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In this paper, the subject is the robustness and properties of an inverse type iterative learning control algorithm.
In addition to new theoretical results experimental results from application to an industrial-scale gantry robot
system are given.

1. Introduction

Iterative Learning Control (ILC) is a relatively
new addition to the toolbox of control algorithms.
ILC is concerned with the performance of systems
that operate in a repetitive manner. Such sys-
tems include robot arm manipulators and chem-
ical batch processes, where the task of following
some specified output trajectory r(t) in an inter-
val t ∈ [0, N ] with high precision is repeated time
and time again. The use of conventional con-
trol algorithms with such systems will result in
the same level of tracking error being repeated
time and time again. Motivated by human learn-
ing, the basic idea of ILC is to use information
from previous executions of the task in order to
improve performance from trial to trial in the
sense that the tracking error is sequentially re-
duced from trial-to-trial. For further background
on ILC see, as two representatives of the very
large literature [1] and/or [2] and the references
in this survey paper.

The concept of inverting plant dynamics to
achieve perfect tracking is a simple and obvious
one. However, it is hesitantly used in high pre-
cision tasks as uncertainty in plant models can
lead to sub-optimal tracking and potential stabil-
ity issues. Inverse models also tend to amplify
measurement noise, which makes them even less
attractive in feedback control applications.

This paper produces new results on how inverse
models can be effectively used in the context of

ILC. In particular, the robustness and noise rejec-
tion properties of an inverse model ILC algorithm
are studied in both analysis and experiment. The
experimental work is based on a gantry robot sys-
tem and it is important to note that this is by no
means the first application of ILC to robots see,
for example, [3] — in fact, the robot system here
is used to (begin the) experimental benchmarking
of one algorithm and in essence this is where the
focus of this paper lies.

2. Problem definition

As a starting point consider the following stan-
dard linear, time-invariant single input, single
output state-space representation defined over fi-
nite time interval, t ∈ [0, N ] (in order to shorten
notation it is assumed that sampling time is
unity):

x(t + 1) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t) (1)

where the state x(·) ∈ Rn, output y(·) ∈ R, in-
put u(·) ∈ R and x(0) = 0. From now on it will
be assumed that CB > 0 and that the system
(1) is controllable and observable. Furthermore,
a reference signal r(t) is specified and the con-
trol objective is to find an input function u(t) so
that the output function y(t) tracks the reference
signal r(t) as accurately as possible.

Suppose now that the process is required to
repeat the same operation over the finite time in-
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terval and is rest set before the start of each new
iteration or trial. Then in essence ILC seeks to
use the information generated on previous trials
to iteratively (i.e. from trial-to-trial) learn the
control signal required to produce the desired ref-
erence signal. One of the possible problems which
can be formulated in this setting is the design of
a control law of the form

uk+1 = f(uk, uk−1, . . . uk−r, ek+1, ek, . . . , ek−s)
(2)

such that

limk→∞ ‖ek‖ = 0 limk→∞ ‖uk − u∗‖ = 0 (3)

where uk = [uk(0) uk(1) . . . uk(N)]T , yk =
[yk(0) yk(1) . . . yk(N)]T , ek = [r(0)−yk(0) r(1)−
yk(1) . . . r(N)− yk(N)]T , (i.e. the error on trial
k) and ‖ · ‖ is a suitable norm. Note that if the
mapping f in (2) is not a function of ek+1, then
it is typically said that the algorithm is of feed-
forward type, otherwise it is of feedback type.

For analysis purposes, note that because the
system (1) is defined over a finite time-interval,
it can be represented equivalently with a matrix
equation yk = Geuk, where

Ge =


0 0 0 . . . 0

CB 0 0 . . . 0
CAB CB 0 . . . 0

...
...

...
. . .

...
CAN−1B CAN−2B . . . . . . 0


(4)

where the elements CAjB of the matrix Ge are
the Markov parameters of the plant (1). It is
assumed here that the reference signal r(t) sat-
isfies r(0) = Cx0. Then it can be shown (see
[[4]]) that for analysis it is sufficient to consider
a “lifted” plant equation yk,l = Ge,luk,l where
uk,l = [uk(0) uk(1) . . . uk(N − 1)]T , yk,l =
[yk(1) yk(2) . . . yk(N)]T and

Ge,l =


CB 0 0 . . . 0

CAB CB 0 . . . 0
CA2B CAB CB . . . 0

...
...

...
. . .

