+β0w(x, t) + β1ẇ(x, t) + β2Iẇ
′′′′(x, t) = (34)

= −ρV
π

b∫
a

(ẇ(τ, t) + V w′(τ, t))
∂K1(τ, x)

∂x
dτ−

− ρ
π

b∫
a

(ẅ(τ, t) + V ẇ′(τ, t))K1(τ, x)dτ, x ∈ (a, b).
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Therefore, the theorem 2.1 takes the following form.

Theorem 3.1. Let the conditions

β0 ≥ 0, β1 + β2Iη1 ≥ 0, Ṅ(t) ≥ 0, (35)

M ≥ ρK

π
, N(t) < Dλ1 −

ρV 2G

π
(36)

be fulfilled. Then the solution w(x, t) of the system of
equations (34) is stable with respect to the perturbations
of the initial values w(x, 0), u̇(x, 0), ẇ(x, 0), u′(x, 0),
w′(x, 0), w′′(x, 0), if the functions u(x, t), w(x, t) sat-
isfy the boundary conditions

u(a, t) = w(a, t) = w′(a, t) = u(b, t) =

= w(b, t) = w′(b, t) = 0.
(37)

4 Comparison with Finite Length Model
In the paper [Velmisov and Ankilov, 2019] we consid-

ered a model of a device of finite length x0 (Figure 8).

Figure 8. A channel whose wall contain deformable element

In the boundary sections of the channel the laws of
variation of the longitudinal component of the fluid ve-
locity are given:

φx(0, y, t) = 0, φx(x0, y, t) = 0, y ∈ [0, y0], t ≥ 0.

We introduce the following notation:

G1(τ, x) = ln

∣∣∣∣ f(a)− f(b)

f(τ)− f(x)

∣∣∣∣ ,
G2(τ, x) = ln

∣∣∣∣ f(a)− f(b)

f(τ) + f(x)

∣∣∣∣ ,
where

f(x)= cd

(
2K(k)i(x0 − x)

y0

)
, cdx= −sn(x−K(k)),

snx is the elliptic sine, K(k) is the full elliptic integral
of the first kind, the module k is determined from the
relation K

(√
1− k2

)
y0 = 2K(k)x0.

Then, using methods of the theory of functions of a
complex variable, we obtained a system of differential
equations with two unknown functions u(x, t), w(x, t):

−EF
(
u′(x, t) +

1

2
w′

2
(x, t)

)′
+Mü(x, t) = 0,

−EF
[
w′(x, t)

(
u′(x, t) +

1

2
w′

2
(x, t)

)]′
+

+Mẅ(x, t) +Diw
′′′′(x, t) +N(t)w′′(x, t)+ (38)

+β0w(x, t) + β1ẇ(x, t) + β2Iẇ
′′′′(x, t) =

= −ρV
π

b∫
a

(ẇ(τ, t) + V w′(τ, t))
∂G1(τ, x)

∂x
dτ−

− ρ
π

b∫
a

(ẅ(τ, t) + V ẇ′(τ, t))G1(τ, x)dτ, x ∈ (a, b).

Similarly to the above studies, based on the study of
a functional of Lyapunov type, the following theorem is
proved.

Theorem 4.1. Let the conditions (35), (36) be fulfilled,
where

G = sup
x∈[a,b]

b∫
a

|G1(τ, x) + g1(x) + g1(τ)| dτ,

K = sup
x∈[a,b]

b∫
a

|G2(τ, x) + g2(x) + g2(τ)| dτ.

(39)

Then the solution w(x, t) of the system of equations (38)
is stable with respect to the perturbations of the ini-
tial values w(x, 0), u̇(x, 0), ẇ(x, 0), u′(x, 0), w′(x, 0),
w′′(x, 0), if the functions u(x, t), w(x, t) satisfy the
boundary conditions (37).

Compare the second condition (36) for the models in
the figures 7 and 8. We take the following parameters
of the studied mechanical systems: D = 810; ρ = 840;
y0 = 0.5; a = 0.8; b = 1.2. Under conditions (37) the
smallest eigenvalue λ1 = 25π2. All values are given in
the SI system.

For the model in the figure 7, choosing a function
g1(x) = −0.81 − 0.268 · sin (2.5π(x− a)) + 0.493×
× cos (2.5π(x− a)), we find G = 0.371212. The sec-
ond condition (36) takes the form

N(t) < 199859.49− 99.25 · V 2. (40)

For the model in the figure 8 at x0 = 2 we
find the module k = 1.4 · 10−5 from the equa-
tion K

(√
1− k2

)
= 8K(k). Choosing a function

g(x) = −0.42 − 0.268 · sin (2.5π(x− a)) + 0.493×
× cos (2.5π(x− a)), we find G = 0.370818. The sec-
ond condition (36) takes the form

N(t) < 199859.49− 99.15 · V 2. (41)

The conditions are almost identical, which confirms
the adequacy of the proposed mathematical model and
the obtained results .
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5 Conclusion
On the basis of the proposed mathematical model of

oscillations of elastic elements of a vibrating device in
the form of a plate-strip with a single-sided flow around
them by a subsonic flow of an ideal liquid, the investiga-
tion of the dynamics and stability of these elements was
conducted. The obtained stability conditions impose re-
strictions on the mass and bending stiffness of elements,
compressive (tensile) force elements, the velocity of an
unperturbed flow and other parameters of the mechani-
cal system. These conditions clearly contain the basic
parameters of the mechanical system, and in this form
they are most suitable for solving optimization problems,
automatic control, and automated design.
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