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1. INTRODUCTION

System identification based on input-output data
measurements is a necessary step in most ap-
plications such as control design, plant diagno-
sis and monitoring. A number of methods have
been developed for the identification of linear
systems as well in input-output form as in state
space representation. Some of the proposed tech-
niques have even been extended to slowly time
varying systems (Lovera et al., 2000), (Mercère
et al., 2003), (Oku and Kimura, 2002). But nonlin-
ear non-stationary systems identification in state
space form still remains a very challenging re-
search area. To that purpose the identification of
a Hammerstein system is considered in this paper.
This model consists of a nonlinear memoryless
function f(·) followed by a linear dynamic system.
The difficulty in separating the nonlinear part

from the linear one is related to the fact that
their respective terms are present only in cross-
product forms in the system equations. A typical
way to proceed is to treat each of these cross-
product terms as an unknown. That results in an
increased number of unknowns and the procedure
is referred to as the over-parameterization method
(Bai, 1998), (Goethals et al., 2005b). Generally,
the static nonlinearity f(·) is expanded on a ba-
sis of known elementary functions (Radial Basis
Functions, polynomials, B-splines, . . . ) and then,
the coordinates associated to it are estimated.
(Dempsey and Westwick, 2004), (Ramos and Du-
rand, 1999), (Vörös, 2003). Many proposed meth-
ods are based on input-output models and very
few are based on state space models which may be
sometimes more convenient for describing systems
and especially multivariable systems. The features



shared by most of these methods are that they
often identify an input-output behavior of the sys-
tem and use either iterative optimization or over-
parameterization or basis expansion technique to
deal with the non-linearity. The present paper is
inspired by (Goethals et al., 2005a) which firstly
demonstrated the efficiency of componentwise LS-
SVM in Hammerstein systems identification. Note
that the proposed approach is very similar in the
results to the well-known technique of expanding
the nonlinearity on gaussian functions basis. Re-
liable results have been obtained for Linear Time
Invariant systems. However, in actual problems
there exist only a few number of such systems;
almost any real life system is subject to some
parameters variation during its operating time. In
order to make up for this evolution, we extend in
this paper the work presented in (Goethals et al.,
2005a) to time-varying systems by using LS-SVM
to estimate the nonlinear part of the system and
ordinary least squares for recovering the linear
part in state space form.

2. PROBLEM STATEMENT

Consider a discrete-time SIMO Hammerstein state
space system represented as follows

{
xt+1 = Axt + Bf(ut) + wt

yt = Cxt + Df(ut) + vt

(1)

where yt ∈ R
ny and xt ∈ R

nx are the output and
state vectors respectively. The input ut ∈ R is a
white gaussian sequence and wt ∈ R

nx , vt ∈ R
ny

are some zero-mean noises. Moreover, the system
under consideration is assumed to be stable and
of known order nx. f(·) is a scalar-valued smooth
nonlinear function. Given N consecutive input-
output data measurements {ut, yt}Nt=1, the fol-
lowing work aims at determining the parameters
(A,B,C,D) and f of the system in (1) up to a
similarity transformation.

3. IDENTIFICATION

Let us write yt as a d-step ahead predictive model
using equation (1). The equation obtained is very
similar to a Finite Impulse Response (FIR) model

yt = CAdxt−d+

d∑

i=0

Hif(ut−i)+

d∑

i=1

CAi−1wt−i + vt

︸ ︷︷ ︸

et

(2)
∀t > d, where d is a positive integer, et is the
equation error and Hi, defined as

Hi =

{
D if i = 0

CAi−1B if i ≥ 1
(3)

are the so-called Markov parameters and repre-
sent the impulse responses of the system. These
parameters do not depend on the basis of the state

space representation in (1). Equation (2) amounts
to

yt(s) = CsA
dxt−d +

d∑

i=0

Hi(s)f(ut−i)+ et(s) (4)

s = 1, · · · , ny, where yt(s) is the sth output, Cs

the s-th row of the observation matrix C.

In (Goethals et al., 2005a), a method for off-line
identification of Hammerstein models using LS-
SVM regression techniques was proposed. This
method produces reliable results but is compu-
tationally heavy since it requires costly singular
value decomposition (SVD) steps (for computing
the states sequences and for extracting the nonlin-
earity). Here, we would like to investigate a way
of avoiding the SVD computation in this method
for online application purposes. Although it is
feasible to estimate a fully parameterized MIMO
system by applying twice the LS-SVM regression
procedure as in (Goethals et al., 2005a), only the
case of SIMO system is considered in this paper
for the sake of simplicity. Anyway, the system may
be multi-input; the only requirement concerns the
nonlinearity f(·) which has to be a scalar-valued
function.