...
CAN−1B CAN−2B . . . . . . CB



(5)

Note that because it was assumed that CB 6= 0,
Ge,l is invertible, and consequently for an ar-
bitrary reference r there exists u∗ so that r =
Ge,lu

∗. Hence it would appear that this inverse
model algorithm can be regarded as theoretically
“perfect”. This, however, would require an exact
system model to be available and implemented
which is not a practically justified assumption —
the best is that a nominal model is available or
chosen deliberately to reduce the computational
burden. Here this ‘lifted’ plant will be used as a
starting point for analysis, and in order to shorten
notation, the subscript l will be omitted.

3. The Inverse Model algorithm

There are many possible inverse plant ILC al-
gorithms and here as a representative we consider
the case when

uk+1 = uk + G−1
e ek (6)

Simple analysis of the corresponding error evolu-
tion equation shows the expected result that er-
ror converges to zero in one iteration which is the
perfect “solution”. This requires the “perfect”
model Ge and in practice it has to be replaced by
a nominal model denoted here by Go, i.e.

uk+1 = uk + G−1
o ek (7)

This yields the following error evolution equation:

ek+1 = (I −GeG
−1
o )ek (8)

The convergence characteristics of (8) depend
upon the matrix GeG

−1
o , a matrix which has no

guarantee of stability. A simple attempt to intro-
duce stability is to insert a scalar gain, β, into the
algorithm.

uk+1 = uk + βG−1
o ek (9)

and hence

ek+1 = (I − βGeG
−1
o )ek (10)

A necessary and sufficient condition for stability
is for the spectral radius of (I − βGeG

−1
o ) to be
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less than 1 but satisfying this may still lead to
very poor performance of the algorithm. This
paper allows β to vary in such a manner that the
l2-norm of the error is monotonically decreasing
which is obviously a very useful property of an
ILC algorithm. More precisely, the update equa-
tion and the error dynamics are determined by

uk+1 = uk + βk+1G
−1
o ek (11)

ek+1 = (I − βk+1GeG
−1
o )ek (12)

Norm Optimal Iterative Learning Control
(NOILC) [5] is one optimal ILC routine that has
been shown to give monotonic error convergence
in spite of some model uncertainties. NOILC
minimises both the error and the change in input
between trials by computing minuk+1∈RN J(uk+1)
where the cost function J(uk+1) is given [7] by

J(uk+1) = ‖ek+1‖2 + ‖uk+1 − uk‖2 (13)

where the l2-norm is used. This framework ex-
tends to the use of the adaptive update law (11)
by using

J(βk+1) = ‖ek+1‖2 + wβ2
k+1 (14)

where w can be freely chosen such that w > 0.
This cost function adds flexibility whilst still
maintaining the NOILC ideal of minimising er-
ror and smoothing changes in input. For the case
Go = Ge a straightforward minimisation of (14)
yields an optimal solution:

βk+1 =
‖ek‖2

w + ‖ek‖2
(15)

A convergence analysis of this algorithm for the
case Go = Ge is given next.

Theorem 1 If Go = Ge, w ∈ R, w > 0 then
‖ek+1‖ < ‖ek‖ if ek 6= 0. Furthermore,

limk→∞ ‖ek‖ = 0 and limk→∞ βk+1 = 0
(16)

demonstrating monotonic convergence to zero
tracking error.

Proof 1 Selecting a sub-optimal choice βk+1 =
0 in the cost function (14) yields J(0) = ‖ek‖2.
Since this choice is sub-optimal it follows:

‖ek‖2 ≥ ‖ek+1‖2 + wβ2
k+1 ≥ ‖ek+1‖2 (17)

demonstrating monotonic convergence. Reformu-
lation of (17) gives

‖ek‖2 − wβ2
k+1 ≥ ‖ek+1‖2 ≥ 0 (18)

and applying induction further gives

‖e0‖2 − w

k+1∑
i=1

β2
i ≥ 0 (19)

and because k is arbitrary, limk→∞ βk = 0. This
results in

0 = lim
k→∞

βk+1 = lim
k→∞

‖ek‖2

w + ‖ek‖2
(20)

This is only possible if limk→∞ ek = 0. Fur-
thermore, the interlacing result (17) implies that
‖ek+1‖ < ‖ek‖ if ek 6= 0 and the proof is complete.

1. �

Note 1 Note that the choice of w = w1‖ek‖2 in
(15) where Go = Ge yields the error evolution
equation ek+1 = (1 − (1 + w1)−1)ek. Then for
any w1 > 0 error convergence is geometric.

