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Abstract
In this work, single-input, single-output fractional or-

der linear time invariant systems subject to input hys-
teresis, Relay and Duhem, are presented. It is assumed
that the plant is stable and fractionalPIλ controller
are designed with negative unity feedback to overcome
the undesirable effects of hysteresis. Tuning of the
PIλ controller is demonstrated numerically by using
Grünwald-Letnikov approach. It is shown thatPIλ

controller are more effective thanPI controller for the
system subject to input Duhem hysteresis.
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1 Introduction

Fractional calculus which is extension of non integer
order derivative and integral has great attention in the
last few decades, because of its ability to model sys-
tems more accurately than integer orders. Therefore,
the fractional calculus is an important tool for various
areas of science and technology. Basis of the fractional
calculus could be found in [Oldham and Spanier, 1974;
Miller and Ross, 1993; Podlubny, 1999].

Recently, fractional calculus has been applied to
control theory. Fractional order controllers have
been developed for fractional order systems. Firstly,
Oustaloup [Oustaloup, 1995] has proposed fractional
order controller CRONE which is abbreviation of
Commande Robuste d’Ordre Non Entier. He demon-
strated that performance of the CRONE method more
superior than classicPID controller. Later, Podlubny
[Podlubny, 1994; Podlubny, Dorcak and Kostial,
1997; Machado, 1997] proposed fractionalPIλDµ

controller with integrator orderλ and differentiator
orderµ and showed thatPIλDµ controller had better

performance when used for fractional dynamical
systems.

In lately, control of systems with hysteresis is an im-
portant task of engineering. Because, hysteresis ef-
fects on systems as loss of stability, limit cycles and
steady state error etc. Hysteresis has different meaning
for different fields but in general, it is a special type
of memory based relation between input and output.
Although it has quite importance in terms of its ap-
plications, the mathematical basis of this phenomenon
base on last thirty years, for example, [Krasnosel’skii
and Pokrovskii, 1989; Mayergoyz, 1991; Macki, Nistri
and Zecca, 1993; Visintin, 1994]. Control of hystere-
sis could be seen in [Tao and Kokotovic, 1994; Sain,
Sain and Spencer, 1997; Logemann and Mawby, 1998]
where the systems are integer order. In addition to this,
there are only a few works on fractional order systems
with hysteresis [Bagley and Torvik, 1986; Padovan and
Sawicki, 1997; Darwish and El-Bary, 2006; Schafer
and Kruger, 2006; Deng and Lü, 2007] which do not
deal with control problem.

In this work, single-input and single-output fractional
order linear time invariant systems subject to input hys-
teresis are presented. It is assumed that the plant of the
system is stable and hysteresis is compensated byPIλ

controller with negative unity feedback. In section 2,
necessary definitions and properties of fractional cal-
culus are given and fractional dynamical system is de-
scribed. In section 3, fractional orderPIλ controller
are shown. In section 4, hysteresis phenomenon is de-
fined with some of hysteresis operators. In section 5,
PIλ controller of the fractional order systems with in-
put hysteresis is mainly investigated. Section 6 shows
the numerical examples for Relay and Duhem hystere-
sis. The numerical solutions are obtained by using
Grünwald-Letnikov approach and compared with an-
alytical solutions. Finally, conclusions are deduced in
Section 7.



2 Preliminaries For Fractional Calculus

2.1 Fundamental Definitions
There are different fractional derivative definitions,

which include Riemann-Liouville (R-L), Grünwald-
Letnikov, Weyl, Caputo, Marchaud, and Riesz frac-
tional derivative in [Oldham and Spanier, 1974; Miller
and Ross, 1993; Podlubny, 1999]. Here, the R-L defin-
ition is used.

Definition 1. The R-L derivative of a functionx (t) is

aDα
t x (t) =

1

Γ (n − α)

(

d

dt

)n
t

∫

a

(t − τ)
n−α−1

x (τ) dτ

(1)
wheren − 1 ≤ α < n , n is an integer andΓ (.) is
Euler’s gamma function.

Definition 2. The R-L integral of a functionx (t) is

Iαx (t) =
1

Γ (α)

t
∫

a

(t − τ)
α−1

x (τ) dτ. (2)

Definition 3. The Laplace transform of R-L derivative
is the form of

L [aDα
t x (t)] = sαX (s)−

n−1
∑

k=0

sk
[

Dα−k−1x (t)
]

t=t0
.

