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Abstract—In this paper, a protocol is proposed to solve In this paper, we propose a new consensus protocol to
the consensus problem of multi-agent systems with diverse solve the consensus problem of the multi-agent system with
communication delays. Sufficient conditions for convergence diverse communication delays. In our protocol the self-delay

to a consensus are obtained based on the frequency-domain . if but it b We show that introduci
analysis and matrix theory. The conditions depends on each IS unfiorm but It can bé non-zero. vwe show that introducing

agent's self-delay, the weights of the edges to each agents@ non-zero self-delay can speed up the convergence rate for
neighbors, and the interconnection topology of the network. the system with non-zero communication delays. Moreover,
Under the proposed protocol the communication delays do not we show the protocol can be applied to networks with
influence the convergence; but prolong the converging time. directed topology graphs and nonsymmetric weights. With
Simulation results illustrate the correctness of the results. . .
the help of the frequency-domain method developed in [3],
I. INTRODUCTION we analyzed the effect of both the communica.tion delays and
) the self-delay on the convergence of the multi-agent system.
The consensus problem for multi-agent systems has &ygficient conditions for the multi-agent system converging
tracted more and more attention. Vicsek al. proposed {5 3 consensus are obtained. These conditions depends on
a simple discrete-time model of multi-autonomous agentg,ch agent's self-delay, the weights of the edges to each
and provided various simulations Whl_ch _demonstrated th&gent’s neighbors, and the interconnection topology of the
phenomena: without any central coordination control, all thgerwork. Under the proposed protocol the communication

agents in the model move in the same direction when thfine.gelays do not influence the convergence; but they pro-
density is large and the noise is small [9]. Jadbaledial. |ong the converging time.

studied the linearized Vicsek’s Model and proved that all
the agents converge to a common steady state provided that Il. PRELIMINARY
the diagraph formed by the agents is jointly connected, i.e., A weighted directed graph (digraplty = (V,&,A) of
the agents are all “linked together” via their neighbors witlorder n consists of a set of vertice¥ = {vi,...,v,},
sufficient frequency as the system evolves [2]. a set of edgesf C ¥V x V and a weighted adjacency

With non-negligible communication delays, the consensusatrix A = [a;;] € R™*™ with nonnegative adjacency
problem becomes much more difficult. It is a natural idea telementsa;;. The node indexes belong to a finite index
introduce self-delays in the consensus protocol and the sefet 7 = {1,2,...,n}. An edge of the weighted diagraph
delays are usually chosen to be equal to the communicatighis denoted bye;; = (v;,v;) € &, i.e., e;; is a directed
delays (see, e.g., [8]. But such a protocol cannot be robustige fromv; to v;. We assume that the adjacency elements
because the measurement of communication delays alwayssociated with the edges of the digraph are positive, i.e.,
contain some uncertainty. Moreover, the analysis of the;; > 0 < ¢;; € £. Moreover, we assume;; = 0 for
stability or the convergence of the protocol is very difficultall i € Z. The set of neighbors of node is denoted by
Some stability results were obtained only for the multi-N; = {v; € V : (v;,v;) € E}.
agent system with an identical communication delay [8], In the weighted digraply = (V, £, A), the out-degree of
[6]. Based on the contraction theory and wave variablaodes is defined as follows:
method, Wang and Slotine studied the consensus problem n
for the system with multi-variable agents under diverse com- deg i (v;) = Z aij.
munication delays [10]. They proposed a simple consensus j=1
protocol with zero self-delay, which is robust to arbitrary| et p pe the diagonal matrix with the out-degree of each
communication delays. However, the topology graph in theigde along the diagonal and call it the degree matrix of
analysis should connected and bidirectional or unidirectionghe | aplacian matrix of the weighted digraph is defined as
formed in closed rings. L=D— A.

. . , , Following [4] we introduce some important notions for di-
This work was supported by National Natural Science Foundation of

China (under grants 60425308 and 60673058), National “863" Programngaraph' Apathon a dlgl’apl’g :. (Vv 5) of IengthN from vjo
of China (under grant 2006AA04Z263). to v;n is an ordered set of distinct nod¢s;,, v, , ..., vj, }



such that(v;, ,,v;,) € £,Vi =1,2,..N. If there is a path problem of the multi-agent system (1) with diverse commu-
in G from one nodey; to another node;, thenv; is said to  nication delays, which is given by
be reachablefrom v;, writtenv; — v;. If not, thenv; is said
to be not reachable from;, written v; » v;. If a node is ui(k) = Z aij(zj(k = Dij) = zi(k = D)), (4)
reachable from every other node in the digraph, then we say it v e
globally reachable A digraph isstrongly connected every where D > 0 is the self-delay which is uniform for all the
two of its nodes, say andu, are such that is reachable agents. Obviously, protocol (4) is a compromise between (2)
from v andw is reachable from. Thus, a globally reachable and (3).
node is precisely the degree of connectedness required andVith the consensus protocol (4), the closed form of the
is much weaker than strong connectedness of the digraphmulti-agent system (1) is
In this paper, we just.consider static t.opolo@y. = zi(k 1) = 2 (k) +
WV, &€, A), i.e., the connection of the nodes in the diagraph > ai;(x;(k — Dy;) — zi(k — D)), i€T. (5)
G does not change with time. v €N TR K ’ ’
Theorem 1. Consider a network of coupled agents (5)
I1l. CONSENSUSPROTOCOL with a static interconnection topology= (V, £, .A) that has

