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Abstract
The behavior of the square lattices of coupled two-

level quantum oscillators is investigated. As quantum
oscillators, we use the model of Rydberg atoms obtained
using the approximation of a fully factorized density ma-
trix. To investigate the behavior of the system the Lya-
punov exponents spectra are calculated. Chaos and hy-
perchaos in the systems are revealed. It was shown that
the number of positive Lyapunov exponents almost lin-
early depends on the number of atoms in the system, at
a rate suggesting that adding three atoms leads to the ap-
pearance of an additional positive Lyapunov exponent.
Using an external parametric effect and continuous feed-
back is suggested to control the complicated dynamics in
the system. Using continuous feedback allows reducing
the number of positive Lyapunov exponents from 3 to
only 2 while introducing external parametric influence
into the system allows reducing their number down to 0
and completely suppresses hyperchaos.
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1 Introduction
Nowadays, the problems of controlling quantum sys-

tems with Rydberg atoms are of considerable interest
due to the fact that such problems are closely related
to the problem of creating quantum computers [Jaksch
et al., 2000; Zagoskin, 2011]. It is known that Ryd-
berg atom is an excited atom with one or more electrons
that have a very high principal quantum number around
1000 [Weimer et al., 2008; Heidemann et al., 2007].
At present, such objects are of great interest [Greenland
et al., 2010; Gaëtan et al., 2009; Andreev et al., 2015;

Labuhn et al., 2016; Barredo et al., 2015] since they can
be used for the quantum control of one atom by another,
due to the Rydberg (highly excited) state. The size of
atoms in the basic state is no higher than 0.1 nm, while in
the Rydberg state they can be as high as several nanome-
ters or more. This allows atoms that are far enough apart
to prevent their interaction while they are in the ground
state to strongly interact when excited [Schwarzschild,
2009].

The problem of chaotic behavior in a quantum sys-
tem is of special interest [Ivanchenko et al., 2014; Os-
trovskaya and Nori, 2016; Eastman et al., 2017]. It is
also interesting from a practical point of view when solv-
ing problems with quantum calculations for clusters of
atoms introduced into a solid while in the Rydberg state
[Saffman et al., 2010].

Such systems with Rydberg atoms are promising for
storing and transmitting information. The problem of
analyzing how to suppress chaotic behavior in such sys-
tems is important since chaos can damage stored or
transmitted information.

In this work, we investigate the behavior of the square
lattices of N coupled quantum oscillators using a cal-
culation of Lyapunov exponents spectra. As quantum
oscillators, we use the model of Rydberg atoms obtained
using the approximation of a fully factorized density ma-
trix and mean-field theory. We reveal chaos in the system
of N > 4 and hyperchaos characterized by the number
of positive Lyapunov exponents M > 2 in the systems
of N > 9. We show that the number of positive Lya-
punov exponents almost linearly depends on the number
of atoms in the system, at a rate suggesting that adding
three atoms leads to the appearance of an additional pos-
itive Lyapunov exponent. We suggest using an external
parametric effect and continuous feedback to control the
complicated dynamics in the system. Using continuous
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Figure 1. Schematic representation of a square lattice of 16 interact-
ing Rydberg atoms, labelled by integer indexes and coupled via nearest
neighbor interaction.

feedback allows reducing the number of positive Lya-
punov exponents from 3 to only 2 while introducing ex-
ternal parametric influence into the system allows reduc-
ing their number down to 0 and completely suppresses
hyperchaos.

2 Mathematical Model
A lattice of coupled Rydberg atoms is described by the

following differential equations obtained in [Lee et al.,
2011] using the mean-field theory and assuming that
each atom has the ground and Rydberg states only [An-
dreev et al., 2019]:

ẇj =− 2Ω=qj − (wj + 1);

q̇j =i

∆− c
∑
k 6=j

(wk + 1)

 qj − 1

2
qj + i

Ω

2
wj .

(1)
where ∆ is the detuning between the laser and transition
frequencies, Ω is the Rabi frequency (tuned by the laser
field amplitude), c is the Rydberg interaction, wj corre-
sponds to the population inversion of the j-th atom, qj
corresponds to its coherence.

In this work, we study square lattices consisting of 4,
9, 16, 25, and 36 interacting Rydberg atoms. Schematic
representation of a square lattice of 16 interacting Ry-
dberg atoms is shown in Fig. 1. In our modeling, we
suggest that each atom is connected with its neighbors
only in horizontal or vertical lines, but not with diagonal
elements.

