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1. INTRODUCTION

During the recent 3 decades Department ”Dynamics and
Motion Control” of Samara Scientific Center RAS have
accumulated substantial practical experience in research
and designing the aerospace guidance, navigation and
flight control systems. This paper briefly presents the
research results achieved by the Department only on the
attitude control systems for Russian information satellites
(Fig. 1 and Fig. 2), and also new challenges for perspective
spacecraft by this class.

2. ROBUST NONLINEAR CONTROL

Applied general approach to synthesis of nonlinear control
system (NCS) with a partial measurement of its state
is presented, moreover the method of vector Lyapunov
functions (VLF), which has a strong mathematical basis
for analysis of stability of various nonlinear interconnected
systems with the discontinuous right-hand side, is used in
cooperation with the exact feedback linearization (EFL)
technique. Let there be given a nonlinear controlled object

D+x(t)=F(x(t),u); x(t0)=x0; t ∈ Tt0 ,
where x(t) ∈ H ⊂ Rn is a state vector with an ini-
tial condition x0 ∈ H0 ⊆ H; u = {uj} ∈ U ⊂ Rr

is a control vector. Let some vector norms ρ(x) ∈ R l

+

and ρ0(x0)∈R l0
+ also be given. For any control law (CL)

u=U(x) the closed-loop system has the form
D+x(t) = X (t, x); x(t0) = x0, (1)

where X (t, x)=F(x,U(x)),X : Tt0×H →H is a discontin-
uous operator. Assuming the existence and the non-local
continuability of the right-sided solution x(t) ≡ x(t0, x0; t)
of the system (1) for its extended definition in the aspect of
physics, the most important dynamic property is obtained,
that is ρρ0-exponential invariance of the solution x(t)=0
under the desired γ ∈ R l

+:
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Fig. 1. The observation spacecraft Resourse-DK1

Fig. 2. The communication spacecraft Sesat

(∃α ∈ R+) (∃B∈B
l×l0
+ ) (∃δ ∈ Rl0+) (∀ρ0(x0) < δ)

ρ(x(t)) ≤ γ + B ρ0(x0) exp(−α(t− t0)) ∀t ∈ Tt0 .

For the VLF υ : H → R k

+ with components υs(x) ≥ 0,
υs(0) = 0, s = 1 : k and the norm ‖υ(x)‖=max{υs(x)},
defined are scalar function υ(x)=max{υs(x), s=1: lk, 1≤



lk≤k} and a υ upper right derivative with respect to (1):

υ ′(x) ≡ lim
δt→0+

(υ(x + δtX (t, x))− υ(x))/δt.

Theorem . Let there exist the VLF υ, so that:

1) (∃a ∈ Rl+) (∀x ∈ H) ρ(x) ≤ a · υ(x);
2) (∃b ∈ Rl0+) (∀x0 ∈ H0) ‖υ(x0)‖ ≤ 〈b, ρ0(x0)〉;
3) ∃γc ∈ R k

+, a function ϕγ(·) exists for γc ≤ ϕγ(a, γ);
4) ∀ (t, x) ∈ (Tt0 ×H) the conditions are satisfied:
a) υ′γ(x)≤̇fc(t, υγ(x))≡Pυγ(x) + f̃c(t, υγ(x));
b) Hurwitz condition for positive matrix P;
c) Waz̆ewski condition on quasi-monotonicity for the

function f̃c(t, y);
d) Carateodory condition for the function f̃c(t, y), boun-

ded in each domain Ωrc=(Tt0 ×Src ), where r > 0 and
Src = {y ∈ Rk : ‖y‖E < r};

e) (̃fc(t, y)/‖y‖)
t∈Tt0=⇒ 0 for y → 0 uniformly with

respect to time t ∈ Tt0 ,

where υγ = υ − γc. Then solution x(t) = 0 of the system
(1) is ρρ0-exponential invariant and the matrix B has the
form B = c · abt with c ∈ R+.

There is such an important problem: by what approach
is it possible to create constructive techniques for con-
structing the VLF υ(x) and simultaneous synthesis of a
nonlinear control law u = U(x) for the close-loop system
(1) with given vector norms ρ(x) and ρ0(x0) ? Recently,
a pithy technique on constructing VLF at such synthesis
has been elaborated. This method is based on a nonlinear
transformation of the NCS model and solving the problem
in two stages.

In stage 1, the right side F(·) in (1) is transformed as
F(·)=f(x)+G(x) u+F̃(t, x(t),u), some principal variables
in a state vector x∈H̃⊂Rñ ⊆Rn with ñ≤n, x0∈H̃0⊆H̃
are selected and a simplified nonlinear model of the object
(1) is presented in the form of an affine quite smooth
nonlinear control system

ẋ=F(x,u)≡ f(x)+G(x)u≡ f(x)+
∑

gj(x)uj ,

which is structurally synthesized by the EFL tech-
nique. In this aspect, based on the structural analy-
sis of given vector norms ρ(x) and ρ0(x), and also
vector-functions f(x) and gj(x), the output vector-function
h(x)={hi(x)} is carefully selected. Furthermore, the non-
linear invertible (one-to-one) coordinate transformation
z = Φ(x) ∀x ∈ Sh ⊆ H̃ with Φ(0) = 0 is analytically
obtained with simultaneous constructing the VLF. Fi-
nally, bilateral component-wise inequalities for the vectors
x, z, υ(x), ρ(x), ρ0(x0) are derived, it is most desirable to
obtain the explicit form for the nonlinear transforma-
tion x = Ψ(z), inverse with respect to z = Φ(x), and the
VLF aggregation procedure is carried out with analysis
of proximity for a singular directions in the Jacobian
[∂F(x, U(x))/∂x].

In stage 2, the problem of nonlinear CL synthesis for
the complete model of the NCS (1), taking rejected
coordinates, nonlinearities and restrictions on control, into
account is solved by the VLF-method. If a forming control
is digital, a measurement the model’s state is discrete and
incomplete, then a simplified nonlinear discrete object’s

model is obtained by Teylor-Lie series, a nonlinear digital
CL is formed and its parametric synthesis is carried out
with a simultaneously construct a discrete sub-vector VLF.

3. THE COMMUNICATION SATELLITE

The S iberian-Europe Satellite (Sesat) is a first communi-
cation spacecraft produced jointly by Russia and Europe.
The Sesat was orbited on April 18, 2000. The Sesat at-
titude & orbit control system (AOCS) is based on the
following configuration: the ES and the fine digital SS,
the precise GU, a three-axial RG block, the GW, the SAP
driver (AD) based on the GSDs, the RTs, Fig. 3. Electric
plasma RTs are used for spacecraft station keeping, and
hydrazine RTs — for attitude control and GW unloading.

