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The largest obstacle to the implementation of quantum technologies is the unavoidable interaction of quantum
systems with the surrounding environment. Because of this interaction, the system dynamics is subject to loss of
coherence, irreversibility and dissipation, and the appealing properties of quantum systems are lost or compromised
[1].

In many situations the environmental action can be accounted for by describing the dynamics of a system s by a
quantum dynamical semigroup, that is a Markovian reduced dynamics whose generator L, defined by ρ̇s = L[ρs], has
the standard form

L[ρs] = −i[Hs, ρs] +
∑

i,j

cij

(
FiρsF

†
j −

1
2
{F †j Fi, ρs}

)
, (1)

where ρs is the statistical operator associated to the system s, Hs is an Hermitian operator and the set {Fi; i} satisfies
TrFi = 0, Tr(FiF

†
j ) = δij . The Kossakowski matrix C = [cij ] must satisfy C† = C > 0 in order to guarantee a

consistent physical interpretation of the formalism [2].
The second contribution in the right hand side of (1) is a non-coherent term responsible of the irreversible behavior

of the system s. The introduction of this term leads to the appearance of attractors in the state space of s, producing
relaxation to equilibrium of the states of the system, not realizable in the absence of the environment. A stationary
state for the dynamics, ρ∞s , is defined by the condition L[ρ∞s ] = 0. Necessary conditions for the existence of stationary
states and for the convergence of ρs(t) to them have been derived in terms of the operators {Vi; i} appearing the
diagonal form of (1),

L[ρs] = −i[Hs, ρs] +
∑

i

(
ViρsV

†
i −

1
2
{V †

i Vi, ρs}
)
, (2)

The conditions that are relevant to our purposes are summarized by the following theorem.

Theorem 1 Given the quantum dynamical semigroup (2), assume that it admits a stationary state ρ0 of maximal
rank. Defining M = {Hs, Vi, V

†
i ; i} the commutant of the Hamiltonian plus the dissipative generators, the following

conditions hold true:
1. If M = span(I), then ρ0 is the unique stationary state. Moreover, if {Vi; i} is a self-adjoint set with {Vi; i}′ =

span(I), then for all ρs(0)

lim
t→+∞

ρs(t) = ρ0.

2. If M 6= span(I), then there exist a complete family {Pn; n} of pairwise orthogonal projectors such that Z =
M ∩M′

= {Pn; n}′′ . If {Vi; i}′ = M, two extreme cases together with their linear superpositions may occur. If
Z = M, then for all ρs(0)

lim
t→+∞

ρs(t) =
∑

n

Tr(Pnρs(0)Pn)
Pnρ0Pn

Tr(Pnρ0Pn)
.

If Z = M′
, then for all ρs(0)

lim
t→+∞

ρs(t) =
∑

n

Pnρs(0)Pn.
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In this work we address the following question: is it possible to modify the stationary states of a system s1, that
evolves under a quantum dynamical semigroup, by enlarging the system as s = s1 + s2, considering the evolution
of the joint system, and then discarding s2? In other words, we consider the joint evolution of two systems s1 and
s2, assuming that the semigroup form is preserved, and study the stationary states of the system s1 alone. The
system s2 has the role of an auxiliary system, and its impact on the stationary states of the system s1 depends on
the correlations between s1 and s2. There can be initial correlations, or rather correlations created during the joint
evolution.

The use of an ancillary system has been proved useful in the field of quantum control, since it provides an alternative
to the usual coherent control approach, while still using an open-loop procedure [5]. In a different approach, some
information gain about the system (via an indirect measurement) is used to modify the controls in order to steer or
stabilize the target system. This closed loop procedure is the so-called quantum feedback [3, 4].

In this work, for a large class of quantum dynamical semigroups, we describe to what extent it is possible to affect
the stationary states of the relevant system through the ancilla. In particular, depending on the dynamical parameters
characterizing the semigroup, we describe all the possible scenarios for these stationary states. We further provide
examples and applications of our results.
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