We will first estimate the terms Hif(·) and then
the extended observability matrix. In equation
(4), we choose the integer d at least larger than
the order of the system and sufficiently large
so that the term CAdxt−d may be considered
negligible with respect to the noise term. This
approximation is all the more acceptable as the
system has rapid dynamics or d is relatively large.
Then, equation (4) becomes

yt(s) ≈
d∑

i=0

Hi(s)f(ut−i) + et(s) (5)

for s = 1, . . . , ny. In the case that the system does
not present rapid dynamics it may be safer to use
the observer-augmenting procedure described in
(Juang et al., 1993) instead. This latter algorithm
introduces an observer gain to set the poles of the
resulting system as close to zero as possible so that
the accuracy of the previous equation is noticeably
improved even for small values of d.

Recall that neither the parameters Hi nor the
nonlinear function f(·) are known. The LS-
SVM regression procedure developed by Suykens
(Suykens et al., 2002) consists in modeling the
nonlinearity as f(·) = ω⊤ϕ(·) + δ where ϕ :
R

nu → R
nh is a nonlinear mapping from the

input space toward a possibly high dimensional
feature space R

nh , δ is a bias compensator and
ω ∈ R

nh . However, direct application of this idea
results here in a hard non-convex optimization
problem (Goethals et al., 2005b). Fortunately,
this difficulty can be circumvented by combin-



ing over-parameterization and componentwise LS-
SVM (Pelckmans et al., 2004). Letting

gi,s(·) = Hi(s)f(·) = ω⊤
i,sϕ(·) + δi,s (6)

we get from (5)

yt(s) =

d∑

i=0

gi,s(ut−i) + et(s) = (7)

=

d∑

i=0

ωT
i,sϕ(ut−i) + δs + et(s)

with δs =
∑d

i=0 δi,s, s = 1, · · · , ny, t = d +
1, · · · , N . Since only input-output data (ut, yt)
are available, we would like to compute the
nonlinear components gi,s from the sample val-
ues of their sum along i. That corresponds to
the so-called component-wise LS-SVM problem.
One can then notice that the solution of equa-
tion (7) is not unique. In fact, for any solution

{gi,s(·)}di=0 of (7), {gi,s(·) + εi,s(·)}di=0 is also so-

lution for all arbitrary functions {εi,s(·)}di=0, sat-

isfying
∑d

i=0 εi,s(ut−i) = 0,∀ t = d + 1, · · · , N .
Hence, each function gi,s can only be estimated
up to an additive undetermined function term. A
typical way to overcome that difficulty is to intro-
duce some additional constraint on the ω⊤

i,sϕ(·)
to be obtained by solving (7) so that the redun-
dancy is removed. In (Goethals et al., 2005a), this
constraint is chosen as a centering relation over
the time window of the measurement points. An
alternative way, which is quite more practical for
recursive estimation, is used in the following to
deal with this problem.

The LS-SVM constrained optimization problem is
based on the cost function

J (wi,s, et(s)) =

1

2

ny∑

s=1

d∑

i=0

ω⊤
i,sωi,s +

γ

2

ny∑

s=1

N∑

t=d+1

et(s)
2

(8)

subject to (7), where γ is a regularization param-
eter and serves as a weight in the cost function
to be minimized. In order to apply the Lagrange
multipliers method, we formulate the associated
Lagrangian as

L(ωi,s, δs, αt,s, et,s) =

J (ωi,s, et,s)−
ny∑

s=1

N∑

t=d+1

αt,s

{
d∑

i=0

ω⊤
i,sϕ(ut−i)

+ δs + et(s)− yt(s)

}

where the αt,s stand for the Lagrange multipliers.
The associated Karush-Kuhn-Tucker optimality
conditions are given by

∂L
∂ωi,s

= 0→ ωi,s =
N∑

t=d+1

αt,sϕ(ut−i) (9)

∀i = 0, . . . , d ∀s = 1, . . . , ny

∂L
∂δs

= 0→
N∑

t=d+1

αt,s = 0 ∀s = 1, . . . , ny (10)

∂L
∂αt,s

= 0, ∀t = d + 1, . . . , N ∀s = 1, . . . , ny

→ yt(s) =

d∑

i=0

ωi,s
⊤ϕ(ut−i) + δs + et(s) (11)