3.1 Initial Orientation Modes

When the Sesat has been separated from Proton launcher,
the Initial modes of Attitude Determination and Control
System (ADCS) begin:

• Damping mode (DM) 7→ [RGs & RTs & AD]:
· braking the angular rate vector ω(t) at the iner-

tial reference frame (IRF) I⊕;
· the SAPs turn to a fixed position when their

normal np is oriented contrary the unit by of the
body reference frame (BRF) B = {bi} (Oxyz),
see Fig. 3;

• Sun Acquisition mode (SAM) 7→ [ · ] & [SS]:
· Sun unit S acquisition within one body revolution

around the −by unit;
· Sun pointing by a fixed unit b′y, Fig. 3;

• Earth Acquisition mode (EAM) 7→ [ · ]&[ES]:
· the satellite is rotated around the unit b′y keeping

the same Sun pointing;
· Earth unit E acquisition by the ES;

• Preliminary Earth Orientation mode (EOPM) 7→ [ · ]
& [AD & GW]:
· GW rotor acceleration;
· SAPs rotation in the Tracking mode.

The Earth Orientation mode (EOM) is used for the body
three-axes orientation and stabilization in the ORF Io

(Oxoyozo) by the device base [ES & GW] with GW
unloading by the RTs and for SAPs Sun pointing by
the AD. A digital control law does not employ physical
measurement of the yaw angle or its rate but certainly
provides the body attitude control in the ORF using
coupling roll and yaw channels.

Three Axes Stabilization mode (TASM) is the main nom-
inal mode of ADCS operation. It has the device base [GU
& GW & AD] with an infrequent calibration of the GU by
the SS and ES digitally filtered signals. TASM provides
precise body attitude stabilization in the ORF and the
SAPs Sun pointing in three sub-modes:

• nominal sub-mode;
• GW momentum unloading (GWMU);
• station keeping manoeuvre (SKM).

The Twirl mode (TWM) is intended to provide positive
power balance in an emergency case. Here the ADCS
ensures a single-axis attitude stabilization of the SC body
in the IRF by its rotation around the BRF Oz axis.



Fig. 3. The spacecraft Sesat onboard equipment layout scheme: ES — the Earth sensor; SS — the Sun sensor; GU
— gyro unit; RG — rate gyrosensor; GW — gyrowheel (a momentum wheel mounted on 2-DOF gimbal); RT —
reaction thruster; SAP — solar array panel; GSD — gear stepping drive.

3.2 Nonlinear Model of Body Attitude Motion

Position of the spacecraft mass center C on given circular
orbit is defined by radius-vector ro(t) with unit ro and
the true anomaly νo(t), which is combined with the orbit
latitude uo(t) = ωπ + νo(t), where ωπ is a conventional
latitude of orbit perigee. The BRF B attitude with respect
to the ORF is defined by quaternion Λo = (λo0,λ

o) with
λo=(λo1, λ

o
2, λ

o
3), by angles of yaw ψ, roll ϕ and pitch θ (see

Fig. 3) for the rotational sequence {1-3-2} and by matrix
Tb
o = [ϕ]2 [θ]3 [ψ]1, where [α]i is well-known matrix of

elementary rotation. The ORF angular rate vector ωo(t) =
ν̇o(t) with respect to IRF I⊕ have the form ωo

o = {0, 0, ωo}
in the ORF and the representation ωb

o = Tb
o ωo

o in the
BRF. At a body rate vector ω(t) = {ωi(t)} the kinematic
relations Λ̇

o
= (Λo◦ω − ωo

o◦Λ
o)/2 for quaternion Λo(t)

and the Euler-Krylov angles of yaw ψ, roll ϕ and pitch θ ψ̇ϕ̇
θ̇

=

[ (ωxz − ωooSψSθ)/Cθ
ωy + (ωxzSθ − ωooSψ)/Cθ
−ωxSϕ + ωzCϕ − ωooCψ

]
(2)

with ωxz ≡ ωxCϕ + ωzSϕ for the attitude angle vector
α = {αi} ≡ {ψ,ϕ, θ}, uniquely determine the Sesat

BRF orientation in the ORF. Moreover, the attitude
matrix Tb

o = I3 − 2[λo×]Qt
λ, where Qλ = I3λ

o
0 + [λo×]

with det(Qλ) = λo0. At some simplified assumptions the
nonlinear model of the Sesat body attitude dynamics is
appeared as follows[

J Dq

Dt
q Aq

]
·
[

ω̇
q̈

]
=

[
Fω

Fq

]
, (3)

where Fω = −ω ×G + Mp
o + Mg

o + Md
o + Mo + Qv

o ;

Fq =−Aq(Sqq̇ + Wqq)−Pt
qγ̈
p + Qv

q ;Sq=Vq + Φq;

G = Jω + Dqq̇ + H; H = H · hg(α, β); Mg
o = −Ḣ;

hg ={CαSβ ,−Sα, CαCβ}; Ḣ=HAh{α̇, β̇}+ Ḣhg;

Vq = NqΩq; Wq = Ω2
q; Nq = dνps c; Ωq = dΩp

s c;

νqs = δqs/π;Φq=−(Φq)t =[{φsl}], φsl=−2gt
ls · ω;

Qv
o = −L×wo; Qv

q = −Mt
qwo; wo = v

∗

o + ω × vo;

Mp
o=

 (Jpdxy(S2γp ωx − C2γp ωy)− 2Jpzωy) · γ̇p
−(Jpdxy(C2γp ωx − S2γp ωy) + 2Jpzωy) · γ̇p

−2Jpz · γ̈p

;



Jpdxy = Jpx − Jpy ;
Md

o = Mdo
o + Mdk

o ;
Mo = Mgr

o + Ms
o;

Ah =

[
CαCβ −SαSβ

0 −Cα
−CαSβ −SαCβ

]
,

the symbols ◦ , ·̃ for quaternion, ×, { · } ≡ col(·), [ · ] ≡
line(·) for vectors and [·×], (·)t, d·c ≡ diag(·) for matrix
are conventional denotations.

3.3 Attitude Measurement and Estimation

Models of the Sesat body attitude state (the ES and the
SS, the GU, the RG block), the GW and the SAPs state
sensors take into account:
• their own dynamic properties;
• nonlinear static characteristics, for example because

of constraint on the SS and the ES field of view ;
• noise, systematic and instrumental errors;
• time delays, time sampling, quantization and bound-

edness of their outputs;
• GU calibration by a digital observer based on the SS

and the ES discrete filtered signals;
• possible faults and embedded diagnosis.

