Phase-locking phenomena and excitation of damped and driven nonlinear oscillator
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I. INTRODUCTION

The phase-locking phenomena for a nonlinear pendu-
lum with a small periodic driving was first studied in
Refs.[1, 2] as a model for acceleration of relativistic par-
ticles. The main idea of the approach is to drive the
oscillator by a periodic driving with a slowly chirping
frequency in the vicinity of resonance. If the amplitude
of the drive exceeds some critical value, the phase of os-
cillations can be locked in by the driver which allow to
effectivelly excite and control the pendulum. Now the
resonant phase-locking phenomena (in another terms —
”autoresonance”) are widely applied to various physical
problems which are associated with nonlinear oscillators.
A lot of applications, icluding plasmas and planetary dy-
namics are referenced in the paper [3]. Now the approach
is extended also on infinite dimensional systems, such as
vortex dynamics [4] and nonlinear waves [5].

Up to now the most studying of the autoresonance
dealt with the problems without dissipation. The analy-
sis was based usually on versions of the hamiltonian vari-
ational approach Ref.[6]. Nevertheless, it was supposed
[7], that a small linear dissipation can preserve the main
features of the autoresonance. In this paper we focus
on studying of the phase-locking phenomena for damped
and driven systems. For example, some applications on
plasma physics [8, 10] induce studying the effect for the
forced van der Pol oscillator. The close problem without
driving, but with chirping of the main frequency have
been investigated in Ref.[9]. One notes that the phase-
locking by external forcing can be used as an effective
tool not only for excitation, but aslo for control of high
amplitude oscillations. This approach may be alterna-
tive to intensivelly studying now methods of control of
dissipative oscillators (see, e.g. [11]).

We will study in this paper the van der Pol-Duffing
oscillator

i+ u + pu® — y(1 — ou?)u = ecos ¥ (1)

driven by the small periodic forcing with amplitude € < 1
and slowly varying frequency

¥ =1+A%). 2)
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We will assume the linear chirp of the frequency A(t) =
at. Then, the slow variation meens dA/dt = a < 1. We
suppose also that the parameters u,v and yo in Eq.(1)
will be small too.

II. AVERAGING EQUATIONS

Let us introduce new variabls

u(t) = A(t) cos(t + ¢(t)), u(t) = —A(t)sin(t + ¢(t)),
(3)
where the amplitude A and the phase ¢ are supposed to
be slow functions of time in accordance with assumption
of smallness of parameters in the main equations (1), (2).
The standard averaging method [12] gives equations for
the new variables:

A=gA4—0A?) —esin®, 4)

& = —A(t) + mA? — %cos@. (5)

We introduced here the new parameters

g=7/8 m=3u/8 e=¢/2. (6)

The phase ®(t) in Eqgs.(4),(5) is the difference between
phases of the solution (3) and the forcing:

b = p(t) / Ayt M)

Let the frequency shift A is a constant. Then,
Eqgs.(4),(5) have stationary points (Ag(A), Po(A)) defined
by the equations

gAg(4 — o AZ) —esin®y =0, (8)

—A+mA2 — Aio cos &y = 0. (9)

These points give steady cycles of the original equation
(1). Not all cycles are stable. We will study the stability
in the framework of the equations (4),(5). Introducing
small perturbations of a stationary point A = Ag + 0 A,



® = &3+ and supposing the dependence §A, §® ~ e,
we obtain from (4),(5) the quadratic dispersion equation

M\ — Ai sin ®g + g(4 — 30A%)] A+ g(4 —304))
0

e

x— sin @y + e cos ®g {QmAO + Ve
0

™ cos @0] = 0. (10)
The steady solution (Ao, ®o) will be stable if ReA < 0.

The typical curves Ag(A) are shown in Fig.1 for three
range of parameters which will be studied in the paper:

(a) dissipationless case, g = 0,

(b) simplest linear dissipation, ¢ < 0 and o = 0,

(c) van der Pol-Duffing case, g > 0 and o > 0.