(3)

Definition 4. The Mittag-Leffer function is defined by

Eα,β (z) =
∞
∑

k=0

zk

Γ (αk + β)
, (α > 0, β > 0) . (4)

2.2 Fractional Order Dynamical Systems
A differential equation which contains fractional

derivative is called fractional differential equation.
Fractional order dynamical system is a system that is
modeled by fractional order differential equation as

t0D
α
t x (t) = f(x, u) (5)

wherex (t) is a state vector,u (t) is an input function
andf is a function ofx andu. A fractional order linear
time invariant system is in the following form

t0D
α
t x (t) = Ax (t) + Bu (t) (6)

whereA andB are suitable coefficient matrix. General
solution of the fractional order linear system is obtained
by using Laplace transform. In the s-domain, solution
of the system is

X (s) = (sαI − A)
−1

x0+(sαI − A)
−1

BU (s) (7)

with initial conditionx0 =
[

t0D
α−1
t x (t)

]

t=t0
, and in

the time domain

x(t) = Eα,1(Atα)x0 (8)

+

t
∫

t0

(t − τ)
α−1

Eα,α(A (t − τ)α) Bu (τ) dτ.

Stability of the fractional order systems has been stud-
ied by [Matignon, 1996; Matignon, 1998]. The stabil-
ity condition of the fractional order systems is defined
by the following definition.

Definition 5. The fractional order linear system (6) is
stable if for alli = 1, 2, ...,m

|arg (Λi (A))| > α
π

2
(9)

whereΛi (A) denotes the i-th eigenvalue ofA andα is
the fractional order of the system.

3 Fractional PI
λ Controller

The proportional integral (PI) control which is de-
scribed by fractional order integral is called as frac-
tional proportional integral controller (PIλ). It is given
by

u (t) = kpe (t) + kiI
λe (t) (10)

wheree (t) = r − y(t) is the error function,kp andki

are the gains of proportional and integral controllers,
respectively, andIλ is fractional order integral which is
defined by R-L integral. The fractionalPIλ controller
is more flexible than the integer one because it allows
one to tuneλ, in addition,kp andki, and it does not ef-
fect changes of systems parameters [Podlubny, 1999].

4 Hysteresis Operators

Hysteresis is a nonlinear relation between input
and output functions which can be mathematically
represented by causal and rate independent operatorΦ.

There are different kinds of hysteresis operators, which
are Relay, Stop, Play, Duhem, Preisach and Prandtl. In
this work Relay and Duhem operators are considered.

Relay operator [Macki, Nistri and Zecca, 1993]:
In relay, the relation between inputu (t) and output

ω (t) is determined by two threshold valuesγ andσ,
(γ < σ). The output moves on one of the given func-
tion f1 : (−∞, σ] → R andf2 : [γ,∞) → R. In
this work, it is assumed thatf1 and f2 functions are



coincided atγ andσ. The relay operator is defined by

ω (t) =















f1 (u) , u (t) ≤ γ

f2 (u) , u (t) ≥ σ

f1 (u) , γ ≤ u (t) ≤ σ andu (τ (t)) = γ

f2 (u) , γ ≤ u (t) ≤ σ andu (τ (t)) = σ
(11)

where τ (t) = {s : s ≤ t, u (s) = σ or u (s) = γ} ,

i.e. τ (t) is the last time value that the input function
u (t) reached either of the two threshold values. Figure
4 shows the Relay operator for the functions:

f1(u) = 1.7654 −
√

1.1 − u (t)

f2(u) =
√

1.1 − u (t).

}

(12)
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Figure 1. Relay hysteresis

Duhem Operator [Visintin, 1994]
The Duhem operator is based on the property that the

output of the operator changes its character when the
input changes its direction. This operator is defined by

ω̇ (t) =

{

f1 (u, ω) u̇, u̇ (t) ≥ 0
f2 (u, ω) u̇, u̇ (t) ≤ 0

(13)

wheref1 and f2 are continuous functions. Figure 2
shows the Duhem operator with the initial condition
ω(0) = 0, for the functions:

f1 (u, ω) = ρ [bu − ω] + c

f2 (u, ω) = −ρ [bu − ω] + c

}

(14)

whereρ, b andc are constants chosen asρ = 1, b =
3.1635 and c = 0.345 in [Su, Stepanenko, Svoboda
and Leung, 2000].
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Figure 2. Duhem hysteresis