Digital observers are used for filtering the physical mea-
surements of the body attitude angles and discrete dy-
namic estimation of the SC angular rate vector.

Attitude Reaction Thrusters The pulse-width modula-
tion (PWM) model of a normed controlling torque md

n(t)
by any RT under an input command vdk taking into account
a time delay T dzu is defined by the differential equation

Tdṁd
n(t) +md

n(t) = sk · un(t− T dzu, τk, tk), (4)
where tk = k · Tu, k ∈ N0 ≡ [0, 1, 2, . . . ) and

τk = |vdk|; sk = Sign vdk; Td =
{

Td+ un(·) 6= 0,
Td− un(·) = 0;

un(t, τk, tk) ≡
{

1 tk ≤ t < tk + φ(·, τk),
0 tk + φ(·, τk) ≤ t < tk+1;

φ(τm, τm, Tu, τk)=


0 τk < τm;
τk τm ≤ τk < τm;
τm τm ≤ τk < Tu;
Tu τk ≥ Tu.

The description (4) is used for modelling the control torque
vector Mdo

o (t) = {Mdo
i (t)} of the attitude RT set at the

PWM mode for their thrust control on a discrete command
vector vdk = {vdik}.

The GW precession model have the form

H
[

0 −Cα
Cα 0

] [
β̇
α̇

]
−HAt

h ω =
[

Q′
β

Qα

]
; (5)

Cr ht
g(α, β) · ω̇ + Ḣ = Qr, (6)

where Cr is the GW rotor moment of inertia, Q′
β ≡ Qβ+

Sα Qr, and Qν ≡ Mν−Mf
ν , ν=β, α, r are generalized forces

with the controlling Mν and dry friction Mf
ν torques. The

GW model of its motion on gimbal axes (5) have most
cross-ratio

β̇ = (Mα − Frkα −Mω
α)/(HCα);

α̇ = −(Mβ − Frkβ −Mω
β )/(HCα) (7)

with the notations for ν = α, β: ζν = Mν − Mω
ν ;

Mω
α = H(ωβ Sα + ωy Cα); Mω

β = ḢSα − Hωα Cα;
ωα ≡ ωxCβ − ωzSβ ; ωβ ≡ ωxSβ + ωzCβ and

Frkν ≡ Frk (Mfo
ν , ν̇, ζν) =

{
Mfo
ν · Sign ν̇ ν̇ 6= 0;

Sat (Mfo
ν , ζν) ν̇ = 0,

where Mfo
ν > 0 is value of a dry friction torque. At some

time moments tν of a GW steady-state when ν̇ = 0 for
ν = α∨β, a principle problem consists in determination of
value Mν for certain value Mω

ν from nonlinear set-valued
algebraic equation

Mν −Mω
ν = Sat (Mfo

ν ,Mν −Mω
ν ).

New method for extension of definition by the GW pre-
cession model (5) at such time moments was developed,
its correctness was verified by results at both land-based
and flight tests. At an input discrete signal xk the holder
model has the form: Zh[xk, Tu] = xk ∀t ∈ [tk, tk + Tu).
The discrete control signals udνk, ν = α, β lead to the gear
output control torques Mν taking into account the gear
backlash dν and flexibility kν :

Mν(t) = Satd(Mm
ν , b

ν
m, kν , δν(t)), (8)

where δν(t) = νg(t)−ν(t); νg(t) = Zh[udνk, Tu]; b
ν
m ≡ dν/2

and for bmν ≡ Mm
ν /kν − bνm the function

Satd(·, x) ≡


0 |x| ≤ bνm;
kν(x− bνmSignx) bνm < |x| ≤ bmν ;
Mm
ν Sign x |x| > bmν .

Model of the control torque Mr(t) have the form

Th
r Ṁr + Mr = Sat(Mm

r , kr Zh[udrk, Tu])− bhrH. (9)

The SAP driver model for a digital input γ̇pdk with some
simplifying assumptions has the form γ̇p(t) = Zh[γ̇pdk , Tu],
moreover the γ̈p(t) modelling is effected by an impulse
function.

3.4 Onboard Diagnostics and Reconfiguration

The Sesat ADCS diagnostics is carried out automatically
by the onboard computer. The diagnosis algorithms are
different for the ADCS modes. At TASM the logic recon-
figuration algorithms are fulfilled by onboard computer
basing on the diagnosis results, in addition a change of
the applied onboard composition is possible by the Flight
Control Center commands.

3.5 Properties of Spacecraft Flexible Structure

Contemporary computer-aided methods were applied for
modelling the Sesat large-scale flexible SAPs, by 10 lower
modes for each panel. Own dynamic properties of the
Sesat flexible structure were carefully investigated by both
spectral and frequency methods taking into account its
parametric uncertainty and a panel angle γp ∈ [0, 2π].
These properties were also studied for its out-loop control
by both the RT with the PWM and the GW at digital
type, see Fig. 4, where the absolute pseudo-frequency
λ = (2/Tu)tg(ωTu/2).

3.6 Synthesis of Observers and Control Laws

The synthesis of discrete observers and control laws at all
ADCS modes was carried out by association of the exact



Fig. 4. Frequency characteristics on pitch channel:
a) γp = 0; b) γp = π/4; c) γp = π/2

Fig. 5. The Sesat body orbital stabilization in TASM
nominal sub-mode by the GU and GW

feedback linearization method and vector Lyapunov func-
tion (VLF) method. Let Tu and Tq ≤ Tu are fixed multi-
plicity sampling periods of control and state measurement,
and xk = x(tk); tk = k Tu; ts = s Tq; xf

k = FTu(xs),
where xf

k is a value of the variable xs measured with
the sampling period Tq, which is filtered out at the time
t = tk, and FTu(·) is the digital filtering operator with the
sampling period Tu.

Control in Initial Orientation Modes:

• at the DM: vdik = kp · kωi (ωc
i − ωf

ik), i = x, y, z, where
kp is an adjusted coefficient and vector ωc = {ωc

i } is
given constant command;

• at SAM the following measured and digitally filtered
variables are applied: ωf

k; α
f
Sk and βf

Sk with a com-
puting the vector Sf

k (Fig. 3) and the single-axis error
vector εSk = b′y × Sf

k;
• at the EAM and the EOPM, in addition to the SAM,

the variables αf
ek and βf

ek are used with a computing
the vector Ef

k (see Fig. 3), moreover also a command
discrete signal on the Sun declination is applied.

Observers and Control Laws in the EOM are nonlinear
and use only the following digitally filtered variables:
αf
ek, β

f
ek and Hf

k, α
f
k, β

f
k.

