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Abstract: In this note, structural decomposition of linear periodic continuous-time
systems is discussed. A fundamental problem to decompose a state of a periodic
system into controllable and uncontrollable parts is conjectured to be achieved
by a continuously differentiable and periodic coordinate transformation with the
same period of the system, however there is a counterexample to this conjecture.
Hence we derive a condition for the existence of such a coordinate transformation.
We also prove that, by relaxing a class of coordinate transformation, it is always
possible to construct a periodic coordinate transformation with the double period
of the periodic system.
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1. INTRODUCTION

In this note, we reconsider the Kalman canon-
ical decomposition for linear periodic systems.
In particular, we focus on the full information
case and discuss the existence of a continuously
differentiable and periodically time-varying coor-
dinate transformation which decomposes a state
into controllable and uncontrollable parts.

For linear time-varying systems which is not
necessarily periodic, Kalman asserted that there
exists a coordinate transformation which con-
verts the coefficient matrices into special form
valid at the fixed time instant (Kalman, 1962;
R. E. Kalman and Narendra, 1962; Kalman, 1963;
Weiss and Kalman, 1965)．Youla (Youla, 1966)
and Weiss (Weiss, 1968) then proved the existence

of continuously differentiable and time-varying co-
ordinate transformation which effects a structural
decomposition for all time after some fixed time
instant.

Applying the procedures by Youla (Youla, 1966)
or Weiss (Weiss, 1968) into linear periodic sys-
tems, it is possible to construct a continuously
differentiable and time-varying coordinate trans-
formation, but the periodicity of the coordinate
transformation is not obvious.

On the contraly, it was conjectured that it is
always possible to construct a continuously differ-
entiable and periodic coordinate transformation
which transforms a state into controllabe and un-
controllable parts (see e.g. Bittanti and Bolzeron



(Bittanti and Bolzeron, 1985) and Nishimura and
Kano (Nisimura and Kano, 1996)).

In this note, we firstly present a counterexample to
this conjecture. Then we derive a condition for the
existence of such a transformation. Comparing the
derived condition with the former discussions, it is
shown that the factorization of the controllability
Gramian, which was supposed to be obviously
possible (see e.g. (Bittanti and Bolzeron, 1985)),
is not always possible indeed.

We also prove that, by relaxing a class of coordi-
nate transformation, it is always possible to con-
struct a periodic coordinate transformation with
the double period of the given periodic system.

2. PRELIMINARIES

Consider a linear system

ẋ = A(t)x + B(t)u, (1)

which is not necessarily periodic, where x(t) ∈
R

n is a state vector, u(t) ∈ R
m is the input,

A(t) ∈ R
n×n and B(t) ∈ R

n×m are supposed to be
continuous, and u(t) is supposed to be piecewise
continuous and is denoted by u ∈ U .

A state x0 ∈ R
n of the system (1) is said to be

controllable from time t if the state can be brought
to the origin 0 at finite amount of time by a certain
control function u. In other words, a state x0 ∈ R

n

of the system (1) is said to be controllable from
time t if there exists a finite s ≥ t such that the
integral equation

Φ(s, t)x0 +
∫ s

t

Φ(s, τ)B(τ)u(τ)dτ = 0

has an admissible input u ∈ U , where Φ denotes
the state transition matrix for (1) with u = 0 for
all t ∈ R, i.e.

∂

∂s
Φ(s, t) = A(s)Φ(s, t)

Φ(t, t) = I

The system (1) is said to be controllable, or (A, B)
is said to be controllable, if all states x0 ∈ R

n are
controllable.

The set of states controllable from time t is
denoted by

C(t) :=
{∫ p

t

Φ(t, τ)B(τ)u(τ)dτ : p > t, u ∈ U
}

,

which is said to be a controllable subspace at
time t. C(t) satisfies the following properties (see
Theorem 1 and Theorem 2 in (Weiss, 1968))

Lemma 1. (i) There exist a bounded scalar func-
tion p(t) > 0 such that

C(t) = Im W (t, t + p(t)),

where Im X denotes a image of a matrix X and
W denotes the controllable Gramian defined by

W (t, s) :=
∫ s

t

Φ(t, τ)B(τ)B(τ)′Φ(t, τ)′dτ. (2)

(ii) If x0 ∈ C(s), Φ(t, s)x0 ∈ C(t) holds for t ≤ s,
i.e.

