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Abstract— In this paper, a protocol is proposed to solve
the consensus problem of multi-agent systems with diverse
communication delays. Sufficient conditions for convergence
to a consensus are obtained based on the frequency-domain
analysis and matrix theory. The conditions depends on each
agent’s self-delay, the weights of the edges to each agent’s
neighbors, and the interconnection topology of the network.
Under the proposed protocol the communication delays do not
influence the convergence; but prolong the converging time.
Simulation results illustrate the correctness of the results.

I. I NTRODUCTION

The consensus problem for multi-agent systems has at-
tracted more and more attention. Vicseket al. proposed
a simple discrete-time model of multi-autonomous agents,
and provided various simulations which demonstrated the
phenomena: without any central coordination control, all the
agents in the model move in the same direction when the
density is large and the noise is small [9]. Jadbabaieet al.
studied the linearized Vicsek’s Model and proved that all
the agents converge to a common steady state provided that
the diagraph formed by the agents is jointly connected, i.e.,
the agents are all “linked together” via their neighbors with
sufficient frequency as the system evolves [2].

With non-negligible communication delays, the consensus
problem becomes much more difficult. It is a natural idea to
introduce self-delays in the consensus protocol and the self-
delays are usually chosen to be equal to the communication
delays (see, e.g., [8]. But such a protocol cannot be robust
because the measurement of communication delays always
contain some uncertainty. Moreover, the analysis of the
stability or the convergence of the protocol is very difficult.
Some stability results were obtained only for the multi-
agent system with an identical communication delay [8],
[6]. Based on the contraction theory and wave variable
method, Wang and Slotine studied the consensus problem
for the system with multi-variable agents under diverse com-
munication delays [10]. They proposed a simple consensus
protocol with zero self-delay, which is robust to arbitrary
communication delays. However, the topology graph in their
analysis should connected and bidirectional or unidirectional
formed in closed rings.
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In this paper, we propose a new consensus protocol to
solve the consensus problem of the multi-agent system with
diverse communication delays. In our protocol the self-delay
is uniform but it can be non-zero. We show that introducing
a non-zero self-delay can speed up the convergence rate for
the system with non-zero communication delays. Moreover,
we show the protocol can be applied to networks with
directed topology graphs and nonsymmetric weights. With
the help of the frequency-domain method developed in [3],
we analyzed the effect of both the communication delays and
the self-delay on the convergence of the multi-agent system.
Sufficient conditions for the multi-agent system converging
to a consensus are obtained. These conditions depends on
each agent’s self-delay, the weights of the edges to each
agent’s neighbors, and the interconnection topology of the
network. Under the proposed protocol the communication
time-delays do not influence the convergence; but they pro-
long the converging time.

II. PRELIMINARY

A weighted directed graph (digraph)G = (V, E ,A) of
order n consists of a set of verticesV = {v1, ..., vn},
a set of edgesE ⊆ V × V and a weighted adjacency
matrix A = [aij ] ∈ Rn×n with nonnegative adjacency
elementsaij . The node indexes belong to a finite index
set I = {1, 2, ..., n}. An edge of the weighted diagraph
G is denoted byeij = (vi, vj) ∈ E , i.e., eij is a directed
edge fromvi to vj . We assume that the adjacency elements
associated with the edges of the digraph are positive, i.e.,
aij > 0 ⇔ eij ∈ E . Moreover, we assumeaii = 0 for
all i ∈ I. The set of neighbors of nodevi is denoted by
Ni = {vj ∈ V : (vi, vj) ∈ E}.

In the weighted digraphG = (V, E ,A), the out-degree of
nodei is defined as follows:

degout(vi) =
n∑

j=1

aij .

Let D be the diagonal matrix with the out-degree of each
node along the diagonal and call it the degree matrix ofG.
The Laplacian matrix of the weighted digraph is defined as
L = D −A.

Following [4] we introduce some important notions for di-
graph. Apathon a digraphG = (V, E) of lengthN from vj0

to vjN is an ordered set of distinct nodes{vj0 , vj1 , ..., vjN
}



such that(vji−1 , vji
) ∈ E , ∀i = 1, 2, ...N . If there is a path

in G from one nodevi to another nodevj , thenvj is said to
be reachablefrom vi, written vi → vj . If not, thenvj is said
to be not reachable fromvi, written vi 9 vj . If a node is
reachable from every other node in the digraph, then we say it
globally reachable. A digraph isstrongly connectedif every
two of its nodes, sayv and u, are such thatv is reachable
from u andu is reachable fromv. Thus, a globally reachable
node is precisely the degree of connectedness required and
is much weaker than strong connectedness of the digraph.

