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Abstract
The study describes a novel approach for the analysis

and classification of air-water two-phase flows in verti-
cal channels, based on the observation of the complex
dynamical behavior of experimental flow patterns. An
experimental apparatus has been tested by measuring
the void fraction time series for a wide range of air and
water mass flow rates, corresponding to several kinds
of flow patterns. At first, an n-dimensional delayed
embedding has been adopted for the representation of
the attractors of the experimental time series. This ap-
proach has allowed to observe the complex but regu-
lar attractor morphology, though affected by noisy fea-
tures. Therefore, Singular Value Decomposition (SVD)
has been applied to the n-dimensional state space in or-
der to determine its eigenvalues and, in particular, the
attractor projection onto the eigenvectors state space.
This has allowed substantial separation of dominant
features of the system dynamics from noise-like dy-
namics and a satisfactorily unfolded attractor. More-
over, in some cases this new representation has also al-
lowed to observe the existence of a well defined fractal
structure. Finally, morphological differences between
projected attractors has been observed to posses a high
potential as a very effective tool for flow pattern iden-
tification and classification.
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1 Introduction
Two phase flows are at the basis of several impor-

tant industrial applications, ranging from oil pipelines,
chemical and processing plants to power generation.
The type of flow pattern established in the system, i.e.
the dynamical distribution of the two phases inside the
pipe, and possible transitions from a flow pattern to
another indeed represent critical factors for the perfor-
mances of such systems. This explains the great efforts

that have been and are still devoted to flow patterns
identification and classification.
As well known, different flow patterns are obtained by

varying the mass flow rates of the two phases. In par-
ticular, bubbly, slug, plug, churn and annular flows, ob-
tained through a progressive growth of the air flow rate,
can be identified as the main flow patterns typically
reported in several classifications [Costigan, Whalley,
1997; Mi, Ishii, Tsoukalas, 1998; Keska, Williams,
1999].
While bubbly, slug and plug flows are characterized

by a relatively regular but non periodic distribution of
air bubbles moving into the water flow, in the churn
and annular flows just a thin liquid film surrounding
the air flow can be observed, which is highly unstable
and characterized by irregular oscillations propagating
through it. This observation is important to underline
the intrinsically complex dynamical structure of two
phase flows, which plays a fundamental role for their
classification.
Efficient flow pattern characterisation strongly de-

pends on the technique adopted to measure the void
fraction. Several techniques have been proposed for the
measure of the void fraction of two-phase flows, rang-
ing from the measurement of the electrical impedance
of two phase mixtures [Keska, Williams, 1999; Devia,
Fossa, 2003; Lowe, Rezkallah, 1999; Cantelli, Fichera,
Guglielmino, Pagano, 2006], to optical techniques
based on the measure of the scattering of the interface
between the two phases [Keska, Williams, 1999], to
the measure of pressure drops in a pipe of specified
length [Vial, Camarasa, Poncin, Wild, Midoux, Bouil-
lard, 2000]. Among these techniques, impedance mea-
surements seem to be recognized as the most reliable
[Keska, Williams, 1999]; in fact, it is non-intrusive
and, most important, less dependent both on internal
disturbances and external factors. Two main classes of
impedance sensors have been proposed in literature: re-
sistive sensors [Devia, Fossa, 2003; Cantelli, Fichera,
Guglielmino, Pagano, 2006] and capacitance sensors
[Keska, Williams, 1999; Lowe, Rezkallah, 1999].



The various flow patterns develop as a result of the
interaction of several complex transport phenomena.
Therefore, flow patterns characterisation is still some-
what confused and controversial; in fact, it depends on
the approach to analysis of experimental void fraction
time series.
Several studies have been devoted to analyse the dy-

namical behaviours that characterize two-phase flows
in pipes, often on the basis of statistical [Mi, Ishii,
Tsoukalas, 1998; Lowe, Rezkallah, 1999] or spec-
tral [Lucas, Walton, 1997; Watson, Hewitt, 1999;
Song,Chung, No, 1998] analyses of void fraction-
related experimental time series, such as impedance or
pressure fluctuations.
Nonlinear techniques have been also adopted for the