Φ(t, s) C(s) ⊂ C(t) if s ≥ t.

In this note we suppose that A(t) and B(t) is
periodic with a period T > 0, which is said to
be T -periodic for simplicity. Then p(t) in Lemma
1 (i) can be chosen to be p(t) = nT , which is
independent of time t. C(t) is Φ-invariant for linear
periodic systems for both positive and negative
directions in time.

Lemma 2. Suppose that A(t) and B(t) are con-
tinuous and T -periodic. Then
(i)

C(t) = Im W (t, t + nT )

(ii) x0 ∈ C(t) iff Φ(s, t)x0 ∈ C(s) for all s, t ∈ R,
i.e.

C(s) = Φ(s, t) C(t).

3. CONJECTURE OF KALMAN CANONICAL
DECOMPOSITION FOR PERIODIC

SYSTEMS

Consider a coordinate transformation ξ = Z(t)x
where Z(t) ∈ R

n×n is continuously differentiable
and invertible for all t ∈ R, the system (1) is
transformed to

ξ̇ = F (t)ξ + G(t)u (3)

where

F (t) := (Ż(t) + Z(t)A(t))Z(t)−1 (4)
G(t) := Z(t)B(t). (5)

Suppose that A(t) and B(t) is T -periodic. Then,
applying the procedures by Youla (Youla, 1966)
or Weiss (Weiss, 1968), it is possible to construct
a continuously differentiable and invertible matrix
Z(t) ∈ R

n×n such that the state of the system (3)
is decomposed to controllable and uncontrollable
parts, i.e. there exists a nonnegative integer nc ≤
n such that F (t) and G(t) is decomposed to

F (t) =
[

F11(t) F12(t)
0 F22(t)

]

G(t) =
[

G1(t)
0

]

where F11(t) ∈ R
nc×nc , F12(t) ∈ R

nc×(n−nc),
F22(t) ∈ R

(n−nc)×(n−nc), G(t) ∈ R
nc×m, and

(F11, G1) is controllable.



Although the periodicity of Z(t) constructed by
Youla (Youla, 1966) or Weiss (Weiss, 1968) is
not obvious, it was conjectured that there is a
continuously differentiable and T -periodic coordi-
nate transformation matrix Z(t) ∈ R

n×n (see e.g.
(Bittanti and Bolzeron, 1985) and (Nisimura and
Kano, 1996)).

Conjecture 1. Suppose that A(t) ∈ R
n×n and

B(t) ∈ R
n×m are continuous T -periodic. Then

there exists a continuously differentiable and T -
periodic matrix Z(t) ∈ R

n×n which is invertible
for all t ∈ R such that F (t) defined by (4) and G(t)
defined by (5) satisfy the following block structure

F (t) =
[

F11(t) F12(t)
0 F22(t)

]
(6)

G(t) =
[

G1(t)
0

]
(7)

and (F11, G1) is controllable.

We note that, if there exits such a T -periodic
and real-valued Z(t), F (t) and G(t) become T -
periodic and real-valued, and these properties are
fundamental for analyzing the stabilizability by a
real-valed state feedback.

4. A COUNTEREXAMPLE

In this section, we present a counterexample for
Conjecture 1.

Let Ã ∈ R
2×2 be a constant matrix and B̃(t) ∈

R
2×1 be a continuous T -periodic matrix given by

Ã :=
[

0 π
T− π

T 0

]
(8)

B̃(t) :=
[

sin
(

πt
T

) (
cos

(
πt
T

)
+ sin

(
πt
T

))
sin

(
πt
T

) (
cos

(
πt
T

) − sin
(

πt
T

))
]

. (9)

Then the controllability Gramian over [t, t + 2T ]
is given by

W̃ (t, t + 2T )

=
∫ t+2T

t

eÃ(τ−t)B̃(τ)B̃(τ)′eÃ′(τ−t)dτ

=
[

T
(
1 + sin

(
2πt
T

))
T cos

(
2πt
T

)
T cos

(
2πt
T

)
T

(
1 − sin

(
2πt
T

)) ]
(10)

and satisfy

rank W̃ (t, t + 2T ) = 1

for all t ∈ R, therefore (Ã, B̃) is uncontrollable.