∂L
∂et(s)

= 0→ et(s) = γ−1αt,s, (12)

∀t = d + 1, . . . , N ∀s = 1, . . . , ny

Taking into account (9) and (12) in (11) gives

yt(s) =

d∑

i=0





N∑

q=d+1

αq,sϕ(uq−i)
⊤ϕ(ut−i)



 (13)

+ δs + γ−1αt,s

The kernel function is defined from R
nu×R

nu to R

as K(uq, ut) = ϕ(uq)
⊤ϕ(ut) and selected here to

be a gaussian Radial Basis Function K(uq, ut) =

exp(−‖uq − ut‖22 /σ2), with σ a constant. Equa-
tions (10), (13) can be summarized in the follow-
ing linear equation with as unknowns the dual
parameters of the optimization problem
[

0 1⊤M
1M Ω + γ−1IM

] [
δs

ᾱs

]

=

[
0
Ȳs

]

∀s = 1, . . . , ny

(14)
where M = N − d, IM is the identity matrix of
order M and Ω = (Ωij) ∈ R

M×M , 1M , ᾱs and
Ȳs ∈ R

M are defined as

Ωij =

d∑

m=0

K(ui+d−m, uj+d−m) ,

1M =
[
1 . . . 1

]⊤
,

ᾱs =
[
αd+1,s . . . αN,s

]⊤
,

Ȳs =
[
yd+1(s) . . . yN (s)

]⊤
.

The solution of equation (14) is obtained as

δs = 1⊤MT −1Ȳs/(1⊤MT −11M ) (15)

ᾱs = T −1
(
Ȳs − 1Mδs

)
, s = 1, . . . , ny

where T = Ω+γ−1IM . Note that matrix T is the
same for all the outputs elements s. It depends
only on the input u through the kernel function
K. Obviously, the properties of that matrix (e.g.,
its conditioning) are directly related to those of
the input.

Once the dual parameters αt,s and δs are known,
the searched nonlinear components from (6) can
be expressed as:

ω̂⊤
i,sϕ(·) =

N∑

t=d+1

αt,sK(ut−i, ·) = ᾱ⊤
s k̄i(·), (16)



s = 1, . . . , ny with

k̄i(·) =
[
K(ud+1−i, ·) . . . K(uN−i, ·)

]⊤
.

It should be noticed that, depending on the se-
lected kernel, the LS-SVM solution to the non-
linear regression problem is very similar to that
obtained using the standard techniques of expand-
ing the nonlinearity on polynomials or RBF bases.
The solution (16) is known to be nonsparse, that
is, some of the terms αt,sK(ut−i, ·) have a too
small contribution in the general error reduction
and can therefore be removed without a great
impact. Some pruning techniques have been pro-
posed to render it sparse (see, e.g., (de Kruif and
de Vries, 2003)) but our presentation does not
address this problem.

It is known that the over-parameterization tech-
nique may result in an estimate for gi,s which does
not satisfy any longer the relation (6). That means
that the estimates for the components gi,s may
not be collinear as they are expected to be. More
precisely, the estimate may be corrupted by an
unknown additive component εi,s(·) which obeys

to
∑d

i=0 εi,s(·) = 0 1 . Hence, we have

ĝi,s = ω̂⊤
i,sϕ(·) + δ̂i,s = Hi(s)f(·) + εi,s(·).

Summing the above equation along the subscript
i results in

d∑

i=0

ω̂⊤
i,sϕ(·) + δ̂s = µsf(·)

where µs =
∑

i Hi(s) is supposed to be nonzero.
Note that for any nonzero scalar λ, Hi(s)f(·) =
(Hi(s)λ)

(
1
λ
f(·)

)
. In other words f(·) can only

be estimated up to a scalar factor just as the
matrices (A,B,C,D) can be determined only up
to a similar transformation. In the light of this
remark, the static nonlinearity f can arbitrarily
set to be f̂(·)← µsf(·)

f̂(·) =

d∑

i=0

ω̂⊤
i,sϕ(·) + δ̂s, s = 1, . . . , ny (17)

Since the nonlinearity f(·) does not depend on a
particular output, it is not worth repeating this
estimation for every output as that may increase
the computational cost. The nonlinear function
f(·) can be extracted from the measurements of
the input and the ones of a single arbitrary output
s or a combination of all the outputs.