5 Fractional Order Systems With Input
Hysteresis

Consider a fractional order single-input (u (t) ∈ R),
single-output (y (t) ∈ R) linear time invariant system
with input hysteresis which is the following form

t0D
α
t x (t) = Ax (t) + BΦ(u (t))

y (t) = Cx (t)

}

(15)

whereA ∈ R
m×m, B ∈ R

m andC ∈ R
1×m are coef-

ficient matrix,x ∈ R
m (m ∈ N) is the state variable

andΦ is the hysteresis operator, see Figure 3. The Gen-
eral solution of the system is obtained by using Laplace
transform with the initial conditionx0 as follows

x(t) = Eα,1(Atα)x0 (16)

+

t
∫

t0

(t − τ)
α−1

Eα,α(A (t − τ)α) BΦ(u (τ)) dτ,

r e u y
PIλ Φ G (s)

+
−

plant

Figure 3. FractionalPIλ control of fractional order linear system

with input hysteresis

6 Numerical Example

(Controlled fractional diffusion process) Consider a
fractional diffusion process on the one-dimensional
spatial domain[0, 1], with diffusion coefficientβ and
Dirichlet boundary condition. The process is called as
subdiffusion when0 < α < 1, and diffusion when



α = 1. It is assumed that the process has point ac-
tuation atxb ∈ (0, 1) . The single-input, single-output
system is defined by

∂αz (t, x)

∂tα
= β

∂2z (t, x)

∂x2
+ δ (x − xb) Φ (u (t))

y (t) = z (t, xc)















(17)
with boundary and initial conditions, respectively,

z (t, 0) = z (t, 1) = 0 andz (0, x) = 0. (18)

These equations model the problem of heating a rod
of unit length whose ends are kept at zero temperature
and which is initially zero temperature across its length.
The temperature atxc is raised along its length, to
valuer by applying heat at a pointxb along its length.
The functionz (t, .) is the temperature profile along the
length of the rod at timet ∈ R

+.

Equation (17) is solved by using separation of vari-
ables, for this purpose let the partial differential equa-
tion has a solution of the form:

z (t, x) = T (t)X (x) . (19)

Firstly, homogen part of equation (17) is considered.
Substituting (19) in (17) gives

1

T

dαT

dtα
= β

1

X

d2X

dt2
. (20)

Right hand side of (20) holds if it equals a constant
which is called separation constant can be chosen as
the following

1

T

dαT

dtα
= β

1

X

d2X

dt2
= −βλ2. (21)

Using (18), the solution of the second part of (21) is

X (x) = sin (jπx) , (j = 1, 2, ...),

which is called eigenfunctions and then the general so-
lution of (17) is

z (t, x) =

∞
∑

k=1

qk (t) sin (kπx) . (22)

Since the higher order terms do not contribute much, it
could be interest only finite number of terms which is
denoted bym. Substituting (22) into (17) gives

m
∑

k=1

dαqk (t)

dtα
sin (kπx) = −β

m
∑

k=1

qk (t) sin (kπx)

+ δ (x − xb) Φ (u) ,

(23)

and multiplying both side of (23) bysin (kπx) and then
integrated from 0 to 1 gives

dαqk (t)

dtα
= −βk2π2qk (t) + 2 sin (kπxb) Φ (u)(24)

qk (0) = 0, k = 1, 2, ...,m, (25)

where (25) are the initial conditions which are calcu-
lated from (18). (24) is presented by the state space
form

0D
α
t q (t) = Aq (t) + BΦ(u (t))

y (t) = Cq (t)

}

(26)

whereq (t) =
[

q1 (t) q2 (t) ... qm (t)
]T

is state vari-
able,A ∈ R

m×m, B ∈ R
m andC ∈ R

1×m are matri-
ces given by

A = diagonal
[

−βk2π2
]

,

B =
[

b1 b2 ... bm

]T
, bk = 2 sin (kπxb)

C =
[

c1 c2 ... cm

]

, ck = sin (kπxc) , k = 1, 2, ...,m.