In this paper, we just consider static topologyG =
(V, E ,A), i.e., the connection of the nodes in the diagraph
G does not change with time.

III. C ONSENSUSPROTOCOL

In a multi-agent system withn agents, each agent can
be considered as a node in a digraph, and the information
flow between two agents can be regarded as a directed path
between the nodes in the digraph. Thus, the interconnection
topology in a multi-agent system can be described as a
diagraphG = (V, E ,A).

Consider a discrete-time model of integrator agents

xi(k + 1) = xi(k) + ui(k), i ∈ I, (1)

wherexi(k) ∈ R and ui(k) ∈ R denote the state and the
control input of agenti, respectively.

The following consensus protocol for the multi-agent
system (1) has been extensively studied in the literature (see,
e.g., [8])

ui(k) =
∑

vj∈Ni

aij(xj − xi),

whereNi denotes the neighbors of agenti, andaij > 0 is
the adjacency element ofA in the digraphG = (V, E ,A).

For networks with non-negligible communication delays,
the following time-delayed consensus protocol was adapted
in [8]

ui(k) =
∑

vj∈Ni

aij(xj(k −Dij)− xi(k −Dij)), (2)

where communication delayDij > 0 corresponds to infor-
mation flow from agentj to agenti, i.e., the edgeeij ∈ E in
the digraphG = (V, E ,A). However, the consensus condition
was obtained only for the identical communication delays,
i.e., Dij = d. Reference [10] proposed another consensus
protocol without self-delay

ui(k) =
∑

vj∈Ni

aij(xj(k −Dij)− xi(k)). (3)

But they only analyzed the connected and bidirectional
topology graph with symmetric weights (i.e.,aij = aji) and
the unidirectional graph formed in closed rings with identical
weights.

Differing from the protocols above, we propose a consen-
sus protocol with a uniform self-delay to solve the consensus

problem of the multi-agent system (1) with diverse commu-
nication delays, which is given by

ui(k) =
∑

vj∈Ni

aij(xj(k −Dij)− xi(k −D)), (4)

whereD ≥ 0 is the self-delay which is uniform for all the
agents. Obviously, protocol (4) is a compromise between (2)
and (3).

With the consensus protocol (4), the closed form of the
multi-agent system (1) is

xi(k + 1) = xi(k)+∑
vj∈Ni

aij(xj(k −Dij)− xi(k −D)), i ∈ I.
(5)

Theorem 1. Consider a network of coupledn agents (5)
with a static interconnection topologyG = (V, E ,A) that has
a globally reachable node. If

∑

vj∈Ni

aij <
1

2D + 1
, ∀ i ∈ I, (6)

then system (5) has an asymptotic consensus, i.e.,

lim
k→∞

xi(k) = c, ∀ i ∈ I,

wherec is a constant.
Applying Theorem 1 to typical discrete-time models of

multi-agent systems, such as linearized Vicsek’s model [2]
and Moreau model [7], we can extend some existing results
on the consensus problem to the case with communication
delays.

With communication delays, the linearized Vicsek’s Model
proposed by [2] becomes

xi(k+1) =
1

1 + ni
(

∑

vj∈Ni

xj(k−Dij)+xi(k)), i ∈ I, (7)

whereni denotes the number of the neighbors of agenti.
Corollary 1. If the interconnection topology of (7) has

a globally reachable node, then the system (7) has an
asymptotic consensus.

Similarly, one can extend the Moreau’s Model [7] to the
case with communication delays

xi(k + 1) =
1

1+
∑

vj∈Ni
wij

(
∑

vj∈Ni
wijxj(k −Dij) + xi(k)),

i ∈ I,

(8)

wherewij denotes the positive weight corresponding to the
edgeeij in the diagraphG.

Corollary 2. If the interconnection topology of 8) has
a globally reachable node, then the system (8) has an
asymptotic consensus.