From now on, given that the nonlinearity is
known, the system matrices can be computed us-
ing any subspace identification method. The new
linear system to be considered is that of input
f(u) and of output the whole output vector y (in-
stead of one component as above). We propose to

1 Indeed, ε̄(ζt) = ε0(ζ1
t
) + · · · + εd(ζd+1

t
) = 0, {ζt} being

an i.i.d. vector sequence. We assume then that ε0(u)+· · ·+
εd(u) = 0 for any scalar u

estimate first the Markov parameters Hi from the
FIR model (4) using least squares regression and
then compute the system matrices. The regression
equation is:

yt =
[
H0 · · · Hd

]






f(ut)
...

f(ut−d)




 + et, (18)

t = d + 1, · · · , N

When this step is completed, all the terms Hi i.e.,
D, CB, CAB, . . . , CAd−1B and f are known.
From these parameters the system matrices can
be directly computed using an SVD but we are
interested here in developing a recursive scheme
which avoids this SVD process (which is known
to be computationally very demanding).

4. RECURSIVE ALGORITHM

In the following, a recursive version of the identi-
fication algorithm presented in the previous sec-
tion will be derived. While most recursive iden-
tification algorithms are developed by using a
forgetting factor, in the present case we opt for
a sliding window approach. For, assume that at
a given instant N observations {ut, yt}k+N−1

t=k are
available. When a new pair of data is acquired,
the window is slid to be {ut, yt}k+N

t=k+1, that is, the
oldest data is removed whenever a new sample be-
comes available. Then, matrix T changes in such
a way that its dimensions remain fixed. A similar
approach has been used in (Liu et al., 2003) to
implement an online LS-SVM based classifier.

We assume that the nonlinearity f(·) may undergo
some changes as well in its parameters as in its
form during time. It is then necessary to update
its estimate. At times k and k + 1 the matrix T
in (15) is formally given by

T (k) =

[
ηk ϕ⊤

k

ϕ
k

∆k

]

, T (k + 1) =

[
∆k θk+1

θ⊤k+1 υk+1

]

where the underlined elements indicate column
vectors. Making use of the matrix block inversion
identity we get:

T (k)−1 = g−1

k

[
1 −ϕ⊤

k
∆−1

k

−∆−1

k
ϕ

k

(
gkI + ∆−1

k
ϕ

k
ϕ⊤

k

)
∆−1

k

]

(19)

with gk = ηk −ϕ⊤

k
∆−1

k ϕ
k
∈ R. Assume now that

T (k)−1 is known. Then, if we partition it as

T (k)−1 =

[
ak q⊤

k

q
k

Qk

]

∆−1
k can be deduced with respect to (19) as

follows

∆−1
k = Qk −

1

ak

q
k

q⊤
k

.

After that T (k + 1)−1 may be computed as:



T (k + 1)−1 =

h−1

k+1

[
(hk+1I + ∆−1

k
θ

k+1
θ⊤

k+1
)∆−1

k
−∆−1

k
θ

k+1

−θ⊤
k+1

∆−1

k
1

]

(20)

with hk+1 = υk+1 − θ⊤k+1∆
−1
k θk+1 ∈ R

The dual parameters ᾱs and δs follow immediately
from T (k +1)−1 and then, the nonlinear function
f(·). Using the obtained estimate of the nonlinear-
ity, the parameters Hi are computed in a recursive
least squares fashion from equation (18).

In order to recursively update the estimates of the
system matrices, results from the field of recursive
subspace identification (see, e.g., (Lovera et al.,
2000; Mercère et al., 2003) and the references
therein) will be exploited. In particular, the so-
called Propagator algorithm for system identifica-
tion will be adopted (Mercère et al., 2003), which
is briefly summarized in the following. Consider
the data vectors

yn̄(t) =
[
y(t)⊤ · · · y(t + n̄− 1)⊤

]⊤

un̄(t) =
[
u(t)⊤ · · · u(t + n̄− 1)⊤

]⊤
,

where n̄ is chosen such that nx < n̄ ≤ d. From
(1), it is possible to derive this following relation

zn̄(t) = Γn̄x(t) + nn̄(t) (21)

where zn̄ = yn̄(t)−Hn̄f(un̄(t)), Γn̄ is the extended
observability matrix, Hn̄ is the block Toeplitz
matrix of the impulse responses from u to y and
nn̄ a sum of all the noise terms.

Hn̄ =








D 0 · · · 0
CB D · · · 0
...

. . .
. . .