Observers and Control Laws in the TASM are also
nonlinear. At first in addition to the EOM a computed
discrete value ψsd

k is applied in discrete observer basing
on the filtered variables αf

Sk and βf
Sk obtained by the

fine digital Sun sensor. Then in nominal TASM sub-mode
only the command values ψc

k, ϕ
c
k, θ

c
k for the Sesat orbital

attitude angels, the GU output filtered signals ψgf
k , ϕ

gf
k , θ

gf
k

and the GW filtered values βf
k, α

f
k are applied in discrete

observers and control laws.

3.7 Analysis and Computer Simulation

Applied linear methods for dynamic analysis are based on
original theoretical results for general multiple continuous-
discrete control systems with the different delays at a
partial discrete measurement of the state vector and a
physical forming control both on the PWM and digital
type. The VLF method was used for a rigorous nonlinear
stability analysis of the Sesat ADCS model (2) – (9) at
all modes. The Sesat ADCS operation has been carefully
simulated at all modes as well as all kind of their switching
for a wide range of logic conditions, see Fig. 5.

4. THE OBSERVATION SATELLITE

The dynamic requirements to the attitude control systems
(ACSs) for remote sensing spacecraft (SC) are:

• guidance the telescope’s line-of-sight to a predeter-
mined part of the Earth surface with the scan in
designated direction;

• stabilization of an image motion at the onboard
optical telescope focal plane.

Moreover, these requirements are expressed by rapid angu-
lar manoeuvering and spatial compensative motion with a
variable vector of angular rate. Increased requirements to
such information satellites (lifetime up to 10 years, exact-
ness of spatial rotation manoeuvers with effective damping
the SC flexible structure oscillations, robustness, fault-
tolerance as well as to reasonable mass, size and energy
characteristics) have motivated intensive development the
gyro moment clusters (GMCs) based on excessive number
of gyrodines (GDs) — single-gimbal control moment gyros.

4.1 Mathematical models

We introduce the inertial reference frame (IRF) I⊕
(O⊕XI

eY
I
eZ

I
e), the geodesic Greenwich reference frame

(GRF) Ee (O⊕XeYeZe) which is rotated with respect
to the IRF by angular rate vector ω⊕ ≡ ωe and the
geodesic horizon reference frame (HRF) Eh

e (C Xh
cYh

c Zh
c )

with origin in a point C and ellipsoidal geodesic coordi-
nates altitude Hc, longitude Lc and latitude Bc. There
are standard defined the body reference frame (BRF) B
(Oxyz) with origin in the SC mass center O, the orbit
reference frame (ORF) O (Oxoyozo), the optical telescope
(sensor) reference frame (SRF) S (Oxsyszs) and the image
field reference frame (FRF) F (Oix

iyizi) with origin in
center Oi of the telescope focal plane yiOiz

i. The BRF
attitude with respect to the IRF is defined by quaternion



Λb
I≡Λ = (λ0,λ),λ=(λ1, λ2, λ3). Let us vectors ω(t), r(t)

and v(t) are standard denotations of the SC body vector
angular rate, the SC mass center’s position and progressive
velocity with respect to the IRF. Further the symbols 〈·, ·〉,
×, { · }, [ · ] for vectors and [a×], (·)t for matrixes are
conventional denotations. The GMC’s angular momentum
(AM) vector H have the form H(β) = hg

∑
hp(βp), there

hg is constant own AM value for each GD p=1, . . .m ≡ 1÷
m with the GD’s AM unit hp(βp) and vector-column
β={βp}. Within precession theory of the control moment
gyros, for a fixed position of the SC flexible structures with
some simplifying assumptions and for t ∈ Tt0 =[t0,+∞) a
SC angular motion model is appeared as

Λ̇ = Λ◦ω/2; Ao {ω̇, q̈} = {Fω,Fq}, (10)
where ω={ωi, i = x, y, z ≡ 1÷ 3}, q={qj , j = 1÷ nq},

Fω = Mg − ω×G + Mo
d(t,Λ,ω) + Qo(ω, q̇,q);

Fq={−((δq/π)Ωqj q̇j + (Ωqj)
2qj)+Qq

j(ω, q̇j , qj)};

Ao=
[

J Dq

Dt
q I

]
; G=Go + Dqq̇;Mg =−Ḣ=−hgAh(β)β̇;
Go = J ω + H(β); Ah(β) = ∂h(β)/∂β,

vector-column Mo
d(·) presents an external torque distur-

bance, and Qo(·),Qq
j(·) are nonlinear continuous functions.

The GMC torque vector Mg is presented as follows:
Mg = Mg(β, β̇) = −Ḣ = −hgAh(β)ug; β̇ = ug. (11)

Here ug = {ug
p}, ug

p(t) = ag Zh[Sat(Qntr(ugpk, d
g), ūm

g ), Tu]
with constants ag, dg, ūm

g and a control period Tu= tk+1−
tk, k ∈ N0 ≡ [0, 1, 2, ...); discrete functions ugpk ≡ ugp(tk)
are outputs of digital nonlinear control law (CL), and
functions Sat(x, a) and Qntr(x, a) are general-usage ones,
while the holder model with the period Tu is such: y(t) =
Zh[xk, Tu] = xk ∀t ∈ [tk, tk+1).

At given the SC body angular programmed motion Λp(t),
ωp(t), εp(t) = ω̇p(t) with respect to the IRF I⊕ during
time interval t ∈ T ≡ [ti, tf ] ⊂ Tt0 , tf ≡ ti + T, and
for forming the vector of corresponding continuous control
torque Mg(β(t), β̇(t)) (11), the vector-columns β̇ = {β̇p}
and β̈ = {β̈p} must be component-wise module restricted:

|β̇p(t)| ≤ ūg < ūm
g , |β̈p(t)| ≤ v̄g, ∀t ∈ T, p = 1÷m, (12)

where values ūg and v̄g are constant.

Collinear pair of two stop-

Fig. 6. The scheme 3-SPE

less GDs was named as
Scissored Pair Ensemble
(SPE ) in well-known orig-
inal work J.W. Crenshaw
(1973). Redundant mul-
tiply scheme, based on
six gyrodines in the form
of three collinear GD’s
pairs, was named as 3-
SPE . Fig. 6 presents a
simplest arrangement of
this scheme into a cano-
nical orthogonal gyroscopic basis Oxg

cy
g
c z

g
c . By a slope of

the GD pairs suspension axes in this basis it is possible
to change essentially a form of the AM variation domain
S at any direction. Based on four gyrodines the minimal
redundant scheme 2-SPE is easily obtained from the 3-
SPE scheme – without third pair (GD #5 and GD #6).

