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Abstract
An approximate analytical solution to a system ex-

hibiting oscillations of a conductor in a magnetic field
is sought by means of multiple scales. A compari-
son between the analytical solution and the numerical
integration is made. The results show a nearness of
frequency but discrepancy in amplitude. The founda-
tion to implement an effective control strategy is estab-
lished. This solution gives an indication of a starting
point so that the trajectory may be steered towards a
desired basin of attraction.
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1 Introduction
An electro-vibroimpact system may be deployed

underground to penetrate soil. To ensure the most
efficient use of energy to achieve this, a robust feed-
back control system is required. However, the design
of the transfer function of the feedback requires an
understanding of system dynamics and characteristics.
This document presents findings from an initial ap-
proximate analysis by means of multiple scales.

2 Multiple Scales Analysis
In order to implement an effective control strategy, an

approximate analytical solution to the system is sought.
In this paper, an approximate solution to a simplified
system model is elucidated. To avoid the complexity
of discontinuous functions present in the system model
in [Ho, 2007], an attempt to analyse the system re-
sponse for a single degree-of-freedom (without impact)
metal bar vibrating inside a frictionless surface within
the solenoid is made. In this case, the system governing
equations can be described as follows:
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where dot denotes differentiation with respect to time
t, x is the displacement of the metal bar, ξ is the
damping ratio, ωn is the natural frequency of the metal
bar and the spring, δ is the initial displacement of the
metal bar, m is the mass of the metal bar, L is the
inductance function in the RLC circuit, i is the current
flow through the circuit, R and C are the resistance
and the capacitance in the RLC circuit respectively, Vs

is the externally supplied time dependent voltage and
Ω is the frequency of the power supply.

The inductance function L(x) can be adopted in a
Gaussian form [Ho, 2007] to fit experimental data

L(x) = l0 + lae−σx2
(3)

The first and second derivative of L(x) are obtained as

∂L
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= −2σlaxe−σx2

(4)

∂2L

∂x2 = 4σ2lax2e−σx2 − 2σlae−σx2
(5)



where σ, l0 and la are the parameters used in the
Gaussian fit to experimental data.

To obtain an approximate analytical solution to the sys-
tem described above, multiple scales analysis [Nayfeh,
1995] is performed. The solution that is valid near x=0
and accounting for nonlinear effects is sought. In this
case, equations (3),(4) and (5) can be approximated by
Taylor’s series expanded about x=0 and only the first
two terms are retained, giving rise to the following ap-
proximate expression:

L̂(x) = l0 + la − σlax2 + O(x4) (6)

∂L̂

∂x
= −2σlax + 2σ2lax3 + O(x4) (7)

∂2L̂

∂x2 = −2σla + 6σ2lax2 + O(x4) (8)

A perturbation parameter ε, is assigned to the following
terms that are expected to be small

ελ0 = l0 + la, ελ1 = σla
m , ελ2 = σ2la

m
ελ3 = σla, ελ4 = σ2la, εα = 2ξωn

(9)

The system equations (1) and (2) can then be expressed
as

ẍ+ εαẋ+ω2
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(11)
To apply the method of multiple scales, different time
scales are introduced according to

Tn = εnt for n = 0, 1, 2, ... (12)

In operator form,

d

dt
=
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∂

∂T1
+ ... = D0 + εD1 + ... (13)

d2

dt2
= D2

0 + 2εD0D1 + ... (14)

By setting the truncation at order ε1, the assumed solu-
tion of (10) and (11) can be represented by

x(t, ε) = x0(T0, T1) + εx1(T0, T1) + ε2... (15)

i(t, ε) = i0(T0, T1) + εi1(T0, T1) + ε2... (16)

Substituting (13),(14),(15) and (16) into (10) and (11)
and equating the coefficients of ε0 and ε1 to zero, the
following is obtained
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The solutions to (17) may be expressed as

x0(T0, T1) = A0(T1)eiωnT0 + Ā0(T1)e−iωnT0 + δ
(19)

i0(T0, T1) = B0(T1)e−
T0
CR

+CΩVs [cos(ΩT0) + CRΩsin(ΩT0)]
1 + C2R2Ω2

(20)
where A0 and B0 are unknown complex functions
and Ā0 is the complex conjugate of A0.To solve for
A0(T1), Ā0(T1) and B0(T1), secular terms in (18)
may be inspected. Substituting solution (19) and (20)
into (18), expanding and collecting the terms involving
eiωnT0 gives
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Terms on e−iωnT0 also contribute to secular terms.
However they are dependent on expression (21) since
they are complex conjugates of each other. By further
inspecting the terms on expression (21), it was found
that not all terms in (21) will lead to secular terms.
Terms that are associated with e−