. . a globally reachable node. If
In a multi-agent system witln agents, each agent can

be considered as a node in a digraph, and the information Z ay; < 1 Vied, ©)
flow between two agents can be regarded as a directed path 2D +1
between the nodes in the digraph. Thus, the interconnection ) .
topology in a multi-agent system can be described as tgen system (5) has an asymptotic consensus, i.e.,
diagraphg = (V, &, A). lim z;(k)=c,VieZ,

Consider a discrete-time model of integrator agents koo

vV EN;

wherec is a constant.
zi(k+1) = z4(k) +ui(k),i € Z, (1) Applying Theorem 1 to typical discrete-time models of
multi-agent systems, such as linearized Vicsek's model [2]
where;(k) € R andu;(k) € R denote the state and the ynq Moreau model [7], we can extend some existing results

control input pf agent, respectively. ) on the consensus problem to the case with communication
The following consensus protocol for the muIt|-agenHe|ayS'

system (1) has been extensively studied in the literature (seejpjith communication delays, the linearized Vicsek’s Model
e.g., [8]) proposed by [2] becomes

u;(k) = aij(x; — x3),
2 ! (> @j(k—Dy)+ui(k)), i €T, (7)

v UJ'ENi

where IV; denotes the neighbors of agentanda,; > 0 is . )
the adjacency element of in the digraphg = (V, £, A). wheren; denotes the pumber of the neighbors of agent
For networks with non-negligible communication delays, Corollary 1. If the interconnection topology of (7) has

the following time-delayed consensus protocol was adapté”d globall_y reachable node, then the system (7) has an
in [8] asymptotic consensus.

Similarly, one can extend the Moreau’s Model [7] to the
ui (k) = Z aij(zj(k — Dij) — z;(k — Dy;)), (2) case with communication delays

v; EN; xi(k+1)=
1
where communication delag;; > 0 corresponds to infor- TR, oy (2evyen; Wig®i(k = Dig) + zi(k)), (8)
mation flow from agenj to agent, i.e., the edge;; € £ in 1e€Z,

the dlgrapkg =&, A). Ho_weve_r, the consensus Cond'tlonwherewij denotes the positive weight corresponding to the
was obtained only for the identical communication delays d in the di
i.e., D;; = d. Reference [10] proposed another consensués gee;; In the |agrap.rg. :

o ) Corollary 2. If the interconnection topology of 8) has

protocol without self-delay a globally reachable node, then the system (8) has an
Y T = N S asymptotic consensus.
ui(k) = Z aij (23 (k = Dis) = zi(k)). ® Example 1:Consider a network of six agents described by

(5). The interconnection topology is sketched in Fig. 1.
But they only analyzed the connected and bidirectional Based on the definition, the globally reachable node set
topology graph with symmetric weights (i.e.;; = a;;) and  of the diagraph in Fig. 1 i$2,3, 6}, but the diagraph is not
the unidirectional graph formed in closed rings with identicastrongly connected. The weights of the directed paths are:
W6|ghtS a2 = 0.1, a1 = 0.05, as3 = 0.15, azg = 0.1, aygz = 0.05,

Differing from the protocols above, we propose a consenty; = 0.1, asg = 0.15, aga = 0.15, and the corresponding
sus protocol with a uniform self-delay to solve the consensummmunication delays ardd,, = 5(step), Dig = 3(step),

’UjENi



2 3 As in the continuous-time model, we get the same conclu-
sion from Table. 1 that the rate of the converging decreases
as the communication delays increase.

IV. PROOF OFTHEOREM 1

1 4 Before giving the proof of Theorem 1, we consider a
discrete-time system with time delays
nd
w(k+1) =a(k) + > Aiw(k — D), (9)
i=1
6 5 where z(k) € R", A; € R™" and D; € R. Taking the
z-transformation, and we get the characteristic equation of
Fig. 1. The digraph of a group of 6 agents. system (9) as
naq
) det((z = 1)1 =Y Az P1) =0. (10)

Lemma 1. If the roots of equation (10) have modulus less
than unity except for a root at = 1, then the equilibrium
setE = {z € R" : (31, A;)x = 0} of system (9) is
asymptotically stable.

