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The paper is devoted to the stability theory based methods of designing feedback control
for dynamical systems under uncertainty.

A lot of approaches to designing control for dynamical systems with uncertain parameters
are based on the stability theory and consist in constructing regimes that ensure the asymptotic
stability of the desired motion (in particular, the terminal state) of the system. In contrast to
these approaches, we are searching for the control laws that may be used to steer a system to
a terminal state in a finite time.

In the present paper, two approaches to constructing feedback control algorithms are dis-
cussed. The first approach can be applied to linear systems, while the second one has been
elaborated for Lagrangian mechanical systems. Both of these approaches are based on the Lya-
punov direct method and enables one to steer the system to a given terminal state in a finite
time under the assumption that the control variables are bounded and the system is subject
to unknown perturbations. The peculiarity of the investigation is that the Lyapunov functions
are defined implicitly in both cases.

The control algorithms under consideration employ linear feedbacks with the gains that are
functions of the phase variables. The gains increase and tend to infinity as the trajectory ap-
proaches the terminal state; nevertheless, the control forces are bounded and meet the imposed
constraint.

To compare the efficiency of the proposed control algorithms a computer simulation of the
controlled motion of a double pendulum in a neighbourhood of the upper equilibrium state is
presented.

Feedback Control for Linear Systems

Consider a linear system
z(n) = u. (1)

where z ∈ R, u is a scalar control function. A generic linear system that satisfies the control-
lability condition can be reduced to system (1).

A bounded feedback control u(z) is proposed which steers system (1) from an arbitrary
initial state to the phase space origin in a finite time. To this end, we rewrite system (1) in the



form
ẋ = Ax + bu, x ∈ Rn. (2)

where
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Denote by V (x) a scalar function which will be specified below and consider the diagonal
matrices D = diag(V −n, V −n+1, . . . , V −1) and N = diag(−n,−n + 1, . . . ,−1).

Let us choose the constant vector a ∈ Rn such that:
1◦ for u = a>y and Ãy = Ay + bu, the system ẏ = Ãy is asymptotically stable;
2◦ there exist positive definite symmetrical n × n matrix Q satisfying the linear matrix

inequalities
QÃ + Ã>Q < 0, QN + NQ < 0.

Theorem 1. The equation
x>D>(x)QD(x)x = 1 (3)

uniquely defines continuously differentiable function V (x) > 0 with properties

lim
|x|→0

V (x) = 0, lim
|x|→∞

V (x) = ∞.

Theorem 2. The derivative of function V (x) along the trajectory of system (2) with the
control function u(x) = a>D(x)x satisfies the inequality

V̇ ≤ d < 0, d = const. (4)

Corollary. The control function u(x) = a>D(x)x is bounded and steers system (2) (and
hence system (1)) from an arbitrary initial state to the phase space origin in a finite time.

Note 1. The proposed control is effective also for the system

z(n) = u + v

if the disturbance v satisfies the inequality

|v| ≤ qmaxpmin

2q
1/2
min

where qmin and qmax are the minimal and maximal eigenvalues of Q, and pmin is the minimal
eigenvalue of the matrix −(QÃ + Ã>Q).

Note 2. A similar approach was proposed in [1] where, apart from inequality (4), the
inequality

V̇ (x) ≤ − γV α(x), γ > 0, 0 < α < 1,

for the derivative of the Lyapunov function V holds.



Feedback Control for Lagrange Mechanical Systems

Consider now a mechanical systems governed by Lagrange’s equation

d

dt

∂T

∂q̇
− ∂T

∂q
= U + S. (5)

Here q, q̇ ∈ Rn are the vectors of the generalized coordinates and velocities, T is the kinetic
energy

T (q, q̇) =
1

2
q̇>A(q)q̇.

The vector S of unknown generalized forces (disturbances) and the vector U of generalized
control forces are assumed to be bounded

|S| ≤ S0, |U | ≤ U0, S0, U0 > 0.

Suppose that, for all q, z ∈ Rn, the matrix A satisfies the inequality

mz2 ≤ z>A(q)z ≤ Mz2, m, M > 0.

A bounded feedback control is proposed which, under certain conditions, steers the system
from an arbitrary initial state to the origin of the phase space in a finite time.

Following to [2, 3], the desired control is chosen in the form

U(q, q̇) = −α(q, q̇)A(q)q̇ − β(q, q̇)q (6)

where

β =
3U2

0

8V
, α =
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,

(7)

V =
1

2
q̇>Aq̇ +

1

2
βq2 +

1

2
αq>Aq̇.

Relations (7) define the functions α(q, q̇), β(q, q̇), and V (q, q̇) implicitly.
The justification of the proposed control law is based on the Lyapunov direct method. The

function V here serves as a Lyapunov function for system (5) and satisfies the inequality

V̇ (q, q̇) ≤ − δ

3
V 1/2(q, q̇), δ > 0.

The function V tends to zero as the trajectory approaches the terminal state. Since the
function V appears in the denominators in relations (7), the feedback factors a and b tend to
infinity as the trajectory approaches the origin. Nevertheless, control (6) does not go beyond
the admissible boundaries.

A computer simulation

A computer simulation of the controlled motion of a double pendulum is presented. We
utilize the proposed control algorithms for steering the pendulum to the upper equilibrium
state.

The first approach is used for control of the pendulum by means of control torque applied
to the first link. To this end, we construct the control law for the linearized equations of motion
and apply the obtained control to the full nonlinear equations.

The second approach is utilized for the fully actuated system.
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