According to Definition 5, system (26) is stable for
all α values because the eigenvalues of the matrixA

are on the negative real axis, and this system is solved
by using Gr̈unwald Letnikov approximation. For this,
let the time interval[0, T ] is dividedN equal parts and
each parts is the size ofh. So, it is approximated at
nodeM, 0 ≤ M ≤ N such that

0D
α
t q (hM) =

1

hα

N
∑

j=0

w
(α)
j q (hM − jh)

= Aq (hM) + BΦ(u (hM))

(27)

where forj = 1, 2, ..., N

w
(α)
0 = 1; w

(α)
j =

(

1 −
α + 1

j

)

w
(α)
j−1.

From this equation, the response of the system is ob-
tained at nodeM as follows:

q (hM) =

(

1

hα
w

(α)
0 I − A

)

−1



BΦ(u (hM)) −
1

hα

N
∑

j=1

w
(α)
j q (hM − jh)



 .

Control design of the system (26) is shown by the
following simulations at the pointsxb = 0.25 and
xc = 0.375.The system is solved by using Grünwald-
Letnikov approximation choosingh = 0.1.



In Figure 4, contribution of number of the eigenval-
uesm to the system outputy (t) is demonstrated. For
this purpose, the system subject to Relay hysteresis is
considered and solved for different values ofm with in-
put functionu(t) = 4.5 sin(2.3t), andα = 1. It can be
seen from the figure that afterm = 10 variation ofy (t)
is very small between two consecutive values. It is also
valid for the system with Duhem hysteresis. Therefore
finite number of eigenvalues are sufficient for numeri-
cal calculations although the system is infinite dimen-
sional. Som = 15 is chosen for the other simulation
results.
In Figure 5, accuracy of the algorithm is shown by

comparing analytical and numerical solutions of the
system (26) subject to both Relay and Duhem hys-
teresis with input functionu(t) = 4.5 sin(2.3t). It is
clearly seen that these two solutions are very closed
which means the algorithm runs accurately.
Rest of the figures shows the control design of the

fractional order systems subject to input hysteresis
nonlinearity withα = 0.8. Control purposes of the
systems are tracking the reference valuer = 1.

Figure 6 and 7 shows integer and fractional order con-
trol design for fractional order system subject to input
Relay hysteresis, respectively. In Figure 6, integer or-
derPI controller are designed by adjustment ofkp and
ki. It can be seen from this figure that settling time and
overshoots are reduced whenkp and ki are both in-
creased. In Figure 7, fractional orderPIλ controller
are adjusted byλ = 0.7, 1.1 for fixed kp = 1.5 and
ki = 1.3. It can be concluded from the figure that frac-
tional order controller do not have more advantageous
with respect to integer order controller.

Figure 8 demonstrates the integer order control of the
system subject to input Duhem hysteresis. It is shown
that whenkp andki are increased, the settling time is
reduced but overshoot becomes.

Figure 9 shows the fractional order controller of the
same system in Figure 8. It is obvious that decreas-
ing λ values lead to reach best settling time without
overshoot. It can be concluded by comparing the last
two figures that fractional order control of the system
subject to input Duhem hysteresis is twofold advanta-
geous.

7 Conclusions

In this work, single-input, single-output fractional or-
der linear time invariant systems subject to input Relay
and Duhem hysteresis were considered. Convergency
of the system to the reference signal was achieved by
tuning of thePIλ controller. To obtain solution of
the system, Gr̈unwald-Letnikov approach was used.
Hence, despite of the fact thatPIλ controller were
more effective for Duhem hysteresis, it was not for Re-
lay hysteresis.

Acknowledgment

This work has been supported by The Scientific and
Technical Research Council of Turkey (TUBITAK).
The Project No: 105T446. The authors would like
to thank Prof.Om Prakash Agrawal for his suggestions
during preparation of the work.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

t (time)

y
(t

)

 

 

m=5
m=10
m=15
m=20

Figure 4. The solution of system (26) with input Relay hysteresis

for α = 1, u(t) = 4.5sin(2.3t)

0 1 2 3 4 5 6
−10

−5

0

5

10

15

t (time)

y
(t

)

 

 
Relay analytic
Relay numeric
Duhem analytic
Duhem numeric

Figure 5. Comparison of analytical and numerical solution of the

systems (26) with input Relay and Duhem hysteresis forα = 1

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

t (time)

y
(t

)

 

 

k
i
=0.4, k

p
=0.4

k
i
=0.8, k

p
=0.8

k
i
=1.2, k

p
=1.2

Figure 6. Integer order control of system (26) with input Relay hys-

teresis forα = 0.8



0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

t (time)

y(
t)