3 Hyperchaotic Behaviour
In order to analyze the dynamics of the system, we

use the calculation of Lyapunov exponents [Kuznetsov,
2001; Maximenko et al., 2017]. To calculate the spec-
trum of Lyapunov exponents, we introduce 3 ∗ N dis-
turbing vectors (since there are 3 ∗ N variables in our
system), each of which has six components and we an-
alyze their evolution along the considered phase trajec-
tory. In equal time periods, the vectors are renormalized
and are orthogonalized by the Gramm-Schmidt proce-
dure. As a result, we remove the effects of all previous

vectors from each vector in numerical order; this allows
us to calculate not just the highest exponent, but their
whole spectrum. After each orthogonalization and be-
fore renormalizing, we calculate the natural logarithm
for each vector and calculate the sums of logarithms for
each disturbing vector. Dividing these sums over time,
we obtain the Lyapunov exponents.

Figure 2 illustrates the 9 highest Lyapunov exponents
for the lattice of N = 16 Rydberg atoms for Ω = 2.0.
One can see that for small values of ∆ the stable equi-
librium state exists characterized by all Lyapunov expo-
nents are negative (Λ1,...,9 < 0). With increasing of
∆, it switches to a periodic solution as a result of an
Andronov-Hopf bifurcation at ∆ ≈ 2.0, where Λ1 be-
comes zero. At ∆ ≈ 2.45 the solution undergoes a
period-doubling bifurcation when Λ2 approaches zero
and then it follows by a cascade of period-doubling bi-
furcations. At ∆ ≈ 2.65 the periodic oscillations lose
their stability, resulting in the onset of hyperchaos char-
acterized by the two highest Lyapunov exponents are
positive (Λ1,2 > 0), the third is zero (Λ3 = 0) and the
others are negative (Λ4,...,9 < 0). Then, Λ3 quickly be-
comes positive and Λ4 becomes zero making hyperchaos
more complicated. Further increasing of ∆ leads to in-
creasing of positive Lyapunov exponents number up to
5. The hyperchaotic behavior persists up to ∆ ≈ 8.22,
after which it rapidly switches to the periodic solution.
For ∆ > 8.45, all oscillations disappear, and all long-
term solutions in the system correspond to a stable equi-
librium. In the region of hyperchaos (2.65 < ∆ < 8.22)
there are 3 windows of periodicity where the hyperchaos
is replaced by complex periodic solutions. In Fig. 2
these windows are reflected by Λ1 falling back to zero.
The emergence of these windows of periodicity is typi-
cal for chaos and hyperchaos born through a cascade of
period-doubling bifurcations.

We have analyzed lattices with 4 < N < 36 and re-
vealed that hyperchaos exists in the systems withN > 9.
It becomes more complicated as more Lyapunov expo-
nents become positive. The number of positive Lya-
punov exponents as a function of the number of atoms
in the system is shown in Fig. 3. For a system of 4 in-
teracting Rydberg atoms, there is only one positive Lya-
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Figure 2. Lyapunov exponents spectrum for the lattice of N = 16
Rydberg atoms for Ω = 2, c = 5.
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Figure 3. Number of positive Lyapunov exponentsM versus number
of atomsN in the lattice calculated for ∆ = 7, Ω = 2, c = 5.

punov exponent which means that there is only chaos ex-
ists and no hyperchaos. The graph shows an almost lin-
ear growth, at a rate suggesting that adding three atoms
leads to the appearance of an additional positive Lya-
punov exponent.

4 Control
In order to control the complicated dynamics in the

system, we suggest using an external parametric ef-
fect [Mirus and Sprott, 1999] and continuous feedback
[Hramov et al., 2006; Pyragas, 1995]. As the external
parametric effect, we use the modulation of Rabi fre-
quency Ω since it is possible to implement such mod-
ulation in the experiment by modulating the intensity of
the laser field exciting the atoms. In the system of equa-
tions (1) that describes the system of interacting Rydberg
atoms, the above external effect is written by modifying
the Rabi frequency as follows

Ω = Ωm(1 +M sin(2πft)) (2)

where Ωm is the Rabi frequency in the autonomous sys-
tem,M is the depth, and f is the parameter’s modulation
frequency.
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Figure 4. Variation of the nine largest Lyapunov exponents with the
external effect frequency f for the lattice of N = 9 Rydberg atoms
for Ω = 2.0, ∆ = 5.0 corresponding to hyperchaos characterized
by 3 positive Lyapunov exponents,M = 0.2.