Suppose that, followed by Conjecture 1, there
exists a continuously differentiable, invertible and
T -periodic matrix Z(t) ∈ R

2×2 such that Ã and
B̃(t) are transformed to F (t) and G(t) of the forms
(6) and (7).

By the T -periodicity of Z(t), the monodromy ma-
trices in x-coordinate and in ξ-coordinate are sim-
ilar, and the characteristic multipliers are invari-
ant with respect to a coordinate transformation
ξ = Z(t)x. Since eÃT = −I, the characteristic
multipliers in x-coordinate are −1 with multi-
plicity 2, therefore they are also −1(< 0) with
multiplicity 2 in ξ-coordinate.

On the contrary, it follows from (6) that the
characteristic multipliers in ξ-coordinate are given
by exp(

∫ T

0
F11(τ)dτ) and exp(

∫ T

0
F22(τ)dτ)(> 0).

Therefore we have a contradiction, which proves
that a pair Ã and B̃(t) is a counterexample to
Conjecture 1.

5. KALMAN CANONICAL DECOMPOSITION
WITH THE SAME PERIOD OF SYSTEMS

In the previous section, we have shown that Con-
jecture 1 is not always satisfied for all linear peri-
odic systems. On the other hand, it is well known
that it is satisfied for linear time-invariant systems
(see e.g. (Chui and Chen, 1989)).

In this section, we derive a necessary and sufficient
condition such that a state of a linear periodic
system is decomposed to controllable and uncon-
trollable parts by continuously differentiable and
T -periodic coordinate transformation.

Theorem 1. Consider a linear periodic system de-
scribed by (1) where A(t) ∈ R

n×n and B(t) ∈
R

n×m are supposed to be continuous T -periodic.
Let ñc := rank W (t, t+nT ) where W is defined by
(2). There exist a T -periodic matrix Z(t) ∈ R

n×n

which is continuously differentiable and invertible
for all t ∈ R such that

• F (t) defined by (4) has a block structure of
the form (6)

• G(t) defined by (5) has a block structure of
the form (7)

• (F11, G1) is controllable

iff there exists a T -periodic matrix Q(t) ∈ R
n×n

which is continuously differentiable and orthogo-
nal for all t ∈ R and a T -periodic matrix E(t) ∈
R

ñc×ñc which is continuously differentiable and
positive definite symmetric for all t ∈ R such that
the controllability Gramian is factored by

W (t, t + nT ) = Q(t)′
[

E(t) 0
0 0

]
Q(t). (11)

Moreover, if there exists such Z(t), nc which is a
size of F11(t) is given by nc = ñc.

Proof: Firstly we prove the necessity part. Let
M denotes the controllability Gramian for (F, G)-
pair, then we have



M(t, t + nT ) = Z(t)W (t, t + nT )Z(t)′.

Let M̃ denotes the controllability Gramian for
(F11, G11)-pair. Since F11(t) and G1(t) is T -
periodic, M̃(t, t + nT ) is also T -periodic. Since
(F11, G1) is controllable, M̃(t, t + nT ) is posi-
tive definite symmetric for all t ∈ R (Chui and
Chen, 1989). From the block structure of F (t) and
G(t) given by (6) and (7), M and M̃ satisfy the
following equation

M(t, t + nT ) =
[

M̃(t, t + nT ) 0
0 0

]
.