We will suppose also that in all cases « > 0, m > 0
and e > 0. Solid parts of the curves in Fig.1 represent
stable solutions (ReA < 0) and dashed lines correspond
to unstable solutions (Re\ > 0).

In the dissipationless case (a), the main goal of excita-
tion is starting from zero (A & 0) to attain high ampli-
tude oscillations in the vicinity of line BC in Fig.la. It
is obvious that such result impossible to obtain by exci-
tation with constant frequency A > A, because in this
case one can attain only a low amplitude near the line
DE. Appropriate controlling path has to use slow varying
frequency (2) [3]. It starts from a large negative initial
time tg, crosses of the resonance b =1latt=0 and,
then, forces a solution to move in the vicinity of stable
curve BC to excite a high amplitude oscillations. It is
important, that such path can be realized only when «
is less than some critical value ., ~ €*/3 [3]. The phys-
ical mechanizm of the phenomenon is the phase-locking
of exciting oscillations by forcing. In the next section we
study new aspects of this phenomena, which allow us to
extend the phase-locking approach to dissipative systems
of types (b) and (c).

The amplitude curves for dissipative cases are shown
in Fig.1b,c. The main difference with the previous case
(when ReX = 0) is that now ReA < 0 and stable parts of
the curves associate with atractive focuses of the system
(4), (5). For any fixed A, a zero initial solution tends
to corresponding point Ag(A) in the curve. But again,
the high amplitude solutions in the curve BC are not
attainable. One notes that in van der Pol-Duffing case (c)
the small amplitude oscillations are unstable themselves
and the range of stable limit cycles are restricted in a
finite interval of A where A% > 2/0. It will be shown in
following that the phase-locking in dissipative cases are
also possible for some restrictions on parameter a and
controlling paths.

It is important that in dissipative cases the phase-
locking approach have meaning only if the curves have
a singular structure like the line BCD. It takes place for
a sufficiently small dissipation. In the case (b), the cor-

rect limitation is
1 /me2\?
<3 (%) - (1)

In case (c), the limitation is more sophisticated, but the
simplified sufficient condition reads

g < % (12)

For larger g the curves are not singular and any A cor-
responds to unique value of Ag. In this case no specific
control paths is needed to excite high amplitude stable
cycles. The simplest way with constant A is sufficient to
attain any admissible amplitudes.

Let us return to the dynamical equations (4), (5). Dif-
ferentiating Eq.(5) and excluding A by Eq.(4) we find the
equation

. oU .
b= o0 + TP, (13)

which describes motion of a ”quasiparticle” with coordi-
nate ® located in the effective potential

U(A,®) = [a — 2mgA*(4 — 0 A?)]®

—omeAcos® — (4 — oA sind — L (14)
A 4 A2
and with dissipation coefficient
1dA
[(A) = ——— +g(4 —cA?). 1
() =~ 5 + 94— o d?) (15)

The above equations contain the amplitude A as a pa-
rameter. One can see that the potential U may have min-
ima in some range of A if the forcing has a sufficiently
great amplitude e. In this case a quasiparticle can be
trapped in a potential well which means, in accordance
with the definition (7), that the phase difference between
forcing and exciting oscillations is bounded, i.e. oscil-
lations are phase-locked. Thus, existence of minima in
the effective potential (14) is the necessary condition for
phase-locking. It becames sufficient only for appropriate
initial conditions in (4), (5) which constrain the system
to be phase-locked.