Example 1:Consider a network of six agents described by
(5). The interconnection topology is sketched in Fig. 1.

Based on the definition, the globally reachable node set
of the diagraph in Fig. 1 is{2, 3, 6}, but the diagraph is not
strongly connected. The weights of the directed paths are:
a12 = 0.1, a16 = 0.05, a23 = 0.15, a36 = 0.1, a43 = 0.05,
a45 = 0.1, a56 = 0.15, a62 = 0.15, and the corresponding
communication delays are:D12 = 5(step),D16 = 3(step),
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Fig. 1. The digraph of a group of 6 agents.
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Fig. 2. Consensus with communication delays.

D23 = 4(step), D36 = 4(step), D43 = 4(step), D45 =
6(step),D56 = 6(step),D62 = 5(step). From Theorem 1,
we get the delayD ≤ 2(step) for every agent, and we
chooseD = 2(step) in this simulation. The initial states are
generated randomly, and the multi-agent system converges
to a consensus as in Fig. 2.

Theorem 1 implies that the multi-agent system (5) con-
verges to a consensus without any relationship with the com-
munication delays, but these delays have an impact on the
dynamical performance for given initial states (e.g., the rate
of the converging). For example, we change the delayD62

with the initial states as:x(k) = [x1(k), x2(k), ..., x6(k)]T =
[0.6, 2.8, 2.1, 1.5, 1.8, 1.1]T , −max{Dij , D} ≤ k ≤ 0, and
the time of converging (i.e., the time when the algebraic sum
of the absolute neighboring states’ errors begins to be always
less than10−2) is ranked in the following Table. 1.

TABLE I

INFLUENCE OF THE COMMUNICATION DELAYS

Delay D62(step) 7 10 15 20 30 · · ·
Converging Time(step) 167 222 317 444 717 · · ·

As in the continuous-time model, we get the same conclu-
sion from Table. 1 that the rate of the converging decreases
as the communication delays increase.

IV. PROOF OFTHEOREM 1

Before giving the proof of Theorem 1, we consider a
discrete-time system with time delays

x(k + 1) = x(k) +
nd∑

i=1

Aix(k −Di), (9)

where x(k) ∈ Rn, Ai ∈ Rn×n and Di ∈ R. Taking the
z-transformation, and we get the characteristic equation of
system (9) as

det((z − 1)I −
nd∑

i

Aiz
−Di) = 0. (10)

Lemma 1. If the roots of equation (10) have modulus less
than unity except for a root atz = 1, then the equilibrium
set E = {x ∈ Rn : (

∑nd

i=1 Ai)x = 0} of system (9) is
asymptotically stable.

Proof. By the set stability theory, we need to show the
Lyapunov stability and asymptotic attractivity of the set
E. Since all the roots of the characteristic equation have
nonnegative parts, the Lyapunov stability is obvious. Now
we show its asymptotic attractivity.

Denote the roots of equation (10) byλi, i = 0, 1, · · · , m,
which satisfyλ0 = 1 and |λi| < 1, i = 1, · · · ,m. Then, any
solution of system (9) is given by

x(k) = c0P0λ
k
0 +

m∑

i=1

ciPiλ
k
i , (11)

where Pi ∈ Rn is the eigenvector ofλi, and ci ∈ R is
a constant determined by initial conditions. Sinceλ0 = 1
and |λi| < 1, i = 1, · · · ,m, the solutionx(k) given by (11)
convergesc0P0 asymptotically ask →∞. Becausec0P0λ

k
0

is also a solution of system (9), we obtain

(
nd∑

i=1

Ai)c0P0 = 0. (12)

This implies thatc0P0 ∈ E. The asymptotic asttactivity ofE
is thus proved. Therefore, the setE is asymptotically stable.
¤

To complete the proof of Theorem 1, we need the follow-
ing two lemmas.

Lemma 2. sin( π
2(2D+1) ) ≥ 1

2D+1 holds for any nonnega-
tive integerD.

Proof. Denotex = 1
2D+1 . Then we havex ∈ (0, 1] for

any nonnegative integerD. Thus, Lemma 2 is equivalent to
the well-known inequlitysin(π

2 x) ≥ x, x ∈ (0, 1]. ¤
Lemma 3. The following inequality

sin( 2D+1
2 ω)

sin(ω
2 )

≤ 2D + 1

holds for all nonnegative integersD and allω ∈ [−π, π].