2T0
CR will produce

particular solutions that decay with time. Meanwhile,
the case of nonresonant excitations is considered, for
which Ω is away from ωn and 2ωn. Therefore terms
that are associated with e−2iT0Ω, e2iT0Ω, e−iT0Ω and
eiT0Ω will not produce secular terms.

Equating the coefficients of terms in (21) that will lead
to secular terms to zero give
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In order to solve (22), A0 and Ā0 are assumed to be in
the polar form

A0(T1) =
1
2
a(T1)eiβ(T1), Ā0(T1) =

1
2
a(T1)e−iβ(T1).

(23)
Substituting (23) into (22) and separating the result into
real and imaginary parts, we obtain
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The solution to (24) is

a(T1) = c1e
−αT1

2 (26)

where c1 is the integration constant that can be deter-
mined through initial conditions. Substituting (26) into
(25) and the solution for β(T1) is obtained:
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C2Ω2V 2
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where c2 is another integration constant.

Therefore the first order approximation to the solution
of (10) is

x = δ + c1e
−αT1

2 cos(β + ωnT0) + O(ε). (28)

Repeating the same procedure to solve for B0(T1) (i.e.
to set up the conditions for secular terms in the current
equation in (18) to solve for B0(T1)). The solution is
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and c3 is the integration constant.

The first order approximation to the solution of (11) is

i = B0(T1)e−
T0
CR +

CΩVs [cos(ΩT0) + CRΩ sin(ΩT0)]
1 + C2R2Ω2 +O(ε).

(31)



Finally the time scales, T0 and T1, are replaced and the
parameters λ0, λ1, λ2, λ3 and λ4, by using the rela-
tionship in (9) and (12) to obtain the final form of the
displacement function x(t) and current function i(t):

x(t) = δ + e−ξωntc1 cos (c2 + ωnt + g(t)) + O(ε)
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Initial conditions can be used to solve for the inte-
gration constants c1, c2 and c3. These conditions are
initial displacement, δ, whereas initial velocity and
initial current are both equal to zero. Differentiating
equation (32) to get the velocity function v(t) and
substituting the initial conditions into equations (32),
(33) and v(t), the following are obtained
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3 Discussion and Conclusion
Numerical integration was performed to verify the

approximate analytical solution obtained from multiple
scales analysis. The integration was carried out by
using the Dynamics software [Yorke, 1998]. The
following parameters were used in the integration:
l0 = 0.16568, la = 0.41199, σ = 857.31, m = 1, ξ =
0.00353, ωn = 14.142, δ = 0.001, C = 0.000032, R =
27.5, Vs = 14.142 and Ω = 314.159.

A comparison between numerical predictions in Figure
1 and analytical descriptions in Figure 2 shows a
nearness of frequency, but discrepancy in amplitude.

Meanwhile, a close co-relation in both amplitude
and frequency was observed for the current response
obtained from analytical solutions and numerical pre-
dictions as shown in Figure 3 and Figure 4. However
the analytical solution failed to predict the transient
component captured in the numerical integration.

In conclusion, this non-distortion of the frequency
component of the displacement, together with the close
co-relation of the current response, gives an indication
of the relevance of this solution, which may then be
used as a platform to implement an effective control
strategy.
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Figure 1. Displacement response obtained from numerical integra-
tion, for (a) the first 20 seconds and (b) the first 2 seconds.

(a)

0 5 10 15 20
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

 

 

x 
(m

)

t (s)

(b)

0.0 0.5 1.0 1.5 2.0
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

 

 

x 
(m

)

t (s)

Figure 2. Displacement response obtained from multiple scales
analysis, for (a) the first 20 seconds and (b) the first 2 seconds.
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Figure 3. Current response obtained from numerical integration, for
(a) the first second and (b) the first 0.3 seconds.
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Figure 4. Current response obtained from multiple scales analysis,
for (a) the first second and (b) the first 0.3 seconds.