III. OSCILLATOR WITHOUT DISSIPATION

When g = 0, the minima of the effective potential (14)
are located in points where

dU e .
d—q)—a+(2mA+Ecos<I>)esm<I>—0. (16)
We have found the condition for existence of the minima
for any A:

a < F(A) = —e (2mA + % c0s<I>+) sind,,  (17)

where

m m?2 1
COS (I>+ = _2_6A3 + 4_62A6 + 5 (18)
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FIG. 1: The amplitude Ay of stationary solutions of the averaging equations as functions of the frequency A. (a) m = 0.01,
g=0,e=0.02; (b) m=0.01, g =—0.0012, 6 =0, e = 0.02; (c) m = 0.05, g = 0.0001, o =50 , e = 0.05.
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FIG. 2: Dynamics of the system (4), (5) (lines 1 and 3) and
Eq.(1) (lines 2 and 4) for linear dependence of the forcing
frequency A(t) = at at t > to = —400. m = 0.01, g = 0,
e = 0.02. Lines 1 and 2 — 3 = 2.580 (o = 0.00065); lines
3 and 4 — 3¢ = 3.373 (a = 0.00085). Dashed line is the line
ABC from Fig.1la.

The function F(A) tends to infinity at A — 0 and
A — oo and have a minima at A*> = e/2m. Then, we have
the sufficient condition for which the effective potential
(14) has minima for all A > 0:

33/2

m2/3A/3

a < Qer = F([G/Qm]l/S) ~ 91/

~ 2.062 m>/3e*/3. (19)

In opposite case, when the threshold condition (19) is
violated, @ > «p, there is a finite gap [A1, A2] where
potential has no minima.

The example of dynamics of the system is shown in
Fig.2 . We use the linear dependence A(t) = at and
started at tg = —400. This case is associated with the
control path used in Ref.[3]. Lines 1 and 2 show dynam-
ics of the systems (4), (5) and (1) accordingly when «

is less enough. The amplitude grows infinitly fluctuating
around the dashed curve which is the same as the line
ABC in Fig.1la. For Eq.(1), we use the value vu? + 42
as the amplitude of oscillations. It is close to A(t) for
rather small amplitudes according to the relation (3).
One notes that the spreading of line 2 owing to high fre-
quency fluctuations is caused by the difference between
proposed circular orbits (3) and real ones, which is appre-
ciable for high amplitudes. Such growth of the amplitude
have been observed early [3] where it was shown that it
is a result of the phase-locking (”autoresonance” effect).
In contrast, when a exceeds some threshold value, the
amplitude is saturated (lines 3,4) on a small level and
high amplitudes associated with the range BC in Fig.1
became unattainable. The close behaviour of the system
have been observed in the case when the initial time was
to = 0.

It is convenient to characterize the threshold phenom-
ena by the dimensionless parameter

_ Qer
m2/3e4/3"

= (20)
Thus, the threshold value, found analytically in (19), was
3 = 2.062. The threshold value found numerically for the
system (4), (5) at to = —400 was

=~ 3.262 (21)
and for the original equation (1) it was » & 2.945. In the
second case, when ty = 0, the critical value was found to
be

e n0 1.941 (22)
for the system (4), (5) and » =~ 1.826 for the original
equation (1).

One notes that the same threshold (21) have been
found in Ref.[13]. It is greater then the value s = 2.062
found analytically. On the other hand, at ¢, = 0, the
critical value (22) is rather close to the analytical value.
To comprehend these results we should analyze dynam-
ics of the phase ®(t) in the system (4), (5). It is shown



in Fig.3 where trajectories (®(t), A(t)) of the solutions
are presented on a background of the effective potential
U(A,®) (14). The dashed lines in the figures are coordi-
nates ® where potential U(A, ®) has minima at a given
value of A. The dotted lines indicate maxima value of
the potential. Because in Figs.3a,b of s is greater than
the value 2.062, there are gaps where the potential has
no extreme points. On the contrary, in Fig.3¢, parameter
2 < 2.062 and the potential has the extreme points in all
range of A. Solid lines in Fig.3a and Fig.3b are dynamics
of the solutions shown in another terms as lines 1 and 3
respectively in Fig.2. The main feature of the dynamics
is that at the initial stage of the process before crossing
of the resonance (¢ < 0), the system is phase-locking in
the potential mimima near ® ~ 0. It gives the system a
high probability to overcome the gaps. If s < 3.262 (see
Fig.3a), the gap is not too long and the system can over-
come sucessfully the gap and then do phase-lock in the
minima of potential at high amplitudes. It was observed
in Fig.2 as infinite growth of the amplitude (line 1). In
opposite case, when s > 3.262 (see Fig.3b), the gap is
so long that the system, even being phase-locked at the
initial stage, cannot be captured in the potential minima
at high amplitudes. Now phase-locking is destroyed and
saturation of excitation is observed (line 3, Fig.2). Tt is
obvious that namely phase-locking at initial stage causes
appropriate preparation of the system to overcome the
gap, which explain some increasing of the critical value
above the limit (19).