Proof. First of all, we note that

lim
ω→0

sin(2D+1
2 ω)

sin(ω
2 )

= 2D + 1.

In the following we prove

sin( 2D+1
2 ω)

sin ω
2

≤ 2D + 1 (13)

holds for all nonnegative integersD andω ∈ [−π, 0)∪(0, π].
Since

sin(− 2D+1
2 ω)

sin(−ω
2 )

=
sin(2D+1

2 ω)
sin(ω

2 )
,

we just need to prove (13) for allω ∈ (0, π].
When ω ∈ (0, π

2D+1 ], let h(ω) = sin( 2D+1
2 ω) − (2D +

1) sin(ω
2 ). Calculating the derivative ofh(ω) on ω yields

ḣ(ω) =
2D + 1

2
(cos(

2D + 1
2

ω)− cos(
ω

2
)).

Sinceω ∈ (0, π
2D+1 ], we have0 < ω

2 ≤ 2D+1
2 ω ≤ π

2 for
all nonnegative integersD. Thus, cos( 2D+1

2 ω) ≤ cos(ω
2 )

holds forω ∈ (0, π
2D+1 ]. Therefore,ḣ(ω) ≤ 0, i.e., h(ω) is

not increasing for allω ∈ (0, π
2D+1 ]. Sinceh(0) = 0, we

have h(ω) ≤ 0, i.e., sin( 2D+1
2 ω) ≤ (2D + 1) sin(ω

2 ) for
all ω ∈ (0, π

2D+1 ]. Becausesin(ω
2 ) > 0 for ω ∈ (0, π

2D+1 ],

we get sin( 2D+1
2 ω)

sin( ω
2 ) ≤ 2D + 1 for all ω ∈ (0, π

2D+1 ] and all
nonnegative integersD.

Whenω ∈ ( π
2D+1 , π], we havesin(ω

2 ) > sin( π
2(2D+1) ) >

0 for all nonnegative integersD. So, from Lemma 2, we get

sin( 2D+1
2 ω)

sin(ω
2 )

≤ 1
sin(ω

2 )

<
1

sin( π
2(2D+1) )

≤ 2D + 1

for all ω ∈ ( π
2D+1 , π] and all nonnegative integersD.

Lemma 3 is proved.¤
Now, we give the proof of Theorem 1 as follows.
Taking thez-transformation of the system (5), we get

zXi(z) = Xi(z)+∑
vj∈Ni

aij(Xj(z)z−Dij −Xi(z)z−D),
i ∈ I,

(14)

whereXi(z) is thez-transformation ofxi(k). Define an×n
matrix L̃(z) = {l̃ij(z)} as follows:

l̃ij(z) =




−aijz

D−Dij , vj ∈ Ni;∑
vj∈Ni

aij , j = i;
0, otherwise.

and L̃(1) = L, which is the Laplacian matrix. Then, (14)
can be written as

zX(z) = X(z)− z−DL̃(z)X(z),

whereX(z) = [X1(z), X2(z), ..., Xn(z)]T . The characteris-
tic equation is

det((z − 1)I + z−DL̃(z)) = 0.
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Fig. 3. Nyquist plot ofG(ω).

Define p(z) = det((z − 1)I + z−DL̃(z)). Then, we will
prove that all the zeros ofp(z) have modulus less than unity
except for a zero atz = 1 in the following.

Let z = 1, p(1) = det(1−DL̃(1)) = det(L). Since
G = (V, E ,A) has a globally reachable node,0 is a simple
eigenvalue ofL ([5]), i.e., det(L) = 0 andrank(L) = n−1.
Thus,p(z) indeed has only one zero atz = 1.

Now, we prove that the zeros off(z) = p(z)/(z − 1)
have modulus less than unity. Obviously,f(z) = det(I +
z−D

z−1 L̃(z)). Based on the general Nyquist stability criterion
([1]), the zeros off(z) have modulus less than unity, if
the eigenloci ofe

−jωD

ejω−1 L̃(jω), i.e., λ( e−jωD

ejω−1 L̃(jω)), does not
enclose the point(−1, j0) for ω ∈ [−π, π].