4. Robustness of the Inverse Model algo-
rithm

Robustness of ILC algorithms is an active re-
search topic and space limitations preclude a sum-
mary of the many approaches and their relative
limitaitons/merits. Here we undertake an analy-
sis of the algorithm of the previous section both
in terms of system stability and performance by
retaining monotonic convergence in the presence
of model uncertainty. For this we need an un-
certainty representation and here we consider the
case when the true plant, Ge 6= Go, and the model
uncertainty of Go is taken to be a multiplicative
matrix U , i.e. Ge = GoU . The first result is as
follows.
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Theorem 2 Suppose U + UT is a positive-
definite matrix. If ek 6= 0 there exists a βk+1 > 0
such that ‖ek+1‖2 − ‖ek‖2 < 0. Furthermore the
value of such βk+1 has to satisfy the following in-
equality

vT (
1

βk+1
I−U)T (

1
βk+1

I−U)v <
1

β2
k+1

‖v‖2 (21)

where v ∈ RN is arbitrary.

Proof 2 Use of (9) yields

‖ek+1‖2−‖ek‖2 = −2βk+1e
T
k Uek+β2

k+1e
T
k UT Uek < 0

(22)

Since U + UT is assumed to be a positive-definite
matrix and βk+1 > 0, the terms −2βk+1e

T
k Uek

and β2
k+1e

T
k UT Uek are, for an arbitrary nonzero

ek, strictly positive and strictly negative respec-
tively. Then for ‖ek+1‖2 < ‖ek‖2 it is necessary
that the following inequality must be true.

2βk+1e
T
k Uek > β2

k+1e
T
k UT Uek (23)

Since the left hand term of inequality (23) is of
O(βk+1) and the right hand term is of O(β2

k+1) it
shows that the inequality is met for a sufficiently
small βk+1, giving monotonic convergence. Com-
pleting the square in (23) now gives (21).

Theorem 2 shows that if (21) holds true then
error convergence is monotonic. The next propo-
sition further shows that under this condition the
error converges to zero. The proof of this result
follows from that of Proposition 2 and hence the
details are omitted here.

Theorem 3 If the condition in Theorem 2 holds
then limk→∞ ek = 0.

Note 2 Note that it is easy to show that a suffi-
cient condition for U+UT to be a positive-definite
system is that the underlying system U(z) corre-
sponding to U is a positive-real system. The phase
shift of such a system lies within ±90o for all fre-
quencies. Therefore the algorithm can tolerate a
plant uncertainty of ±90o phase shift for all fre-
quencies.

The next result shows how the use of the adaptive
βk+1 given in (15) can ensure that (21) holds by
taking w to be a sufficiently large positive num-
ber.

Theorem 4 Assume U + UT is positive-definite
and w is sufficiently large. In this case a sufficient
condition for monotonic convergence is that

w > ‖e0‖2
( σmax(UT U)

σmin(U + UT )
− 1

)
(24)

where σmax(UT U) is largest eigenvalue of the ma-
trix U and σmin(U + UT ) is the smallest eigen-
value of the matrix U + UT .

Proof 3 Substituting (15) into inequality (23)
with a couple of algebraic manipulations gives a
necessary and sufficient condition for monotonic
convergence

w >
‖ek‖2eT

k UT Uek

2eT
k Uek

− ‖ek‖2 (25)

Making the two estimates

σmax(UT U)‖ek‖2 ≥ eT
k UT Uek (26)

and

σmin(U + UT )‖ek‖2 ≤ 2eT
k Uek (27)

a the sufficient condition for convergence becomes

w > ‖ek‖2
( σmax(UT U)

σmin(U + UT )
− 1

)
(28)

Since the initial guess u0 results in a bounded
tracking error e0 then for any w such that inequal-
ity (28) holds, i.e. a w that ensures ‖e0‖ ≥ ‖e1‖,
then inequality (28) will also hold for ek = e1. In-
ductively condition (24) holds for an arbitrary it-
eration k and therefore convergence is monotonic.

As noted in the previous section, for the nomi-
nal case Ge = Go the selection of w = w1‖ek‖2 in
fact gives geometric error convergence. The next
proposition extends this to the case where Ge has
positive multiplicative uncertainty.