analysis of pressure fluctuations in horizontal pipes
[Drahos , Zahradnik , Puncochar, Fialova , Chen,
Bradka, 1991] and in vertical bubble columns [Let-
zel, Schouten, Krishna, van den Bleek, 1997] or of
impedance fluctuations in vertical pipes [Jin, Nie, Ren,
Liu, 2003]. Nonetheless, a full explanation of the non-
linear dynamics of two phase flows is still far from be-
ing reached. This is due to some relevant unsolved
problems which should be addressed when adopting
nonlinear time series analyses. In particular, high qual-
ity time series are necessary in order to ”capture” the
complex dynamics of two phase flows. This is possi-
ble only if the void fraction time series are sufficiently
resolved both in space and time; i.e. the void fraction
should be measured over a very thin volume (that can
be approximated by a measurement section) with a fast
response sensor.
Moreover, an unfolded and noise free attractor in

phase space is necessary in order to eliminate false
neighbours, i.e. similar phase space representations
of dynamically different states [Thompson, Stewart,
1986]. This problem is of primary importance in order
to obtain a reliable evaluation of the invariants of the
dynamics, such as fractal dimension and Lyapunov ex-
ponents, which represent the fundamental parameters
to verify the existence of chaos in the system dynamics
[Rasband, 1998].
The possibility to achieve high quality time se-

ries have been addressed by setting up a resistive
void fraction sensor described in [Cantelli, Fichera,
Guglielmino, Pagano, 2005].
The aim of this study is to set up an appropriate strat-

egy that allows to obtain an unfolded representation
of the attractor in phase space, so that the observa-
tion of complex dynamics in two phase flows can be
performed on a reliable basis. Moreover, the observa-
tion of the morphological differences between the ex-
perimental attractors of two-phase flow patterns will be
used in order to assess a dynamic-based tool for their
classification.
The proposed approach starts from the reconstruction

of an n-dimensional representation state space on the
basis of Takens’ embedding theorem [Takens, 1981],
i.e. by means of a set of n delayed versions of the exper-

imental void fraction time series. The analysis of the at-
tractors in this representation space points out the exis-
tence of a complex but regular structure in phase space,
which constitutes a first hint of deterministic behavior,
as already reported in [Cantelli, Fichera, Guglielmino,
Pagano, 2005]. Nonetheless, attractors obtained in this
way are somewhat noisy as a consequence of the su-
perposition of high order dynamics to the dominant
dynamics characterizing the flow pattern. Among the
others, the most important high order ”noisy” dynam-
ics are those associated to small diameter bubbles dis-
persed in the liquid slugs and to disturbances on the
liquid film enveloping the Taylor bubbles.
In order to address this problem, in the pro-

posed strategy Singular Value Decomposition (SVD)
[Broomhead, King, 1986] has been applied to the n-
dimensional state space in order to determine its eigen-
values and, in particular, the attractor projection onto
the eigenvectors state space. This has allowed substan-
tial separation of the dominant features of the system
dynamics from noise-like dynamics. The projections
of the n-dimensional attractors in the representations
space formed by the three dominant eigenvectors are
satisfactorily unfolded.

2 Experimental Apparatus
The experimental apparatus reported in Fig. 1 has

been built and tested in order to study the dynamics of
two-phase flow in vertical pipes. The two-phase flow
test section is a 3 m long vertical pipe of 0.26 m diam-
eter. A resistive probe for void measurements is placed
at a distance of more than 100 times the pipe diameter
from the mixing section, i.e. over the required entry
region for two phase flows, in order to ensure a well es-
tablished flow regime. The air is supplied to the mixing
section by a pressurised tank fed by a compressor. The
whole apparatus is also equipped by an electromagnetic
flowmeter and three air flow metres. The electromag-
netic flow meter is used to measure the water velocity
and mass flow rate, whereas the air flow meters are used
to set the air flow rate in the range between 10 and 210

 

 

Figure 1. Experimental apparatus



l/min. The water flow rate can be varied in the range 0-
150 l/min by means of a series of valves and bypasses
placed at the pump outlet. In order to allow the de-
gassing of the working fluid an open tank is placed at
the top end of the vertical pipe constituting the test sec-
tion.
The experimental apparatus is equipped with an

impedance probe for void fraction measurements. It is
known that the volume fraction of a phase in a two-
phase mixture can be determined by measuring the
impedance of a mixture if a significant difference in
the electrical properties exists between the two phases.
The sensor that has been designed and realised for the