In park state of above schemes one can have a vector of
summary normed GMC’s AM h(β) ≡

∑
hp(βp) = 0.

4.2 The problem statement

Principle problem gets up on the SC angular guidance
at a spatial course motion (SCM) when a space opto-
electronic observation is executed at given time interval
t ∈ Tn ≡ [tni , t

n
f ]. This problem consists in determination

of quaternion Λ(t) by the SC BRF B attitude with respect
to the IRF I⊕, angular rate vector ω(t), vectors of angular
acceleration ε(t) and its derivative ε̇(t)=ε∗(t)+ω(t)×ε(t)
in the form of explicit functions, proceed from principle
requirement: optical image of the Earth given part must to
move by desired way at focal plane yiOiz

i of the telescope.

Into IRF the SC’s spatial rotation maneuver (SRM) is
described by kinematic relations

Λ̇(t) =
1
2
Λ ◦ ω(t); ω̇(t) = ε(t); ε̇(t) = v (13)

during given time interval t ∈ Tp ≡ [tpi , t
p
f ], t

p
f ≡ tpi + Tp.

The optimization problem consists in determination of
time functions Λ(t), ω(t), ε(t) for the boundary conditions
on left (t = tpi ) and right (t = tpf ) trajectory ends

Λ(tpi ) = Λi; ω(tpi ) = ωi; ε(tpi )=εi; (14)

Λ(tpf ) = Λf ; ω(tpf ) = ωf ; ε(tpf ) = εf (15)
with optimization of the integral quadratic index

Io =
1
2

∫ tpf

tpi

〈v(τ),v(τ)〉 dτ ⇒ min . (16)

Onboard algorithms are needed for the SC guidance at a
SRM taking into account the restrictions (12) to vectors
β̇(t) and β̈(t). Here for given time interval Tp a problem
consists in determination the explicit time functions Λ(t),
ω(t), ε(t) and ε̇(t) for the boundary conditions (14), (15)
and also for given condition

ε̇(tpf ) = ε̇f ≡ ε∗f + ωf × εf , (17)
which presents requirements to a smooth conjugation of
guidance by a SRM with guidance at next the SC SCM.

Applied onboard measuring subsystem is based on iner-
tial gyro unit corrected by the fine fixed-head star track-
ers. Contemporary filtering & alignment calibration algo-
rithms give finally a fine discrete estimating the SC angu-
lar motion coordinates by the quaternion Λm

s = Λs◦Λn
s ,

s ∈ N0, where Λs ≡ Λ(ts), Λn
s is a ”noise-drift” digital

quaternion and a measurement period Tq= ts+1 − ts ≤ Tu
is multiply with respect to a control period Tu.

At a land-survey SC lifetime up to 5 years its structure
inertial and flexible characteristics are slowly changed in
wide boundaries, the solar array panels are rotated with
respect to the SC body and the communication antennas
are pointing for information service. Therefore inertial ma-
trix Ao (10) and partial frequencies Ωqj of the SC structure
are not complete certain. Problems consist in synthesis of
the SC guidance laws at its both the SCM and the SRM,
and also in dynamical designing the GMC’s robust digital
control law ugk = {ugpk} on the quaternion values Λm

s

when the SC structure characteristics are uncertain and
its damping is very weak, decrement of the SC structure
oscillations δqj ≈5 · 10−3 in (10).



4.3 Guidance at a course motion
Analytic matching solution have been obtained for prob-
lem of the SC angular guidance at the SCM at given
time interval t ∈ Tn. The solution is based on a vector
composition of all elemental motions in the GRF Ee using
next reference frames: the HRF Eh

e , the SRF S and the
FRF F . Vectors r(t) and v(t) are presented in the GRF
Ee as re =Te

I r and ve =Te
I (v − [ω⊕i3×]ro), Te

I =[ρe(t)] 3
and ρe(t)=ρi

e+ω⊕(t−ti). Vectors ωs
e and vs

e are defined as
ωs

e ={ωs
ei}=Ts

b(ω − Λ̃◦ω⊕i3◦Λ); vs
e =Λ̃

s

e◦ve
o◦Λ

s
e,

where Λ = Λb
I ;Λ

s
e = ΛI

e◦Λ
b
I◦Λ

s
b, Λ̇

s

e = Λs
e◦ωs

e/2, and
constant matrix Ts

b represents the telescope fixation on
the SC body. For any observed point C the oblique range
D is analytically calculated as D= |re

c − re|. If orthogonal
matrix Cs

h ≡ C̃ = ‖c̃ij‖ defines the SRF S attitude with
respect to the HRF Eh

e , then for any point M(ỹi, z̃i) at the
telescope focal plane yiOiz

i the components Ṽ iy and Ṽ iz of
normed vector by an image motion velocity is appeared as[
Ṽ iy
Ṽ iz

]
≡

[ ˙̃yi
˙̃zi

]
=

[
ỹi 1 0
z̃i 0 1

]qiṽs
e1 − ỹi ωs

e3 + z̃i ωs
e2

qiṽs
e2 − ωs

e3 − z̃i ωs
e1

qiṽs
e3 + ωs

e2 + ỹi ωs
e1

. (18)

Here normed focal coordinates ỹi = yi/fe and z̃i = zi/fe,
where fe is the telescope equivalent focal distance; function
qi≡1−(c̃21ỹi+c̃31z̃i)/c̃11, and vector of normed SC’s mass
center velocity have the components ṽs

ei = vs
ei/D, i = 1÷3.

For given image velocity W̃s
y=const and conditions

Ṽ iy (0, 0) = W̃i
y = −W̃s

y; Ṽ
i
z (0, 0) = 0; ∂Ṽ iy (0, 0)/∂z̃i = 0

calculation of vector ωs
e is carried out by the relations

ωs
e1 =−ṽs

e2c̃31/c̃11; ω
s
e2 =−ṽs

e3; ω
s
e3 =−W̃ i

y + ṽs
e2. (19)

By numerical solution of the quaternion differential equa-
tion Λ̇

s

e = Λs
e◦ωs

e/2 with regard to (19) one can obtain
values λs

es ≡ λs
e(ts) for the discrete time moments ts ∈ Tn

with period Tq, s= 0÷ nq, nq = Tn/Tq when initial value
Λs

e(t
n
i ) is given. Further solution is based on the elegant

extrapolation of values σs
es = λs

es/(1+λs
0 es) by the vector

of Rodrigues’ modified parameters and values ωs
es by the

angular rate vector. The extrapolation is carried out by
two sets of nq coordinated 3-degree vector splines with
analytical obtaining a high-precise approximation of the
SRF S guidance motion with respect to the GRF Ee both
on vector of angular acceleration and on vector of its local
derivative. At last stage, required functions Λ(t), ω(t), ε(t)
and ε̇(t) = ε∗(t) + ω(t) × ε(t) is calculated by explicit
formulas. These functions are applied at onboard computer
for the time moments ts ∈ Tn, and also for calculation
(18) of the image velocity at any point M(ỹi, z̃i) into the
telescope focal plane for any t ∈ Tn.