...
CAn̄−2B · · · CB D








Γn̄ =
[
(C)⊤ (CA)⊤ · · · (CAn̄−1)⊤

]⊤

The so-called observation vector is explicitly com-
puted as zn̄(t) = yn̄(t) − Ĥn̄f̂(un̄(t)) thanks to
the estimates of Hn̄ and f(·) obtained from the
previous subsection. Under the assumption that
the system in (1) is observable, Γn̄ has at least nx

linearly independent rows which can be gathered
in a submatrix Γ1. Then, based on rows permuta-
tion, Γn̄ can be partitioned as

Γn̄ =

[
Γ1

Pn̄Γ1

]

=

[
Inx

Pn̄

]

Γ1 (22)

where the matrix Pn̄ is the so-called propagator
(Mercère et al., 2003). Thus, since Γ1 is nonsin-
gular, a basis of the observability matrix can be
estimated by estimating the propagator. To that
purpose the following criterion is considered

J (Pn̄) = ‖Rz2η − Pn̄Rz1η‖2F (23)

where η is an instrumental variable supposed
to be asymptotically uncorrelated with the noise
but sufficiently correlated with the state vector,

Rz2η = E(z2η
⊤), Rz1η = E(z1η

⊤) are cross-

correlation matrices.
[
z⊤1 z⊤2

]⊤
is a partition of

zn̄ consistent with the one for Γn̄. The propagator
is then obtained as Pn̄(t) = Rz2η(t)R−1

z1η(t) (see
(Mercère et al., 2003) for details on the recursive
estimation of Pn̄(t)) and the system matrices are
finally recovered from

C = Γn̄(1 : l)

A = Γn̄(1 : l(n̄− 1), :)† Γn̄(l + 1 : ln̄, :)

D = H0, B = Γn̄(1 : l(n̄− 1), :)†






H1

...
Hn̄−1






where † denotes the Moore-Penrose pseudo-inverse.

Finally, the complete algorithm can be sum-
marised as follows. Whenever a new pair (ut, yt)
of data is measured:

(1) Compute the nonlinear function by comput-
ing the parameters ᾱ and δ. That is realized
in a recursive way by using (20) and (15)

(2) Update the Markov parameters from (18)
using recursive least squares

(3) Update the extended observability matrix Γn̄

by adapting recursively the propagator
(4) Compute the system matrices A,B,C,D

5. SIMULATION RESULTS

To evaluate the proposed algorithm the following
SISO example is considered:

xt+1 =

[
−0.15 0.325
1.0 0

]

xt +

[
2
0

]

f(ut) (24)

yt =
[
0.1750 1.1625

]
xt + f(ut) + υt

The static nonlinearity is chosen as f(u) =
sinc(u)u2 and the excitation as a white gaus-
sian noise sequence u(t) ∼ N(0, 1). The output
noise υt also white and gaussian is chosen such
that the signal to noise ratio is 30 dB. The al-
gorithm parameters are chosen as σ = 1, d =
10, γ−1 = 0.003, n̄ = 6, and the instrumental
variable η(t) taken as a vector of past inputs
[
u(t− nx) · · · u(t− 1)

]⊤
of length nx. The simu-

lation is driven with N = 300 over a time interval
of 3000 points. Figure 1 illustrates the products
between the nonlinearity and the two first Markov
parameters on the interval [−5, 5]. The actual
functions and their respective estimates are al-
most undistinguishable, at least on the density
interval of the input sequence. Figure 2 shows the
poles of the system estimated recursively. Finally,
Figure 3 shows the estimated poles of a time vary-
ing system derived from (24) by carrying out a
slow and regular variation in the dynamics matrix
as follows

A(t) =
(

1− 10−2
√

t
) [
−0.15 0.325
1.0 0

]

(25)



The results presented show a quite satisfactory
tracking of the system parameters.
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Fig. 1. (a): true (solid line) and estimated (dotted line)

Markov parameter Df(). (b): true (solid line) and esti-

mated (dotted line) Markov parameter CBf().
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Fig. 2. Evolution of the eigenvalues of the estimated model

(dotted) and of the actual system (24) (solid).
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Fig. 3. Recursive estimates of the eigenvalues for the slowly
time-varying system (25).

6. CONCLUDING REMARKS

A recursive algorithm combining LS-SVM regres-
sion and subspace identification techniques has
been presented for the identification of SIMO
Hammerstein systems. The whole algorithm works
in a recursive fashion and is designed for slowly
time-varying systems identification. Numerical
simulations show quite good results. Future work

will focus on the recursive identification of more
general nonlinear state space models.
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