Hence W (t, t + nT ) is factored by

W (t, t + nT ) = Z(t)−1

[
M̃(t, t + nT ) 0

0 0

]
(Z(t)′)−1

Since Z(t) is invertible for all t ∈ R, it is pos-
sible to apply the Gram-Schmidt’s process for
column vectors of Z(t)−1 pointwise. There exist
a T -periodic matrix Q(t) which is continuously
differentiable and orthogonal for all t ∈ R and
an upper triangular T -periodic matrix R(t) whose
diagonal entries are positive for all t ∈ R such that

Z(t)−1 = Q(t)′R(t)

Decompose R(t) followed by the block structure
of M(t, t + nT ) and denote an upper left part of
R(t) by R11(t), and define

E(t) := R11(t)M̃(t, t + nT )R11(t)′,

then E(t) is T -periodic and positive definite sym-
metric for all t ∈ R. It follows that Q(t) and E(t)
satisfy (11).

Next we prove the sufficiency part. Factor Q(t)
followed by the factorization (11)

Q(t) =:
[

Q1(t)
Q2(t)

]
.

Define a coordinate transformation matrix by
Z(t) = Q(t) and consider a coordinate trans-
formation ξ = Q(t)x. It follows from (11) that
the controllability Gramian over [t, t + nT ] in ξ-
coordinate is Q(t)W (t, t+nT )Q(t)′. From Lemma
2 (ii), the controllability subspace is invariant with
respect to the state transition map

Im
[

E(s) 0
0 0

]
= Θ(s, t) Im

[
E(t) 0

0 0

]

where Θ denotes the state transition matrix in the
ξ-coordinate Θ(s, t) := Q(s)Φ(s, t)Q(t)−1. Since
E(t) is positive definite symmetric for all t ∈ R, a
lower left part of Θ is identically 0

Θ(s, t) =:
[

Θ11(s, t) Θ12(s, t)
0 Θ22(s, t)

]
.

By its definition, Θ(s, t) is continuously differen-
tiable and invertible for all s, t ∈ R and satisfies

Θ(s + kT, t + kT ) = Θ(s, t) (12)

for all s, t ∈ R and k ∈ N. Define F (t) by

F (s) :=
∂Θ(s, t)

∂s
Θ(s, t)−1, (13)

then F (t) has a block structure of the form (6),
and the size of F11(t) and E(t) is equivalent.
We note that the right hand side of (13) is
independent of t, therefore F (t) is well-defined.
It follows from

F (s + T ) =
∂Θ(s + T, t + T )

∂s
Θ(s + T, t + T )−1

=
∂Θ(s, t)

∂s
Θ(s, t)−1

= F (s)

that F (t) is continuous T -periodic, where we have
used the equation Θ(s, t) = Θ(s, t + T )Θ(t + T, t)
in the second identity and have used (12) in the
third identity.

Denote the B-matrix in the ξ-coordinate by
G(t) := Q(t)B(t), G(t) is continuous T -periodic.
It can be shown that G(t) has a block structure
of the form (7). Indeed, multiplying (11) by Q(t)
from the left and Q(t)′ from the right, it follows
that

Q2(t)W (t, t + nT )Q2(t)′

=
∫ t+nT

t

Θ22(t, τ)Q2(τ)B(τ)B(τ)′Q2(τ)′Θ(t, τ)′dτ

= 0.

Since the integrand is positive semidefinite sym-
metric and continuous, it is equivalent to 0 for
all τ ∈ [t, t + nT ]. Moreover, since Θ22(s, t) is
invertible for all s, t ∈ R and Q(t) and B(t) is
T -periodic, it follows that

Q2(t)B(t) = 0

for all t ∈ R.

Multiplying (11) by Q(t) form the left and Q(t)′

from the right, it follows that

Q1(t)W (t, t + nT )Q1(t)′

=
∫ t+nT

t

Θ11(t, τ)G1(τ)G1(τ)′Θ11(t, τ)′G1(t)′dτ

= E(t),

therefore (F11, G1) is controllable. (QED)

A linear time-invariant system can be regarded
as T -periodic system, and the controllability
Gramian W (t, t + nT ) is independent of time t.
Hence there are constant matrices Q and E sat-
isfying (11) for all t ∈ R, and, as well known,
Conjecture 1 is always satisfied for linear time-
invariant systems.