Proof. By the set stability theory, we need to show the
Lyapunov stability and asymptotic attractivity of the set
E. Since all the roots of the characteristic equation have
nonnegative parts, the Lyapunov stability is obvious. Now
we show its asymptotic attractivity.

Denote the roots of equation (10) By, : =0,1,--- ,m,
which satisfy\o =1 and|\;| < 1,i =1,--- ,m. Then, any
solution of system (9) is given by

States of agents

2‘0 4‘0 6‘0 8‘0 1[;0 1%0 ll‘l[) 1(‘50 1é0 200
Time /step m
k k

l‘(k‘) = COPO/\O + E CiPi)\i s (11)

Fig. 2. Consensus with communication delays. —
1=

where P, € R"™ is the eigenvector of\;, andc¢; € R is
a constant determined by initial conditions. Singg = 1
Dy3 = A(step), Dz = 4(step), Dyz = 4(step), Dys = and|)\;| < 1,i=1,---,m, the solutionz(k) given by (11)
6(step), Ds¢ = 6(step), Dg2 = 5(step). From Theorem 1, converges:, P, asymptotically as: — co. Because:g Py \§
we get the delayD < 2(step) for every agent, and we s also a solution of system (9), we obtain
chooseD = 2(step) in this simulation. The initial states are .
generated randomly, and the multi-agent system converges ] _
to a consensus as in Fig. 2. (; As)eoFo = 0. (12)

Theorem 1 implies thf_ﬂt the multl-aggnt syste_m () “ONthis implies thatg Py € E. The asymptotic asttactivity of
verges to a consensus without any relationship with the com-

munication delays, but these delays have an impact on NS thus proved. Therefore, the sitis asymptotically stable.
dynamical performance for given initial states (e.g., the rate
of the converging). For example, we change the ddlgy
with the initial states as:(k) = [x1(k), 22(k), ..., z6(k)]T =
0.6,2.8,2.1,1.5,1.8,1.1]", —max{D;;, D} <k <0,and _
the time of converging (i.e., the time when the algebraic suﬁJ\Ve integer.D. 1

of the absolute neighboring states’ errors begins to be always’ '00f- Denotez = 5po7. Then we haver € (0, 1] for
less thanl0~2) is ranked in the following Table. 1. ny nonnegative integdp. Thus, Lemma 2 is equivalent to

the well-known inequlitysin(3x) > z, 2 € (0,1]. O
Lemma 3. The following inequality

To complete the proof of Theorem 1, we need the follow-
ing two lemmas.

Lemma 2. sin( > - holds for any nonnega-

2@DTT))
22D+1)/ = 2D+1

TABLE |
INFLUENCE OF THE COMMUNICATION DELAYS Sin( 2D+1W)
——2 - <2D+1
Delay Dg2(Step) 7 1 10] 5] 20 30 ... sin()

Converging Time(step) 167 | 222 | 317 | 444 | 717

holds for all nonnegative integefd and allw € [—m, 7).




Proof. First of all, we note that

: 2D+1
M =2D +1.
w—0  sin(%)
In the following we prove
: 2D+1
(739 _op 4 (13)
Sin 5

2

holds for all nonnegative integef$ andw € [—m,0)U(0, 7].

Since
2D+1 2D+1
2 5 w)

b

sin(— sin(

sin(—%) sin(%)
we just need to prove (13) for all € (0, 7.
Whenw € (0 let h(w) = sin(22Hw) —

w):

» 2D 71l; (2D +

1)sin(%). Calculating the derivative of(w) on w yields

. 2D +1 2D +1 w

h(w) = 5 (cos( 5 w) — 008(5))
Sincew € (0, 577, we have0 < ¥ < 2Dl < Z for
all nonnegative integereD Thus, cos(252w) < cos(%)
holds forw € (0, ;555]. Therefore,h(w) <0, i.e., h(w) is
not increasing for aILu € (0, 5577+ Sinceh(0) = 0, we

have h(w) < 0, i.e., sin(22H2w) < (2D 4 1)sin(%) for

all w € (0, 2D+1] Becausesin(g) > 0 for w € (0, 357],
we get gms(m(w)w) < 2D +1 forall w € (0, 357<] and all

nonnegative mtegerE)
Whenw € (357, 7], we havesin(3) > sin(5z57) >
0 for all nonnegatlve integer®. So, from Lemma 2, we get

sin(22H ) 1
sin(%) sin( %)
< 1
sin(2(2g+1))
< 2D +1
for all w € (3557, 7] and all nonnegative integers.