Theorem 5 If U +UT is a positive-definite ma-
trix and ek 6= 0 then there exists a w such that
‖ek+1‖ ≤ α‖ek‖ where 0 ≤ α < 1.
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Proof 4 The choice of w = w1‖ek‖2 yields the
following equation for ‖ek+1‖2

‖ek+1‖2 = ‖ek‖2−γ2eT
k Uek +γ2eT

k UT Uek (29)

where γ = (1 + w1)−1. Note that since U +
UT is positive-definite then the second and third
right-hand terms in (29) are strictly negative and
strictly positive respectively for an arbitrary ek 6=
0. Using the estimates in (26) and (27) gives

‖ek+1‖2 ≤ α2‖ek‖2 (30)

where

α2 = 1−γσmin(U +UT )+γ2σmax(UT U) (31)

Since the negative term −γσmin(U + UT ) is of
O(1+w1)−1 and the positive term γ2σmax(UT U)
is of O(1+w1)−2 then by using a sufficiently large
w1 > 0 it is ensured that 0 ≤ α < 1, giving geo-
metric convergence.

5. Experimental Results

A multi-axis test facility has been constructed
so as to practically test ILC on a wide range of
dynamic systems in an industrial-style applica-
tion. Currently, the apparatus consists of a three-
axis gantry robot supported above one end of a
6m long industrial plastic chain conveyor. A de-
scription of the test facility can be found in [6].
A 100Hz sample frequency was used to calculate
the inverse models for each axis. The combined
displacement reference trajectories for each axis
(Figure 1) produce a ‘pick and place’ action, de-
signed to collect a payload from a dispenser, syn-
chronise position and velocity with the conveyor
and place the payload on the conveyor. The refer-
ence trajectories define the iteration time period
as 2 seconds. With a 100Hz sample frequency,
this results in 200 sample instants per iteration.

The inverse algorithm has been implemented
with a range of values for β, in order to ex-
perimentally verify the algorithms performance.
Space limitations preclude a preclude a compre-
hensive discussion of the results but the effect
of β on limiting performance in the presence of
measurement noise is included as an illustration.
This has been investigated by deliberately adding
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Figure 1. 3D reference trajectories

bounded, zero-mean, pseudo-random noise to the
axis displacement signal recorded from the test fa-
cility by optical incremental encoders. The noise
is pseudo-random, because it is generated by a
seeded random number generator. In these ex-
periments, the seed is the product of the sample
number and the iteration number. Therefore for
different iterations, the added noise appears to be
random. However, for different tests, the same
value of noise is added for corresponding samples
during corresponding iterations.

Figure 2 displays the mean squared tracking
error (mse) on a logarithmic scale (in mm2)
recorded for each iteration, with learning gain β
equal to 0.1, 0.2 and 0.3. The pseudo-random
noise has maximum bounds specified as ±0.1mm.
Similar results were obtained for the Y and Z
axes and hence the plots have been omitted here.
Previous experimental work has shown that the
inverse algorithm is sensitive to the combination
of measurement noise and high-frequency non-
linearities. The noise builds up in the iteration
loop due to high-frequency nonlinearities, rapidly
corrupting the plant input signal and causing
much degraded performance.

The figures clearly demonstrate that conver-
gence speed is proportional to β whereas mini-
mum mse attained is inversely proportional to β,
i.e. a trade-off is evident. This analysis is some-
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Figure 2. X-axis mse with β = 0.1, 0.2 and 0.3
(±0.1mm bounded noise)

what biased by how many iterations the algo-
rithm can perform before the noise becomes suffi-
ciently large to force a system shutdown. There-
fore it is necessary to develop a test where the
control system converges to minimum error and
remains stable.

6. Conclusions

The use of inverse type ILC in the past has
been unpopular owing to the belief that it lacks
robustness. This paper however, shows that if
an adaptive learning gain is added to the al-
gorithm the system will geometrically converge
if the plant multiplicative uncertainty satisfies a
positivity condition. The adaptive learning gain
is selected by the optimisation of an objective
function that balances the reduction of the track-
ing error with the size of the learning gain. As
a new theoretical result it has been shown that
by decreasing the learning gain it is possible to
achieve satisfactory tracking accuracy under the
presence of measurement noise. This new result
has been validated on an industrial-scale gantry
robot system.

It is also possible to extend the approach here
to the case when noise needs to be considered in
design. Moreover, there are as yet unexplored,

at the experimental level, relations between the
approach here and that in, for example, [7]. This
is the subject of ongoing work.
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