For general linear periodic systems, there exist T -
periodic functions Q(t) and E(t) satisfying (11)
for all t ∈ R iff there exist continuously differen-
tiable, bounded and T -periodic bases in C(t).



Since W (t, t+nT ) is continuous, bounded and T -
periodic and a rank of W (t, t+nT ) is independent
of t, there exist bounded and T -periodic bases
in C(t). By the Φ-invariance of C(t), there exist
continuously differentiable and bounded bases for
C(t). However the existence of bases satisfying all
properties is not obvious.

Hence it is not obvious that W is always factored
by (11), while it was supposed to be obvious
in the former discussions (see e.g. (Bittanti and
Bolzeron, 1985) and (Nisimura and Kano, 1996)).
A counterexample in Section 4 proves that it is
not always possible indeed.

6. EXAMPLE FOR THEOREM 1

In this section, we demonstrate the statement of
Theorem 1 by a counterexample in Section 4.

Suppose that there exists a T -periodic coordinate
transformation Z(t) which transforms (Ã, B̃)-pair
into the block structure of the forms (6) and (7).
Since the eigenvalues of W̃ (t, t + 2T ) in (10) are
given by 0 and 2T , followed by Theorem 1, there
exist a continuously differentiable, orthogonal and
T -periodic matrix Q(t) ∈ R

2×2 such that

W̃ (t, t + 2T ) = Q(t)′
[

2T 0
0 0

]
Q(t), (14)

which corresponds to (11). We note that first
column vector of Q(t)′, which is denoted by w(t),
is a eigenvector of W (t, t + 2T ) for the eigenvalue
2T . On the other hand,

v(t) =
[

v1(t)
v2(t)

]
=

[
1 + sin

(
2πt
T

)
cos

(
2πt
T

)
]

is also a eigenvector of W̃ (t, t + 2T ) for the
eigenvalue 2T . Since v1(t) and v2(t) has a common
zero at t = 3T

4 , there exists a function g(t) ∈ R

which has a singular point at t = 3T
4 and satisfies

w(t) = v(t)g(t).

Then g(t) satisfies the following on [0, T ].
(i) g(t) is continuously differentiable except for
t = 3T

4 and T -periodic, therefore it follows that

g(0) = g(T ) > 0

or

g(0) = g(T ) < 0.

(ii) g(t) �= 0 for all t ∈ [0, T ].
(ii) g(t) has a 1-st order pole at t = 3T

4 , therefore
it follows that

lim
t→ 3T

4 −
g(t) = −∞ & lim

t→ 3T
4 +

g(t) = +∞
or

lim
t→ 3T

4 −
g(t) = +∞ & lim

t→ 3T
4 +

g(t) = −∞.

We note that v1(t) has a 2-nd order zero at t = 3T
4

and v2(t) has a 1-st order zero at t = 3T
4 (see

Figure 1), therefore g(t) has a 1-st order pole at
t = 3T

4 .

It is clear that those properties are not simulta-
neously satisfied for each cases. Hence there is no
T -periodic coordinate transformation Z(t) which
transforms (Ã, B̃)-pair into the block triangular
structure of (6) and (7), as shown in Theorem 1.

1 2 3 4 5 6
t

-1

-0.5

0.5

1

1.5

2

v1 & v2

Fig. 1. Elements of an eigenvector v(t) (T = 2π)

7. KALMAN CANONICAL DECOMPOSITION
WITH THE DOUBLE PERIOD OF SYSTEMS

In this section, we prove that, by relaxing a class
of periodic coordinate transformation, it is al-
ways possible to construct a 2T -periodic coor-
dinate transformation which decompose a state
of a linear periodic system into controllable and
uncontrollable parts.

Theorem 2. Consider a linear periodic system de-
scribed by (1) where A(t) ∈ R

n×n and B(t) ∈
R

n×m are supposed to be continuous T -periodic.
Let ñc := rank W (t, t + nT ) where W is defined
by (2). Then there exist a 2T -periodic matrix
Z(t) ∈ R

n×n which is continuously differentiable
and invertible for all t ∈ R such that

• F (t) defined by (4) has a block structure of
the form (6)

• G(t) defined by (5) has a block structure of
the form (7)

• (F11, G1) is controllable

and nc which is a size of F11(t) is given by nc = ñc.