In the second case, at tg = 0, the system starts just in
the resonance (Fig.3). There is no initial phase-locking
and the trajectory starts near unstable region of maxi-
mum of the potential (at ® ~ —7/2, see Fig.3¢). In this
case the dynamics becames very sensitive to structure
of the effective potential. Now the potential should has
global minima for any A in order to ”quasiparticle” can
be phase-locked. As a result we have the threshold (22)
close to the analytical value s = 2.062.

IV. OSCILLATOR WITH LINEAR DISSIPATION

The minima of the effective potential for the oscillator
with g < 0 and o = 0 are defined by the equation
dUu e .
S oot (2mA + 5 cos <I>) (esin® — 4gA) = 0. (23)

As it was made in the previous section we can introduce
the auxiliary function F(A) = maxg f(®, A), where

f(®,A)=—e (2mA + < cos <I>) (sincb - %) .

A2

(24)
The sufficient condition when potential has minima takes
the form

a < F(A). (25)

The typical view of the function F'(A) is shown in Fig.4.
It tends to infinity at A — 0 and becames zero when

FIG. 3: The trajectories (®(t), A(t)) of the system (4),

(5) (solid lines) at m = 0.01, g = 0, e = 0.02. (a) to = —400,
s = 2.580 (o = 0.00065); (b) to = —400, 5 = 3.373 (o =
0.00085); (c) to = 0, 5 = 1.191 (o = 0.0003). Dashed lines —
minima of the effective potential U(®, A) at fixed A; Dotted
lines — maxima of the effective potential.

the amplitude achieves maximum value at the point C:
A = Ac (see Fig.1b). In contrast with the dissipationless
case, now the function F(A) has no absolut minimum
and the condition (25) will define only a range of ampli-
tudes where the effective potential can have minima. It is
seen from the Fig.4 that in the range F'(A) 2 0.0004 the
minima of the potential are possible only for small ampli-
tudes. On the other hand for F/(A) < 0.0004 the possible
range of the minima rapidly enlarge up to the maximum
value of amplitudes Ac = 4.17. Our goal of excitation
is to attain amplitudes in the range of line BC (Fig.1b),
that is in the range Ap = 1.96 < A < A¢ = 4.17. One
can propose that such excitation will be possible only
when the range of minima of the potential covers high
amplitudes making available the phase-locking, that is
threshold condition should be

a < 0.0004. (26)
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FIG. 4: The auxiliary function F(A4) for m = 0.01,
g = —0.0012, 0 =0, e = 0.02.

To test this threshold numerically we will use the fol-
lowing controlling path:

w={2

That is at initial times we use the linear chirping of the
frequency and then, at t > Ao/, the chirping is switched
off. Parameter Ag is chosen so that the corresponding
amplitude Ag(Ao) lies in the curve BC (Fig.1b). Because
BC is the range of attractive focuses of the system (4),(5),
the path after switching off the chirping should excite a
stable cycle which is a solution of Eqs.(8),(9) at A = Ao.
Fig.5 illustrates dynamics of the system (4),(5) under the
controlling path (27) when the threshold condition (26)
is fulfilled.