present study operates in the resistive range; in fact, a
carrier frequency of 20 kHz has been supplied by an ex-
ternal sine wave oscillator to a Wheatstone bridge, by
means of an operational amplifier to decouple the input
impedance from the load impedance. The instrumen-
tation amplifier assures a high dynamic response and
a perfect decoupling of the electronic circuit from the
measuring bridge. The amplified output is applied to
the electronic rectifier. A cut-off frequency of 200 Hz
has been adopted in order to allow adequate removal
of the carrier frequency and to avoid aliasing with the
sampling frequency. The electronic circuitry has been
tested and calibrated before each set of measurements
by means of a comparison with precision resistors. The
final output has been sent to a data acquisition system at
the sampling rate of 1 kHz, in order to record the void
fraction time series detected during the experiments.
The probe configuration considered in this study is

similar to that proposed in [Costigan, Whalley, 1997;
Devia, Fossa, 2003] and has been described in [Can-
telli, Fichera, Guglielmino, Pagano, 2005] together
with the procedure adopted for its calibration.

3 Phase Space Reconstruction Strategy
In [Cantelli, Fichera, Guglielmino, Pagano, 2005] the

experimental time series detected during the experi-
mental tests have been analysed by means of linear
tools. The results of these analyses have shown the in-
capacity of such tools in describing the intrinsic com-
plexity of two phase flows dynamics.
For this reason a different approach has been pre-

liminary adopted in [Cantelli, Fichera, Guglielmino,
Pagano, 2006; Cantelli, Fichera, Guglielmino, Pagano,
2005] based on the observation of the morphology of
the three-dimensional experimental attractors of vari-
ous flow patterns in a reconstructed phase space. In or-
der to reconstruct the phase space starting from the ex-
perimental scalar observations Takens’ method of de-
lays has been adopted [Takens, 1981]. This method
is particularly useful as it allows to determine a set of
independent variables that can be used to define a rep-
resentation space.
Considering the generic d-dimensional system, Tak-

ens’ method is based on embedding the original scalar
time series into an m-dimensional vector. Takens’ Em-

bedding Theorem [Takens, 1981] ensure that, if m >
2d + 1, the creation of the m-dimensional vector re-
sults in the reconstruction of a state space containing a
smooth manifold for the d-dimensional system. In the
following d will indicate the system dimension whereas
m will indicate embedding dimension, which is not the
dimension of the system itself but the number of di-
mensions necessary to correctly embed the attractor in
phase space. Takens’ method is based on the creation
of a n x w matrix, where n is the length of a win-
dow moving through the data and the w columns of the
matrix represents the number of independent variables
used to define the phase space, which must be much
greater than the expected minimum embedding dimen-
sion of the system in order to ensure that w > 2d+ 1.
In this way, considering the time series s(t) =

(s0, s1, s2, ..., si, ...) measuring the variable s of the
dynamical system, an independent set of variables is
represented according to Takens’ method of delay by
the matrix having for columns the delayed versions of
the experimental time series s (each column is delayed
of τ time steps from the previous).
According to Takens’ theorem the obtained w-

dimensional system presents the same features of the
general dynamics of the above matrix. Once the w-
dimensional vector has been constructed, the represen-
tation of the attractor is easily obtained by using the
columns of matrix S as co-ordinates of the phase space.
The morphological description performed in [Cantelli,
Fichera, Guglielmino, Pagano, 2006] uses just the first
three column of the matrix, i.e. the number of variables
necessary for a three dimensional pseudo-phase space
(the proper phase space is, in fact, m-dimensional)
where the attractor structure can be analysed. In par-
ticular, the attractors obtained for some of the flow
patterns have been observed to display a regular frac-
tal structure [Cantelli, Fichera, Guglielmino, Pagano,
2006], which is indeed one of the most important evi-
dences of deterministic chaotic behavior.
In order to expand previous results, in this study a

different phase space representation has been adopted,
derived from classical delayed embedding based on
Takens’ theorem and on the application of Singu-
lar Value Decomposition technique SVD, [Broomhead,
King, 1986]. The aim of this new representation is to
achieve both a reduction of the influence of noise on
the time series and, above all, an unfolded representa-
tion for which the relevant morphological characteris-
tic of the attractor can be fully exploited. The proposed
approach consists in applying SVD approach to matrix
S, i.e. in rotating and translating S in order to obtain a
new diagonal matrix, equivalent to the original one (i.e.
with identical eigenvalues), having the eigenvalues on
its diagonal in descending order.
From a mathematical point of view, matrix S is factor-

ized into its singular values according to equation:

Λ = MTSC (1)



where Λ is a diagonal matrix containing the singular
values of S in decreasing order and M and C are ma-
trices of the singular vectors associated with Λ . The
singular vectors in M are those of the square structure
matrix, Φ = XXT , whereas the eigenvectors in C are
those of the square covariance matrix, Ψ = XTX .
The singular values in Lambda are the square roots of
the eigenvalues of either Φ or Ψ (which clearly are the
same).
In Λ the high level eigenvalues correspond to the dom-

inant eigenvectors, i.e. those representing the system
dynamics, whereas the low level ones correspond to
local behaviors or noise components. Therefore, the
system can be partitioned into two subsystem: the first
deriving from noise free data (i.e. main features and
relevant details) and the second from noise, which can
be considered superimposed and then eliminated.
Once that the matrices Λ , M and C have been cal-

culated, an unfolded version of a noise free attractor
can be obtained considering the new embedding Sev

obtained as:

Sev = SC (2)

In particular, only the first m dominant singular vectors
of Sev will be necessary to describe the system dynam-
ics. It is worth noting that the three-dimensional attrac-
tor plotted in the pseudo-phase space spanned by the
first three eigenvectors will appear different from the
original attractor in the delayed phase space. Nonethe-
less, it is morphologically equivalent to the original at-
tractor as it has been obtained from it through a rota-
tion and a translation of the coordinate system. In other
words, it represents an alternative representation of the
same dynamics, that can be preferred for it is unfolded
and noise-free.

4 Results
The approach described so far has been used in or-

der to obtain a denoised representation of the dynam-
ics and, in particular, an unfolded attractor. The SVD
technique has been applied to the delayed embedding
S of the experimental void fraction time series. The
delayed embedding has been created considering a de-
lay τ = 1 and w = 50 in order to be sure that the
number w of variables considered is sufficiently greater
than m, i.e. than the (unknown) dimension of the sys-
tem. The length n of the observation window has been
set at 10000 data samples in order to be wide enough
to obtain a well defined attractor in phase space, i.e.
an attractor whose morphology remains unchanged if
further data samples are added. In order to observe
the performances of the proposed strategy, in Fig. 2
and 3 are reported the attractors of the same operating
condition in two different embedding. In particular, the
phase space adopted in Fig. 2 is the basic delayed em-
bedding, whereas in Fig. 3 is reported the projection on
the phase space spanned by the first three eigenvectors

of the improved embedding obtained through applica-
tion of SVD.
From the analysis of the plot it is possible to observe

the attractor in Fig. 2, i.e. in the delayed phase space,
is affected by noise and is not sufficiently unfolded. On
the other hand, the reduction of noise and the satisfac-
tory unfolding is immediately apparent for the attrac-
tor in the representation space defined by the first three
eigenvectors obtained through SVD approach.
The two attractors reported in Fig. 2 and 3 appear

different but are the expression of the same dynami-
cal behavior. This means that they are morphologically
equivalent, i.e. they are characterized by the same in-
variants of the dynamics, such as fractal dimension and
Lyapunov exponents [Thompson, Stewart, 1986]. As
well known, the algorithms for the calculation of these
invariant characteristics are strongly affected by noise
in the time series. Therefore, the approach herein pro-

Figure 2. Attractor of the experimental void fraction in a delayed
phase space ( τ = 3 samples): air mass flow rate 10 litres/min - water
mass flow rate 84.2 litres/min.

Figure 3. Attractor of the experimental void fraction in the phase
space spanned by the three dominant singular vectors of the n-D em-
bedding; operating condition is the same as in Fig.1.



 

 
Bubbly flow  air flow rate 2 lit/min 
  water flow rate 540 lit/min 
 

 
Cap flow air flow rate 5 lit/min 
 water flow rate 419 lit/min 

 
Slug flow  air flow rate 10 lit/min 
  water flow rate 151 lit/min 
 

 
Plug flow air flow rate 40 lit/min 
 water flow rate 280 lit/min 

  
 Transition plug-churn  air flow rate 80 lit/min 

  water flow rate 280 lit/min 
 

 
Churn flow air flow rate 80 lit/min 
 water flow rate 68 lit/min 

 
Fig. 4 Attractors of the void fraction experimental time series in the phase space spanned by the three dominant singular vectors for 

various flow patterns. 
 

This is an important point, as the approach herein 
proposed will be used in future studies in order to obtain an 
unfolded and noise-free embedding which will allow a more 
reliable determination of the fractal dimension and of 
Lyapunov exponents, as well as of other invariants, whose 
determination is fundamental in order to achieve a full 
knowledge of nonlinear dynamics in two-phase flows. 