4.4 Optimization of a rotation maneuver

Optimal one-axis problem is very simple, the SC optimal
motion with respect to any k axis is presented by the ana-
lytic function ϕk(t) in a class of the five degree polynomials
(splines) by normed time τ = (t− tpi )/Tp ⊂ [0, 1].

Developed analytical approach to the problem is based
on necessary and sufficient condition for solvability of
Darboux problem. At general case the solution is presented
as result of composition by three (k=1÷3) simultaneously
derived elementary rotations of embedded bases Ek about

units ek of Euler axes, which positions are defined from
the boundary conditions (15) and (16) for initial spatial
problem. For all 3 elementary rotations with respect to
units ek the boundary conditions are analytically assigned.
Into the IRF I⊕ the quaternion Λ(t) is defined by the
production

Λ(t) = Λi◦Λ1(t)◦Λ2(t)◦Λ3(t), (20)
where Λk(t) = (cos(ϕk(t)/2), sin(ϕk(t)/2)ek), and func-
tions ϕk(t) analytically present the elementary rotation
angles. Let the quaternion Λ∗≡(λ∗0,λ

∗)=Λ̃i◦Λf 6= 1 have
the Euler axis unit e3 = λ∗/ sin(ϕ∗/2) by 3-rd elementary
rotation, where angle ϕ∗ = 2 arccos(λ∗0). For elementary
rotations there are applied the boundary quaternions:

Λ1(t
p
i ) = Λ1(t

p
f ) = Λ2(t

p
i ) = Λ2(t

p
f ) = Λ3(t

p
i ) = 1;

Λ3(t
p
f ) = (cos(ϕf

3/2), e3 sin(ϕf
3/2)),

(21)

where ϕf
3 = ϕ∗ and 1 is a single quaternion. Unit e1 of

1-st elementary rotation’s Euler axis is selected by simple
algorithm and then unit e2 is defined as e2 = e3 × e1. All
vectors ωk(t), εk(t) and ε̇k(t) have analytic form which
is optimal on index (16) for each elementary rotation.
Vectors ω(t), ε(t) and ε̇(t) ≡ v(t) are analytically defined
by recurrent algorithm using functions ϕk(t) and their
derivatives.

For nonlinear problem (13) – (16) Hamilton function

H = −1
2
〈v,v〉+

1
2
〈vect(Λ̃ ◦Ψ),ω〉+ 〈µ, ε〉+ 〈ν,v〉

have associated variables – vectors µ,ν and quaternion
Ψ = Cϕ ◦ Λ, where Cϕ = (cϕ0, cϕ) is the normed
quaternion with a vector part cϕ = {cϕk}. The associated
differential system

Ψ̇ =
1
2
Ψ ◦ ω; µ̇ = −1

2
Λ̃ ◦ cϕ ◦Λ; ν̇ = −µ (22)

and the optimality condition ∂H/∂v = −v + ν = 0 give
the optimal ” control ”

v(t)=ν(t)=cε−cω(t−tpi )+
1
2

∫ t

tpi

(
∫ τ

tpi

Λ̃(s)◦cϕ◦Λ(s)ds) dτ,

where vectors cϕ, cω = {cωk} and cε = {cεk} must be
numerically defined using known analytical structure of
solution for direct system (13) and taking into account
the boundary conditions (14) and (15). Standard Newton
iteration method was applied for numerical obtaining a
strict optimal ”control” v(t), moreover analytical solution
(initial point) was applied in the form of approximate opti-
mal motion (20) and (21). Difference between approximate
optimal motion and strict optimal motion is very light for
the SC practical rotational maneuvers.

4.5 Guidance at a rotation maneuver

Fast onboard algorithms for the SC guidance at a SRM
with restrictions to ω(t), ε(t), ε̇(t), corresponding restric-
tions to h(β(t)), β̇(t) and β̈(t) in a class of the SC angular
motions, were elaborated. Developed analytical approach
to the problem is based on approximate optimal motion
(20), (20) with boundary conditions (14), (15) and (17).
Here functions ϕk(t) are selected in a class of splines by
five and six degree, moreover a module of a angular rate
ϕ̇3(t) in a position transfer (k = 3) may be limited when
functions ϕ̇1(t) = ϕ̇2(t) ≡ 0. The technique is based on



the generalized integral’s properties for the AM of the
mechanical system ”SC+GMC” and allows to evaluate
vectors β(t), β̇(t), β̈(t) in analytical form for a preassigned
SC motion Λ(t), ω(t), ε(t), ε̇(t)∀t ∈ Tp.

Into orthogonal canonical basis Oxyz, see Fig. 6, the GD’s
AM units have next projections:
x1 = C1; x2 = C2; y1 = S1; y2 = S2; x3 = S3; x4 = S4;
z3 = C3; z4 = C4; y5 = C5; y6 = C6; z5 = S5; z6 = S6,

where Sp ≡ sinβp and Cp ≡ cosβp. Then vector-column
h(β) = {x, y, z} of normed GMC’s summary AM vector
and matrix Ah(β) = ∂h/∂β have the form

h(β)=

[ Σxp
Σyp
Σzp

]
;Ah(β)=

[−y1 −y2 z3 z4 0 0
x1 x2 0 0 −z5 −z6
0 0 −x3 −x4 y5 y6

]
.

For 3-SPE scheme singular state is appeared when the ma-
trix Gramme G(β) = Ah(β)At

h(β) loses its full rang, e.g.
when G ≡ detG(β) = 0. At introducing the denotations

x12 = x1 + x2; x34 = x3 + x4; y12 = y1 + y2;
y56 = y5 + y6; z34 = z3 + z4; z56 = z5 + z6;
x̃12 = x12/

√
4− y2

12 ; x̃34 = x34/
√

4− z2
34;

ỹ12 = y12/
√

4− x2
12 ; ỹ56 = y56/

√
4− z2

56;

z̃34 = z34/
√

4− x2
34 ; z̃56 = z56/

√
4− y2

56

components of the GMC explicit vector tuning law
fρ(β) ≡ {fρ1(β), fρ2(β), fρ3(β)} = 0 (23)

are applied in the form
fρ1(β) ≡ x̃12 − x̃34 + ρ (x̃12 x̃34 − 1);
fρ2(β) ≡ ỹ56 − ỹ12 + ρ (ỹ56 ỹ12 − 1);
fρ3(β) ≡ z̃34 − z̃56 + ρ (z̃34 z̃56 − 1).