Lemma 3 is proved]
Now, we give the proof of Theorem 1 as follows.
Taking thez-transformation of the system (5), we get

Doyen; @ij(X;(2)27 P9 — Xi(2)27P),  (14)
1 €7,

where X;(z) is thez-transformation of; (k). Define an xn
matrix L(z) = {l;;(2)} as follows:

—aisz’DU,

2v,en, Yis
0,

vj € Ny;
= Z
otherwise.

lij(2)

05r

—05F

05 1 15 2

Fig. 3. Nyquist plot ofG(w).

Define p(2) = det((z — 1)I + z~PL(2)). Then, we will
prove that all the zeros ¢f(z) have modulus less than unity
except for a zero at = 1 in the following.

Let z = 1, p(1) = det(1"PL(1)) = det(L). Since
G = (V,&, A) has a globally reachable nodg,s a simple
eigenvalue ofL ([5]), i.e., det(L) = 0 andrank(L) = n—1.
Thus,p(z) indeed has only one zero at= 1.

Now, we prove that the zeros of(z) = p(2)/(z — 1)
have modulus less than unity. Obviousl(z) = det(I +
Z;?E( )). Based on the general Nyquist stability criterion
([1]), the zeros off(z) have modulus less than unity, if
the eigenloci of. > L(jw), i.e., A(So—r L(jw)), does not
enclose the pom( 1,j0) for w € [—7 77]

Similar to [3], we can use the Greshgorin disk theorem to

estimate the matrix eigenvalue. Then, we have

—jwD = .
)\(ijwi_lL(‘]w))
—jwD
€ Uier {¢:CEC I (Syyen, ai) s <
—jwD
(0, @) 5571}
—jwD jwD
c {¢:¢eCl— KnnS2| < [Knax sy |}
(15)
for all w € [—m, 7], where Kyj,.x = max;ez ZvjeNi a;j
Now, define
—jwD
. sin(2D2+1w) _iK cos(2D2+1w)
- Kmax QSin(%) JH max QSin(%) ’

(16)
and the Nyquist plot of7(w) for w € [—x, n] is illustrated

and L(1) = L, which is the Laplacian matrix. Then, (14)in Fig. 3. Note thatG(w) is the center of the dis¢¢ : ¢ €

can be written as
2X(z) = X(2) — 2 PL(2) X (2),

where X (2) = [X1(2), Xa(2), ..., Xn(2)]"
tic equation Is

det((z — 1)I + 2~ PL(z)) = 0.

The characteris-

e wD e wD e wD
Cv‘c KmaXCJuj 1| < |Kmax Juj ‘} So, A( ij 1L(J‘U))
does not enclose the poift-1, jO) for w € [—m, 7| as long

as we prove that—a, j0) with ¢ > 1 dose not in the disc

e —jwD

{C e, |< Kmaxcw 1| < |Kmaxiy:w1 ‘} forall w €
. wD wD
[—m, 7], i.e.,| —a+j0— Kmaxgj S| > |Kmang; %-— | holds

for all w € [—m, 7] with a > 1.



From (15), (6]
—jwD —jwD
| —a +.]0 - -Kvmaxe-7|2 - |I{max€?7|2
ev —1 ew —1 (6]
sin(22tL, cos(22tL,
N (o e S -
2sin(%) 2sin(%) 71
sin(22tL, cos(22tL,
(K2 e (g, U Wy
2sin(%) 2sin(%) (8]
sin(22+Ly)
= - Kmax 2 .
ala sin(%) ) [9]
Because% < 2D + 1 holds forw € [—m, 7] by [10]

Lemma 3, usiﬁg (6) we obtain

2 2D+1
(5 @) k@D 1)
sin(%)
< 1
< a.
Thus, |a + j0 — KaxSo— 2 — [KmaxSor > > 0, ie.,
0450 — Knax Sor | > | Kmax Soer | holds forw € [—, 7]
with @ > 1.

Now, we have proved that the zeros @fz) have
modulus less than unity except for a zero at= 1.
By Lemma 1, system (5) asymptotically converges to a
steady statelimy ... z;(k) = x40,i € Z, and zg
[T10, 720, -+ ,%no]T € {z : Lz = 0} . Sincerank(L) =
n—1andL[1,1,---,1]T = 0 based on the definition of
the Laplacian matrixL, the solutions ofLzy = 0 can be
expressed agy = c[1,1,...,1]T, wherec is a constant.
Therefore, the system (5) asymptotically solves a consensus
problem. Theorem 1 is proved.

V. CONCLUSION

In this paper, we propose a consensus protocol to solve
the consensus problem of the multi-agent system with diverse
communication delays. Using the frequency domain analysis
and matrix theory, sufficient conditions, which are on the
agent's own input delay, weights of edges to neighbors, and
the interconnection topology of the network, are obtained for
the system asymptotically converging to a consensus. The
results also illustrate that the communication delays don't
influence the system converging to a consensus, but have
an impact on the dynamical performance of the multi-agent
system.
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