λ=0.7
λ=1
λ=1.1

Figure 7. Fractional order control of system (26) with inputRelay

hysteresis forα = 0.8, kp = 1.5 andki = 1.3

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t (time)

y
(t

)

 

 

k
i
=0.1, k

p
=0.5

k
i
=0.2, k

p
=0.6

k
i
=0.4, k

p
=0.8

Figure 8. Integer order control of system (26) with input Duhem

hysteresis forα = 0.8

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

t (time)

y
(t

)

 

 

λ=0.8

λ=0.5

Figure 9. Fractional order control of system (26) with inputDuhem

hysteresis forα = 0.8, kp = 0.47 andki = 0.35

References

Bagley, R. L. and Torvik, P.J. (1986). On the frac-
tional calculus model of behavior.Journal of Rheol-
ogy. (30), pp. 133-155.

Darwish, M. A. and El-Bary, A. A. (2006). Existence of
fractional integral equation with hysteresis.Applied
Mathematics and Computation. (176), pp. 684-687.

Deng, W. and L̈u, J. (2007). Generating multi-
directional multi-scroll chaotic attractors via a frac-
tional differential hysteresis system.Physics Letters
A. (369), pp. 438-443.

Krasnosel’skii, M. A. and Pokrovskii, A. V. (1989).

Systems with Hysteresis.Springer. Verlag.
Logemann, H. and Mawby, A. D. (1998). Integral con-

trol of distributed parameter systems with input re-
lay hysteresis.UKACC International Conference on
Control 98. University of Wales Swansea, United
Kingdom, September 1-4.

Machado, J. A. T. (1997). Analysis and design
of fractional-order digital control systems.Systems
Analysis Modeling Simulation. (27), pp. 107-122.

Macki, J. W., Nistri, P. and Zecca, P. (1993). Mathe-
matical models of hysteresis.Siam Review. (35), pp.
94-123.

Matignon, D. (1996). Stability results for fractional
differential equations with applications to control
processing.IMACS-SMC proceeding. Lille, France,
pp. 963-968.

Matignon, D. (1998). Stability properties for general-
ized fractional differential systems.ESAIM: Proceed-
ings Fractional Differential Systems: Models, Meth-
ods and Applications. (5), pp. 145-158.

Mayergoyz, I. D. (1991). Mathematical Models of Hys-
teresis.Springer-Verlag, Berlin.

Miller, K. S. and Ross, B. (1993).An Introduction to
the Fractional Calculus and Fractional Differential
Equations.Wiley. New York.

Oldham, K. B. and Spanier, J. (1974).The Fractional
Calculus.Academic Press. New York.

Oustaloup, A. (1995).La Derivation Non Enteire.
HERMES. Paris.

Padovan, J. and Sawicki, J. T. (1997). Diaphantine type
fractional derivative representation of structural hys-
teresis.Computational Mechanics. (19), pp. 335-340.

Podlubny, I. (1994).Fractional-order systems and frac-
tional order controllers. Inst. Exp. Phys. Slovak
Acad. Sci.. Kosice, no UEF-03-94.

Podlubny, I., Dorcak, L. and Kostial, I. (1997). On frac-
tional derivatives, fractional-order dynamic systems
and -controllers.Proceedings of the 36th Conference
on Decision & Control. San Diego, California USA,
December.

Podlubny, I. (1999).Fractional Differential Equations.
Academic Press. San Diego.

Sain, P. M., Sain, M. K. and Spencer, B. F. (1997).
Models for hysteresis and applications to structural
control.Proc. American Cont. Conf.June 4-6. (1).

Schafer, I. and Kruger, K. (2006). Modeling of coils us-
ing fractional derivatives.Journal of Magnetism and
Magnetic Materials. (307), pp. 91-98.

Su, C.Y., Stepanenko, Y., Svoboda, J. and Leung, T.P.
(2000). Robust adaptive control of a class of nonlin-
ear systems with unknown backlash-like hysteresis.
IEEE Trans. on Auto. Cont. (45), pp. 2427-2432.

Tao, G. and Kokotovic, P.V. (1994). Discrete-time
adaptive control of systems with unknown output
hysteresis.Proceedings of the American Control
Conference. Baltimore, Maryland, June.

Visintin, A. (1994).Differential Models of Hysteresis.
Springer. Berlin.