The analytical proof have been elaborated that vector tun-
ing law (23) ensures absent of singular states by this GMC
scheme for all values of the GMC AM vector h(t) ∈ S\S∗,
i.e. inside all its variation domain. For the representation

x12 = (x + ∆x)/2; x34 = (x−∆x)/2;
y56 = (y + ∆y)/2; y12 = (y −∆y)/2;
z34 = (z + ∆z)/2; z56 = (z−∆z)/2

and the denotation ∆ = {∆x,∆y,∆z} one can obtain
the nonlinear vector equation ∆(t) = Φ(h(t),∆(t)). At
a known vector h(t) this equation have single solution
∆(t), which is readily computed by method of a simple
iteration. Further the units hp(βp(t)) and vector-columns
β(t), β̇(t), β̈(t) are calculated by the explicit analytical
relations ∀t ∈ Tp. For the 2-SPE scheme such evaluation
is carried out by the explicit analytical formulas only.

4.6 Filtering and digital control

In stage 1, for continuous forming the control torque
Mg(β(t), β̇(t)) (11) and the SC model as a free rigid body
the simplified controlled object is such:

Λ̇ = Λ ◦ω/2; Jω̇ + [ω×]Go = Mg; β̇ = ug(t). (24)
The error quaternion is E = (e0, e) = Λ̃p(t)◦Λ, Euler
parameters’ vector is E = {e0, e}, and the attitude error’s
matrix is Ce≡C(E) = I3− 2[e×]Qe, where Qe ≡ Q(E) =
I3e0 + [e×] with det(Qe)=e0. If error δω ≡ ω̃ in the rate
vector ω is defined as ω̃ = ω−Ceω

p(t), and the GMC’s
required control torque vector Mg is formed as

Mg = ω×Go + J(Ceω̇
p(t)− [ω×]Ceω

p(t) + m̃),

Fig. 7. Rate errors for consequence of the SRM and SCM

Fig. 8. The rate errors at the spatial course motion

then the simplest nonlinear model of the SC’s attitude
error is as follows:

ė0 = −〈e, ω̃〉/2; ė = Qeω̃/2; ˙̃ω = m̃. (25)
For model (25) a non-local nonlinear coordinate transfor-
mation is defined and applied at analytical synthesis by
the EFL technique. This results in the nonlinear CL

m̃(E, ω̃) = −A0 e sgn(e0)−A1 ω̃, (26)
where A0 = ((2a∗0 − ω̃2/2)/e0)I3; A1 = a∗1I3 − Reω,
sgn(e0) = (1, if e0 ≥ 0)∨ (−1, if e0 < 0), matrix Reω =
〈e, ω̃〉Qt

e[e×]/(2e0), and parameters a∗0,a
∗
1 are analytically

calculated on spectrum S∗ci = −αc ± jωc. Simultaneously
the VFL υ(E, ω̃) is analytically constructed for close-loop
system (25) and (26).

Discrete measured error quaternion and Euler parameters’
vector are Es = (e0s, es) = Λ̃p(ts)◦Λm

s and Es = {e0s, es},
and the attitude error filtering is executed by the relations

x̃s+1 = Ãx̃s + B̃es; ef
s = C̃x̃s + D̃es, (27)

where matrices Ã, B̃, C̃ and D̃ have conforming dimen-
sions and some general turning parameters. Attitude fil-
tered error vector ef

k is applied for forming the digital con-
trol m̃k = uk taking into account a time delay at incom-
plete measurement of state and onboard signal processing:

vk = −(Kx
d x̂k + Ku

d uk); uk+1 = vk, k ∈ N0; (28)
x̂k+1 = Aod x̂k + Bu

od uk + Bv
od vk

+Gd(ef
k − (Cod x̂k + Du

od uk + Dv
od vk)),

where x̂k = {êk, ˆ̃ωk}, matrices have conforming dimen-
sions and also general turning parameters.

In stage 2, the problems of synthesising digital nonlinear
CL were solved for model of the flexible spacecraft (10)
with incomplete discrete measurement of state. Further-
more, the selection of parameters in the structure of the



Fig. 9. Mode of astronomical checking axes’ concordance

GMC nonlinear robust CL (which optimizes the main
quality criterion for given restrictions, including coupling
and damping the SC structure oscillations is fulfilled by
a parametric optimization of the comparison system for
the VLF and multistage numerical simulation. Thereto,
the VLF has the structure derived above for the error
coordinates E, ω̃ and the structure of other VLF compo-
nents in the form of sublinear norms for vector variables
q(t), q̇(t), β̇(t) using the vector β(t).

4.7 Computer simulation

Fig. 7 and Fig. 8 present some results on computer
simulation of a gyromoment ACS for Russian remote
sensing SC by the Resource-DK type. Here the rate errors
are represented at consequence of the SC spatial rotational
maneuver for time t ∈ [0, 45) sec and the SC spatial
course motion for time t ∈ [45, 90] sec. Applied digital
robust nonlinear control law is flexible switched at the
time moment t = 45 sec on astatic ones with respect to
the acceleration.

5. NEW CHALLENGES

5.1 Alignment calibration of the star trackers

The characteristics of pointing an orbital telescope’s line-
of-sight onto observed objects and quality of observation
information being obtained are strongly dependent on
the accuracy of defining the relative position of reference
frames (RFs) connected with an orbital telescope (OT)
and with the main measuring devices, namely, the star
trackers (STs) used in the SC attitude control system.
A special mode is organized for mutual binding these
reference frames, when a telescope scans the star sky and
simultaneously the optoelectronic STs’ measurements are
registered, see Fig. 9. The elaborated innovation methods
for a more accurate definition of actual position of the OT
and the star tracker cluster (STC) by a posterior process-
ing of the measurement information directly aboard space-
craft, are presented.

The following problems are solved at the known coordi-
nates of the SC mass center orbital motion:

Fig. 10. The bases S and A

• definition of the angular position of the base S dur-
ing a mode of astronomical checking axes’ concordance
(ACAC), when the measuring information only from a
telescope is applied;

• definition of a fixed mutual angular position of the
bases A and S (the alignment identification), when the
measuring information obtained in the ACAC mode both
from a telescope and star trackers is applied.