We analyze dynamics of the lattice of N = 9 Ryd-

berg atoms (1) with external parametric effect (2) for
Ω = 2.0, ∆ = 5.0 corresponding to hyperchaos char-
acterized by 3 positive Lyapunov exponents in the au-
tonomous system. As there are 2 parameters of exter-
nal effect, firstly, we fix the modulation depth M = 0.2
and change the modulation frequency f from 0 to 2 try-
ing to find an optimal value of f . To analyze the sys-
tem dynamics we calculate the spectrum of conditional
Lyapunov exponents [Pyragas, 1997; Hramov and Ko-
ronovskii, 2005], in which one zero exponent is missing,
unlike the common Lyapunov exponents’ spectrum.

Fig. 4 illustrates the variation of the nine largest Lya-
punov exponents with the external effect frequency f
for the lattice of N = 9 Rydberg atoms for Ω = 2.0,
∆ = 5.0 corresponding to hyperchaos characterized
by 3 positive Lyapunov exponents for fixed M = 0.2.
One can see the areas of f where the number of posi-
tive Lyapunov exponents is decreased by 1 (f ≈ 0.47,
f ≈ 1.87), 2 (f ≈ 0.67, f ≈ 1.47) or 3 (f ≈ 1.02)
that corresponds to complete suppressing of hyperchaos
in the system.
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Figure 5. Variation of the nine largest Lyapunov exponents with the
parameter’s modulation amplitude M for the lattice of N = 9 Ry-
dberg atoms for Ω = 2.0, ∆ = 5.0 corresponding to hyperchaos
characterized by 3 positive Lyapunov exponents, f = 1.02.

Then, we fix f = 1.02 corresponding to complete sup-
pressing of hyperchaos, characterized by 3 positive Lya-
punov exponents in the autonomous system and change
the modulation depth from 0 to 1 for Ω = 2.0, ∆ = 5.0,
M = 0.2. Fig. 5 illustrates the variation of the nine
largest Lyapunov exponents with the parameter’s modu-
lation amplitude M . One can see two ranges of values
of the amplitude of the external effect (M ≈ 0.21 and
M ≈ 0.267) when it is possible to achieve complete
suppression of hyperchaos in the system to establish pe-
riodic dynamics in it.

The method of controlling oscillations by introducing
continuous feedback is based on modulation of the in-
tensity of the external exciting laser radiation by a sig-
nal taken from one of the atoms of this system [Pyragas,
1992]:

Ω = Ωm[1 +M(wj − w̄j)] (3)
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where Ωm is the Rabi frequency in the autonomous sys-
tem, M is an amplitude of feedback, j is a number of
atom which is used for feedback, w̄j is the value of wj

averaged for the last 5 seconds.
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Figure 6. Variation of the nine largest Lyapunov exponents with the
feedback amplitude M for the lattice of N = 9 Rydberg atoms for
Ω = 2.0, ∆ = 5.0 corresponding to hyperchaos characterized by
3 positive Lyapunov exponents.

We analyze dynamics of the lattice of N = 9 Rydberg
atoms (1) with continuous feedback (3) for Ω = 2.0,
∆ = 5.0 corresponding to hyperchaos characterized by
3 positive Lyapunov exponents in autonomous system
as we did for the system with external parametric effect
(2). Fig. 6 illustrates variation of the nine largest Lya-
punov exponents with the feedback amplitude M . One
can see that when choosing the value of the feedback
amplitude, it is possible to reduce the number of positive
Lyapunov exponents from 3 to only 2 while introducing
external parametric influence into the system allows re-
ducing their number down to 0. The latter testifies to
the greater efficiency of using the method of introducing
external parametric effect into the system for controlling
hyperchaotic dynamics in comparison with the method
of introducing continuous feedback. This is due to the
fact that when using continuous feedback, a chaotic sig-
nal is supplied to the system, which makes it possible
to stabilize only one orbit. When using the parametric
effect, a periodic signal is applied to the system, which
makes it possible to stabilize a larger number of orbits.

5 Conclusion
We have investigated the behavior of the square lattices

of N coupled quantum oscillators (Rydberg atoms) us-
ing the calculation of Lyapunov exponents spectra. We
have revealed chaos in the system of N > 4 and hy-
perchaos characterized by the number of positive Lya-
punov exponents M > 2 in the systems of N > 9. We
have shown that the number of positive Lyapunov expo-
nents almost linearly depends on the number of atoms in
the system, at a rate suggesting that adding three atoms
leads to the appearance of an additional positive Lya-
punov exponent. We have suggested using an external

parametric effect and continuous feedback to control the
complicated dynamics in the system. It was shown that
using continuous feedback allows to reduce the number
of positive Lyapunov exponents from 3 to only 2 while
introducing external parametric influence into the sys-
tem allows reducing their number down to 0 and com-
pletely suppresses hyperchaos. But we can suppose that
using more complicated continuous feedback based on
2 or 3 circuits from different atoms can suppress hyper-
chaos more efficiently.
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