Similar to [3], we can use the Greshgorin disk theorem to
estimate the matrix eigenvalue. Then, we have

λ( e−jωD

ejω−1
L̃(jω))

∈ ⋃
i∈I

{
ζ : ζ ∈ C, |ζ − (

∑
vj∈Ni

aij) e−jωD

ejω−1 | ≤
|(∑vj∈Ni

aij) e−jωD

ejω−1 |
}

⊆
{

ζ : ζ ∈ C, |ζ −Kmax
e−jωD

ejω−1 | ≤ |Kmax
e−jωD

ejω−1 |
}

(15)
for all ω ∈ [−π, π], whereKmax = maxi∈I

∑
vj∈Ni

aij .
Now, define

G(ω) = Kmax
e−jωD

ejω−1

= −Kmax
sin( 2D+1

2 ω)

2 sin( ω
2 ) − jKmax

cos( 2D+1
2 ω)

2 sin( ω
2 ) ,

(16)
and the Nyquist plot ofG(ω) for ω ∈ [−π, π] is illustrated
in Fig. 3. Note thatG(ω) is the center of the disc{ζ : ζ ∈
C, |ζ − Kmax

e−jωD

ejω−1 | ≤ |Kmax
e−jωD

ejω−1 |}. So, λ( e−jωD

ejω−1 L̃(jω))
does not enclose the point(−1, j0) for ω ∈ [−π, π] as long
as we prove that(−a, j0) with a ≥ 1 dose not in the disc
{ζ : ζ ∈ C, |ζ −Kmax

e−jωD

ejω−1
| ≤ |Kmax

e−jωD

ejω−1
|} for all ω ∈

[−π, π], i.e., | − a+ j0−Kmax
e−jωD

ejω−1 | > |Kmax
e−jωD

ejω−1 | holds
for all ω ∈ [−π, π] with a ≥ 1.



From (15),

| − a + j0−Kmax
e−jωD

ejω − 1
|2 − |Kmax

e−jωD

ejω − 1
|2

= ((−a + Kmax

sin( 2D+1
2 ω)

2 sin(ω
2 )

)2 + (Kmax

cos( 2D+1
2 ω)

2 sin(ω
2 )

)2)

−((−Kmax

sin( 2D+1
2 ω)

2 sin(ω
2 )

)2 + (−Kmax

cos( 2D+1
2 ω)

2 sin(ω
2 )

)2)

= a(a−Kmax

sin(2D+1
2 ω)

sin(ω
2 )

).

Becausesin( 2D+1
2 ω)

sin( ω
2 ) ≤ 2D + 1 holds for ω ∈ [−π, π] by

Lemma 3, using (6) we obtain

Kmax

sin(2D+1
2 ω)

sin(ω
2 )

≤ Kmax(2D + 1)

< 1
≤ a.

Thus, |a + j0 − Kmax
e−jωD

ejω−1 |2 − |Kmax
e−jωD

ejω−1 |2 > 0, i.e.,

|a+j0−Kmax
e−jωD

ejω−1
| > |Kmax

e−jωD

ejω−1
| holds forω ∈ [−π, π]

with a ≥ 1.
Now, we have proved that the zeros ofp(z) have

modulus less than unity except for a zero atz = 1.
By Lemma 1, system (5) asymptotically converges to a
steady statelimk→∞ xi(k) = xi0, i ∈ I, and x0 =
[x10, x20, · · · , xn0]T ∈ {x : Lx = 0} . Since rank(L) =
n − 1 and L[1, 1, · · · , 1]T = 0 based on the definition of
the Laplacian matrixL, the solutions ofLx0 = 0 can be
expressed asx0 = c[1, 1, ..., 1]T , where c is a constant.
Therefore, the system (5) asymptotically solves a consensus
problem. Theorem 1 is proved.

V. CONCLUSION

In this paper, we propose a consensus protocol to solve
the consensus problem of the multi-agent system with diverse
communication delays. Using the frequency domain analysis
and matrix theory, sufficient conditions, which are on the
agent’s own input delay, weights of edges to neighbors, and
the interconnection topology of the network, are obtained for
the system asymptotically converging to a consensus. The
results also illustrate that the communication delays don’t
influence the system converging to a consensus, but have
an impact on the dynamical performance of the multi-agent
system.
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