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Abstract
We propose a model of feedforward (open-loop) op-

tical control of two-level atom in the linearized form.
This model allows to express the general form of so-
lution for the atomic level populations via the arbitrary
shapes of the control signal. Then we make numerical
investigations of different shapes for the optical control
signal.
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1 Introduction
A wide spectrum of control methods can be discov-

ered for the quantum systems. Among them feedfor-
ward (open-loop) approach seems to be the most nat-
ural, since an applied external field, can be easily de-
signed as a time-dependent function. Here we will dis-
cuss the basic, but very important case of two-level
atomic system controlled by modulated optical field.
Our choice has been motivated by developed technique
for practical design of external field in quantum optics.
Recently other authors studied the control of two-level

atoms in the frame of open loop-ideology when the
controlling field was knowna priori. It allowed to get
the different forms of atomic energy spectra, producing
π- andπ/2-pulses [Imoto 1996], including the obser-
vation of the geometric phase using stimulated photon
echoes [Tianet al. 2004], taking special non-constant
shapes of external field [Di. Piazza 2001] etc.
We propose a model of feedforward control for the

density matrix in the linearized form. We use the
“semiclassical approach” of the atom–field interaction,
when a single quantum two-level atomic system (all
other levels are neglected) is interacting with classical
electromagnetic field. We use the standard notation fol-
lowing [Scully 2006], but in our model the optical field
plays the role of a control signalu(t) for open-loop

(feedforward) control scheme [Fradkov 1999]. A simi-
lar case for the probability amplitudes (without decay)
is described in the frame of closed-loop scheme in [Sai-
fullah, 2008]. The present model has a decay compo-
nent, because it involves the effect of elastic collisions
between atoms.
In Section 2 we present our dynamical model with

atomic level population decay in generalized dimen-
sionless form and then apply the linearized control pro-
cedure for different shapes of the optical control field
u(t). This model allows to express the general form of
solution for the atomic level populations via the arbi-
trary shapes of the control signal. Then in Section 3 we
make numerical investigations of different shapes for
the signalu.

2 Feedforward optical control for two-level atom
2.1 Dynamical control model for two-level atom in

classical optical field
We consider the quantum two-level atomic system in

the classical optical fieldE(t).
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Figure 1. Interaction of a single two-level atom with an optical

field.

Let |a〉 and |b〉 represent the upper and lower level
states of the atom, i.e., they are eigenstates of the un-



perturbed part of the Hamiltonian̂H0 with the eigen-
values:Ĥ0|a〉 = ~ωa|a〉 andĤ0|b〉 = ~ωb|b〉.
The equations of motion for the density matrix ele-

ments are given by [Scully 2006]:

ρ̇aa = −γaρaa +
iE

~

(

℘abρbaeiωt − ℘∗

abρabe
−iωt

)

;

ρ̇bb = −γbρbb −
iE

~

(

℘abρbaeiωt − ℘∗

abρabe
−iωt

)

;

ρ̇ab = −γabρab −
iE

~
℘ab(ρaa − ρbb)e

iωt , (1)

whereρba = ρ∗ab ; ℘ab is the matrix element of the elec-
tric dipole moment,γa andγb are the decay constants,
γab = (γa +γb)/2+γph , γph is a decay rate including
elastic collisions between atoms, andω = ωa − ωb is
the atomic transition frequency.
Let’s denote℘ab = |℘ab|e

iφ and

ρ+ ≡ ρbaei(ωt+φ) + ρabe
−i(ωt+φ) ;

ρ− ≡ i
[

ρbaei(ωt+φ) − ρabe
−i(ωt+φ)

]

. (2)

Using (2) we can re-write the system (1) in the real
form:

ρ̇aa = −γaρaa +
|℘ab|E

~
· ρ− ;

ρ̇bb = −γbρbb −
|℘ab|E

~
· ρ− ;

ρ̇+ = −γabρ+ + ωρ− ; (3)

ρ̇− = −γabρ− − ωρ+ −
2|℘ab|E

~
· (ρaa − ρbb) .

For further calculations we putγa = γb ≡ γ. Then

(ρaa + ρbb)(t) = e−γt(ρaa + ρbb)(0) . (4)

The first two equations of the system (3) can be com-
bined together and we can put:

ρaa(t) − ρbb(t) ≡ e−γtx(t) ;

ρ+(t) ≡ e−γty(t) ; (5)

ρ−(t) ≡ e−γtz(t) .