Proof: Let the characteristic multiplier of W (t, t+
nT ) be factored by

det(λI − W (t, t + nT )) = p(λ, t)λn−ñc

where p(λ, t) is polynomical of ñc-th order poly-
nomial of λ and satisfies p(0, t) �= 0 for all t. Since
W (t, t + nT ) is T -periodic, it follows from Theo-
rem 3 and Remark 3 of (Sibuya, 1965) such that
there exist 2T -periodic continuously differentiable
matrix V (t) ∈ R

n×n, E1(t) ∈ R
ñc×ñc , E2(t) ∈

R
(n−ñc)×(n−ñc) such that

W (t, t + nT ) = V (t)
[

E1(t) 0
0 E2(t)

]
V (t)−1,



where V (t) is invertible for all t and E1(t) and
E2(t) satisfy

det(λI − E1(t)) = p(λ, t)

det(λI − E2(t)) = λn−ñc .

Applying the Gram-Schmidt’s process on column
vectors of V (t) pointwise, V (t) is factored by

V (t) = Q(t)′R(t)

R(t) =:
[

R11(t) R12(t)
0 R22(t)

]

where Q(t) is 2T -periodic continuously differen-
tiable orthogonal matrix and R(t) is 2T -periodic
continuously differentiable upper triangular ma-
trix. Q(t)′W (t, t+nT )Q(t) is upper triangular and
symmetric, an upper right part of Q(t)′W (t, t +
nT )Q(t) is 0, i.e.

Q(t)W (t, t + nT )Q(t)′

=
[

R11(t)E1(t)R11(t)−1 0
0 R22(t)E2(t)R22(t)−1

]
.

It follows from

det(λI − R22(t)E2(t)R22(t)−1) = λn−ñc

that all eigenvalues of R22(t)E2(t)R22(t)−1 are 0.
Since R22(t)E2(t)R22(t)−1 is symmetric,

R22(t)E2(t)R22(t)−1 = 0.

Hence W (t, t + nT ) is factored by

W (t, t + nT ) = Q(t)′
[

E(t) 0
0 0

]
Q(t) (15)

where E(t) := R11E1(t)R−1
11 is 2T -periodic con-

tinuously differentiable and positive definite sym-
metric for all t. Let Z(t) = Q(t) and applying
the sufficiency part of Theorem 1, we have the
assertion. (QED)

8. EXAMPLE FOR THEOREM 2

In this section, we demonstrate the statement of
Theorem 2 by a counterexample in Section 4.

W̃ (t, t + 2T ) in (10) is factored by

W̃ (t, t + 2T ) = Q̃(t)′
[

2T 0
0 0

]
Q̃(t)

Q̃(t) =
[

Q̃11(t) Q̃12(t)
Q̃12(t) −Q̃22(t)

]

Q̃11(t) = 1√
2

(
cos

(
πt
T

)
+ sin

(
πt
T

))
Q̃12(t) = 1√

2

(
cos

(
πt
T

) − sin
(

πt
T

))
which corresponds to (15). Substitute A(t) =
Ã, B(t) = B̃(t), Z(t) = Q̃(t) into (4) and (6),
then Ã and B̃(t) are transformed to

(Ż(t) + Z(t)Ã)Z(t)−1 =
[

0 0
0 0

]

Z(t)B̃(t) =
[√

2 sin
(

πt
T

)
0

]

as shown in Theorem 2.

9. CONCLUSION

In this note, we discussed the problem of trans-
forming a linear periodic system into a Kalman
canonical decomposition using a continuously dif-
ferentiable periodic coordinate transformation .
It was conjectured that it is always possible to
construct a transformation with the same period
of the system, however we showed that there is
a counterexample to this conjecture. Then we
derive a necessary and sufficient condition for the
existence of such a transformation. We also prove
that, by relaxing a class of coordinate transforma-
tion, it is always possible to construct a periodic
coordinate transformation with the double period
of the system.
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