Fig. 4 reports the attractors obtained with the embedding 
strategy proposed in the present study for the experimental 

time series corresponding to different flow patterns. It is 
worth observing that all of the attractors are characterised by 
a well defined structure in phase space, which is sufficiently 
unfolded and not compromised by the presence of noise. 
This observation holds also for those attractors that are 
characterised by a more complex structure, in particular 
those corresponding to the most unstable flows, such as 
churn flow or the transition flow between plug and churn 
flow. A detailed analysis of these plots is out of the scope of 

Figure 4. Attractors of the void fraction experimental time series in the phase space spanned by the three dominant singular vectors for various
flow patterns.

posed will be used in future studies in order to obtain
an unfolded and noise-free embedding which will al-
low a more reliable determination of the invariant char-
acteristics of the dynamics, such as fractal dimension

and Lyapunov exponents, with the aim of achieving a
deeper knowledge of nonlinear dynamics in two-phase
flows. Fig. 4 reports the attractors obtained with the
embedding strategy proposed in the present study for



the experimental time series corresponding to differ-
ent flow patterns. As a first observation, all of the at-
tractors are characterized by a well defined structure
in phase space, which is sufficiently unfolded and less
compromised by the presence of noise. This observa-
tion holds also for those attractors that are characterized
by a more complex structure, in particular those corre-
sponding to the most unstable flows, such as churn flow
or the transition flow between plug and churn flow. A
detailed analysis of these plots is out of the scope of
the present study, but is worth observing that the rep-
resentation in the phase space spanned by the principal
vectors is very effective in underlining the differences
between the various flow patterns. Each type of flow
pattern is, in fact, characterized by a specific morphol-
ogy, sufficiently different from that of other flow pat-
terns. In particular, different regions of phase space
are occupied by the attractors of the various flow pat-
terns; notice, for example, how the attracting region
for the case of bubbly flow is opposite to that for the
case of churn flow (with respect to the first eigenvector
co-ordinate). Moreover, each attractor ”fills” the phase
space in a different way; for example, the attractor of
cap flow entirely fills the 3-D phase space as opposite to
that of slug flow, which is almost two-dimensional and
distributes around a sort of limit cycle. In a similar way,
the attractor of the plug flow still distributes around a
sort of limit cycle but fills the phase space more than
that of the slug flow. This difference is very important
as the degree of filling of the phase space is strictly re-
lated to the fractal behavior of the attractor [Thompson,
Stewart, 1986; Rasband, 1998], with the fractal dimen-
sion corresponding, in practice, to a measure of this
filling. It is worth noting that the last considerations all
refer to the general class of slug flow, class to which
both cap and plug flow belong; nonetheless, relevant
differences can be observed between attractors.
Previous observations draw a clear picture of how a re-

fined phase space analysis, i.e. performed on the basis
of SVD projection, possesses a high potential as a very
effective tool for flow pattern identification. This po-
tential will be further exploited in future study through
the analysis of Poincar maps and evaluation of the main
invariant characteristics of the dynamics, such as frac-
tal dimension and Lyapunov exponents.

5 Conclusions
A novel approach has been proposed for the analysis

and identification of two-phase flow patterns, based on
the assessment of an appropriate phase space for the
representation of the complex attractors that character-
izes this kind of flows. Proper definition of the phase
space is fundamental for obtaining an unfolded attrac-
tor which is the first step for the evaluation of the in-
variant characteristics of the dynamics, such as fractal
dimension and Lyapunov exponents.
The proposed strategy is based on the determination of

the principal vectors of a classical delayed embedding

and on the projection of the attractor on the state space
spanned by these vectors. This allows to separate the
dominant features of the dynamics, corresponding to a
subset of the main principal vectors, from noise in the
time series, which corresponds to higher order princi-
pal vectors. In the present study the attention have been
focused on obtaining an unfolded and noise-free rep-
resentation of the attractor in the pseudo-phase space
spanned by the first three principal vectors. The poten-
tial of this approach for flow pattern identification and
classification have been reported.
On the basis of the proposed strategy, further analy-

ses will be developed in order to verify the potential of
Poincar maps and of invariant characteristics of the dy-
namics for a full exploitation of the complex behavior
of two phase flows and as a dynamics-based classifica-
tion tool.
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