By substitution of (5) in (3) we can eliminate the de-
cayγ-containing terms. Finally, rescaling the time by
ω: τ = ωt, and denoting the dimensionless control sig-
nal byu(t) ≡ 2|℘ab|E(t)/~ω andǫ = γph/ω, we get
the simplified system

ẋ = u · z ;

ẏ = −ǫ · y + z ; (6)

ż = −ǫ · z − y − u · x .

Here the dot means the derivative with respect to the
new dimensionless timeτ . We remind thatx ∈ [−1, 1],
since(ρaa − ρbb) ∈ [−1, 1], and(ρaa − ρbb) → 0 as
t → ∞.

2.2 Linearization of control
Let’s suppose that we apply the linearized form of

control:

x(τ) = X0(τ) + u · X1(τ) ;

y(τ) = Y0(τ) + u · Y1(τ) ; (7)

z(τ) = Z0(τ) + u · Z1(τ) .

We will skip all the terms of the orderu2 and elder.
Then substituting (7) in (6), we split our system into
two parts: the free (non-controlled) system:

Ẋ0 = 0 ;

Ẏ0 = −ǫ · Y0 + Z0 ; (8)

Ż0 = −ǫ · Z0 − Y0

and the controlled part:

u̇ · X1 + u · Ẋ1 = u · Z0 ;

u̇ · Y1 + u · Ẏ1 = u · Z1 ; (9)

u̇ · Z1 + u · Ż1 = −u · Y1 − u · X0 .

In (9) we omitted the decayǫ-terms, because the decay
is supposed to be a slow process to compare with the
control, i.e. ǫ and u are the small parameters of the
same order, and the linearization deals only with their
first orders. Then from the first equation of system (9)
we get:

u(τ)X1(τ) =

∫ τ

0

u(t′)Z0(t
′)dt′

and from the first equation of system (7), we have

x(τ) = X0(τ) +

∫ τ

0

u(t′)Z0(t
′)dt′ . (10)

Now we apply the initial conditionsX0(0), Y0(0),
Z0(0) to solve the system (8):

X0(τ) = X0(0) ≡ x(0) ;

Y0(τ) = e−ǫτ [Y0(0) cos τ + Z0(0) sin τ ] ; (11)

Z0(τ) = e−ǫτ [Z0(0) cos τ − Y0(0) sin τ ] .

If we denote the phase ofρab by φ′, thenρ+(0) =
2|ρab| cos(φ′−φ) andρ−(0) = 2|ρab| sin(φ′−φ). We
can put for the initial condition:φ′ = φ, thenρ+(0) =
2|ρab(0)| ≡ δ andρ−(0) = 0. Let’s demandX1(0) =
Y1(0) = Z1(0) = 0. Thus,Y0(0) = δ andZ0(0) = 0
are our initial conditions.



2.3 Control signal correction
If X0(0) = −1 (that corresponds to the ground level

of the atom as the initial condition), then from−1 ≤
x(τ) ≤ 1 and (10) it follows:

0 ≤

∫ τ

0

u(t′)Z0(t
′)dt′ ≤ 2. (12)

In other words this integral should be positive and
bounded. We define first the arbitrary non-corrected
controlu0(τ) and then put

ũ(τ) ≡ |u0(τ)| · signZ0(τ) . (13)

Then the left inequality (12) will be satisfied automat-
ically. The right part of (12) can be represented by
Cauchy – Schwartz inequality:

∣

∣

∣

∣

∫ τ

0

ũ(t′)Z0(t
′)dt′

∣

∣

∣

∣

2

≤

∫ τ

0

ũ2(t′)dt′ ·

∫ τ

0

Z2
0 (t′′)dt′′ ,

and then we demand:

∫ τ

0

ũ2(t′)dt′ ·

∫ τ

0

Z2
0 (t′′)dt′′ ≤ 4 . (14)

Let’s check the inequality (14):