5.2 Smoothing the Discrete Measurements

Solution of practical tasks demonstrates that it is rational
to apply method (filter) of the Savitsky – Goley polyno-
mial smoothing that is a modification of the MLS. The
problem on definition of the mutual attitude of two orthog-
onal bases on the basis of the data about two sets of units
that are arbitrarily placed in the bases, is more complex.
Let a set of the units bi be given that are measured in
the SC body base B, and a set of values of the units ri
corresponding to them specified in the inertial base I. The
classical problem of vector matching (the Wahba problem)
is formulated as follows: let us define an orthogonal matrix
A with a determinant equal to +1, which minimizes the
quadratic index

L(A) = 1
2Σai|bi −Ari|2,

where the non-negative numbers ai are the weighing co-
efficients. It has been strictly proved that the solution
of this problem is the optimal quaternion Λ = (λ0,λ),
λ = {λi, i = 1 ÷ 3} that is equivalent to the required
orthogonal matrix A and is defined as an eigenvector of
the matrix K with the maximum eigenvalue qmax, e. g. by
relations

z = Σ aibi × ri; B = Σ aibirt
i; S = B + Bt;

K =
[

trB zt

z S− I3trB

]
; KΛ = qmax Λ.

(29)

Relations (29) represent the QUEST algorithm for a
quaternion’s estimation, that is further applied for process-
ing the measuring information obtained in the ACAC
mode. The quaternion Λ = (λ0,λ) is an one-one related



to the Rodrigues modified parameters’ vector σ by the
explicit analytic relations

σ =
λ

1 + λ0
; λ0 =

1− σ2

1 + σ2
; λ =

2σ

1 + σ2
. (30)

These relations permit transforming a problem on smooth-
ing the quaternion data to standard task on smoothing the
vector measurements.

5.3 A Vector Extrapolation

To the well-known direct and backward quaternion kine-
matic equations there correspond the direct and backward
kinematic equations for the Rodrigues vector

σ̇ =
1
4
{I3(1− σ2) + 2[σ×] + 2σσt}ω;

ω = 4{I3(1− σ2)− 2[σ×] + 2σσt}σ̇/(1 + σ2)2 .
(31)

A problem on extrapolation of the SC angular rate vector
at the time interval Tn by the values of a vector ωs ≡ ω(ts)
given at discrete time moments ts ∈ Tn with a period
Tq = ts+1 − ts, where s = 0, 1, 2...nq ≡ 0 ÷ nq and
nq = Tn/Tq, consists in calculation of a time vector
function p(t), which defines approximately the angular
rate vector ω(t) ∀ t ∈ Tn at the condition ps = ωs.

In the general case, the extrapolation of values ωk at the
time moments tk ∈ Tn with a step Ta = tk+1− tk and the
multiplicity of periods kaq ≡ Ta/Tq ≥ 1 can be applied.

Extrapolation of the quaternion values Λk given discretely
by the quaternion M(t) ∀t ∈ Tn is carried out as follows.
At first, on the basis of biunique connection of the quater-
nion Λ with the Rodrigues vector σ, using explicit analytic
relations (30), the sequence of values for the vector σk
is calculated. Then the extrapolation procedure presented
above is applied to this sequence. At last, the inverse
transformation to the quaternion M(t) is carried out using
explicit relations (30).

The numerical calculations were carried out with applying
filtration of the telescope attitude quaternion estimations
(precisely, estimations of the Rodrigues vector) by the
Savitsky – Goley method. The obtained results indicated
that such a measuring basis is quite sufficient for restoring
the base S actual position with respect to the base I at
the QMD on determination of a turn angle δφx about the
OT optical axis no more than 1′′.

5.4 Calibration of a SINS

The problems of a strapped-down inertial navigation sys-
tem (SINS) algorithmic software are connected with in-
tegration of kinematic equations in using the information
on the quasi-coordinate increment vector iωobtained by
the inertial block (IB) over the main discrete period Tu,
filtering noises, identification and compensation of errors
on a mutual angular position of the IB and the astro-
nomical system (AS) reference frames, variation of the
measure scale coefficients, and the IB bias with respect
to the angular rate.

As kinematic parameters use is made of the quaternion
Λ = (λ0, λ), the vector of Euler’s parameters L = {l0, l},
the orientation matrix C, the Euler vector φ = e θ, the

Fig. 11. The base G

vector of terminal rotation θ = 2e tg(θ / 2). For little
variation of the angle θ and fixed direction of the Euler
axis unit e, the integration of the kinematic relations for
the Euler vector φ(t) with obtaining the values Λk ≡ Λ(tk)
was carried out by the following scheme:

φk+1 =θk+1ek+1 ≡ iωk+1 =

tk+1∫
tk

ω(τ)dτ ≡ Int(tk, Tu,ω(t));

tk+1 = tk + Tu,φk ≡ φ(tk) ⇒ Ck ⇒ Λk, k ∈ N0.

Here the problems on the identification of the IB and
the AS reference frames’ ”alignments” (errors on their
mutual angular position) and variation of the measure
scale coefficients by the vector ω(t) into the IB reference
frame at forming the vectors iωk+1 are the most complicated
ones. This is due to a multiplicative character of the
interconnected parametric disturbances indicated.

We introduce the IB virtual base G = {g1,g2,g3}, which
is computed by processing the measuring information
from the integrating gyro sensors (for example, fiber-optic
gyros), see Fig. 11. Let in a real time scale the measured
values of vector ig ωm l+1, l ∈ N0 be obtained from the
IB with the period Tl << Tu, and from the AS — the
measured values of quaternion Λa

n, n ∈ N0 with the period
To >> Tu, moreover, the discrete periods To, Tu and Tl
are multiple ones. Here the IB and the AS mathematical
models have the form

ig ωm l+1 = Int(tl, Tq,ωg
m(t)) + δnl+1;

ωg
m(t) = (1−m)(I3 − [∆×])(ω(t)− bg);

Λa
m n = Λn ◦Λn

n;

(32)

where vector ωg
m(t) presents the factual measured vector

of angular rate into the base G with regard to unknown
small and slow variations of the IB bias vector bg, the
vector ∆ = {∆x,∆y,∆z} of the ”distort” angles and the
IB scale coefficient m. In relations (32) the discrete noises
δnl+1 and Λn

n are taken into account for the IB and the AS
output signals, accordingly.

The problem consists in developing the algorithms for
estimation of values Λk, k ∈ N0 and simultaneous cali-
bration of the SINS with filtering the noise vector δnl+1,
identification and compensation of the vectors ∆, bg and
the scale coefficient m variation.