Using the controlling path (27) and varying Ay we have
studied an important problem what maximum of the am-
plitude of oscillations can be reached for a given a. The
results are collected in Fig.6 for ¢ = —400 (solid line) and
to = 0 (dashed line). The curves have confirmed that the
proposed value (26) is the good threshold to reach high
amplitude excitations. Especially it is well seen in the
line at ¢y = 0 (dashed line) when the attainable am-
plitudes undergo the jump as « crosses the critical value
about 0.0004. As it was discussed in previous section, for
initial condition with ¢tg = 0, the dynamics of the system
is very sensitive to destribution of the effective potential,
which became apparent in the jump of amplitudes at the
threshold.

The main characteristic of the phase-locking phenom-
ena is dependence of the critical value a., from the am-
plitude of forcing e. In the dissipationless case it was an
exponential function ., o e*/3. To studying the depen-
dence in the dissipation case we define the function

ap = {min] F(4), (28)

Ao

t0<t§A0/Oé

t> Ao/Oé (27)

where Ay is the amplitude of the stationary solution cor-
responding to Ap in the controlling path (27). Then we

4

FIG. 5: Dynamics of the system (4),(5) in coordinates
(®(t), A(t)) (solid line 1) under the controlling path (27) for
to = 0, Ao = 0.13 and m = 0.01, g = —0.0012, o = 0,
e = 0.02, a = 0.0003. Solid line 2 — stationary solutions
(Ao(A), @o(A)) of the system (8), (9). Dashed line — minima
of the effective potential U(®, A) at fixed A. Dotted line —
maxima of the effective potential.
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FIG. 6: The maxima of the amplitude Ao attainable at a
given «. Solid line: to = —400, dashed line: ¢y = 0;
m = 0.01, g = —0.0012, 0 = 0, ¢ = 0.02

may suppose that the correct threshold condition when
the amplitude can attain the value Ag reads

a < Qe = Q. (29)

The comparison of the theoretical value of the thresh-
old (28), (29) with computations in the averaging system
(4),(5) and the original equation (1) is given in Fig.7. Tt
is well seen that the theoretical value tends to exponent,
but with the index different from the dissipationless case:
Qer o €43, The systems (4),(5) and (1) exhibit close be-
havior except the edges of the range studied. One notes
that the results above slightly depend on another pareme-
ters ¢ and m while the inequality (11) is fulfilled.
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FIG. 7: The dependence of the critical value .- on the am-
plitude of forcing e for the path (30) with Ao = 0.13 and
to = 0; m = 0.01, g = —0.0012, o = 0; O — system (4),(5), A
— equation (1). The solid line is aer = ao(e).
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FIG. 8: The maxima of the amplitude A attainable at a given
a for the path (30) with to = 0; m = 0.05, g = 0.0001, o = 50,
e = 0.05.

V. VAN DER POL - DUFFING OSCILLATOR

The minima of the effective potential for the oscillator
with ¢ > 0 and ¢ > 0 are defined by the equation

du

o5 =a+(2mA+ S cos @) (esin® - gA(4 —0A%) = 0.
(30)

Treating as in the prevous sections, we can find the suf-

ficient condition when the effective potential has minima

a < F(A). (31)

At the small g (12), the typical shape of the function
F(A) is close to Fig.4. Just the same as with linear dissi-
pation, F'(A) becames zero when the amplitude achieves
the maximum value at the point C (see Fig.1¢). Our goal
of excitation is to attain amplitudes in the range of the
line BC (Fig.1¢). The results collected in Fig.8. We use
the controlling path (27) and varying Ao to reach maxi-
mum of the amplitude of oscillations for a given a. We
use initial conditions only with ¢y = 0 because the range
of variation of A in this case is bounded around zero by
the stability condition.

As in the previous section we introduce the correct
threshold condition (28), (29). The comparison of this
theoretical value with computations in the averaging sys-
tem (4),(5) and the original equation (1) have shown the
similar asymptotic behavior a., o e?! with index dif-
fered significantly from the dissipationless case.
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