∣

∣

∫ τ

0
Z2

0 (t′′)dt′′
∣

∣ = |Y0(0)|2
∣

∣

∣

∫ τ

0
e−2ǫt′′ sin2 t′′dt′′

∣

∣

∣
≤

≤ δ2
∣

∣

∣

∫ τ

0
e−2ǫt′′dt′′

∣

∣

∣
= δ2(1−e−2ǫτ )

2ǫ
. (15)

Thus, from (14) and (15)

∫ τ

0

ũ2(t′)dt′ ≤
8ǫ

δ2(1 − e−2ǫτ)
. (16)

To satisfy (16) we also have to correct the signalu.
Let’s suppose that there are two functions: an initial
arbitrary u0(τ) and its corrected variantu(τ) that is
bounded above by the condition (16). Of course, phys-
ically the external optical field should follow the signal
u, and the initialu0 is only a basic model to construct
the behavior of the open-loop control field.
Now let’s define

∆(τ) ≡

∫ τ

0

ũ2(t′)dt′ −
8ǫ

δ2(1 − e−2ǫτ )
(17)

and

u(τ) =

{

ũ(τ) , ∆(τ) < 0 ;
B(τ) , ∆(τ) ≥ 0 ,

(18)

where a positive functionB(τ) is defined from the
equation:

∫ τ

0

B2(t′)dt′ =
8ǫ

δ2(1 − e−2ǫτ )
, (19)

or

B2(τ) =

∣

∣

∣

∣

d

dτ

8ǫ

δ2(1 − e−2ǫτ )

∣

∣

∣

∣

=
16ǫ2

δ2
·

e−2ǫτ

(1 − e−2ǫτ )2
.

Thus,

B(τ) =
4ǫ

δ
·

e−ǫτ

1 − e−2ǫτ
=

2ǫ

δ · cosh(ǫτ)
. (20)

For small time intervalsτ << 1/ǫ we have:δ2τ in
RHS (15), andB(τ) ≃ 2/(δ · τ).
Finally by the corrections (13) and (18) we have:

x(τ) = −1 + δ ·

∫ τ

0

dt′ e−ǫt′ | sin t′| · |u(t′)| . (21)

Eq.(21) solves the problem of open-loop control in
linearized form. Now defining the control signalu(τ)
we restore by (21) the shape of the differenceρaa(t)−
ρbb(t). Their sum (4) is known, thus, we can findρaa(t)
andρbb(t) separately.

3 Numerical simulation of different shapes for the
control signal

Now we can apply the general solution of Eq.(21) to
study the influence of control optical fieldu on the be-
havior of the system (6).
In the case of an ideal open-loop control the behavior

of x(t) is the saturation of the population at the ground
level, in other words,x(t) → 1 ast → ∞. Sure, not
every control will satisfy this condition.
On. Figs. 2–6 we plot the different shapes of the initial

u0 (Figs.A) and correctedu (Figs.B) control signals:
constant, ramp, step, sine wave, and repeating sequence
stair. To compare their efficiency we check also the
corresponding time derivativesdx/dt (Figs.D).
We can see from the plots that the ramp control in

our case is definitely more effective. The speed of the
saturation forx(t) is faster for the signals on Figs. 3, 6.

4 Conclusion
Finally we can conclude that our model for the open-

loop control has several important features:
1. It can be easily extended for the case of multi-level

atomic systems by adding the correspondent compo-
nents in the density matrix;
2. For the two-level system it can be re-formulated in

general form if we propose the linear approximation of
control;
3. It can be an origin of studying the behavior of con-

trolled non-linear systems in quantum optics.



Figure 2. Constant control signal: (A) The initial signalu0(t); (B)

The corrected signalu(t); (C) x(t); (D) The derivativedx/dt.

Figure 3. Ramp control signal: (A) The initial signalu0(t); (B)

The corrected signalu(t); (C) x(t); (D) The derivativedx/dt.

Figure 4. Step control signal: (A) The initial signalu0(t); (B) The

corrected signalu(t); (C) x(t); (D) The derivativedx/dt.
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Figure 5. Sine wave control signal: (A) The initial signalu0(t);

(B) The corrected signalu(t); (C)x(t); (D) The derivativedx/dt.

Figure 6. Repeating sequence stair control signal: (A) The initial

signalu0(t); (B) The corrected signalu(t); (C) x(t); (D) The

derivativedx/dt.
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