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Abstract
The control law of distillation column under unknown

parameters and external disturbances in feed is obtained.
The control law design is based on the robust subopti-
mal auxiliary loop algorithm for rejecting perturbations
and ensuring the track of column output to reference sig-
nal. The simulations illustrate an efficiency of proposed
scheme and comparison with some existing ones.
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1 Introduction
Currently a distillation column is a widely used tech-

nical system in many areas of industry such as chemical,
petroleum refining, pharmacological, food, etc. Area of
application of the distillation column is constantly ex-
panding. This is facilitated by the introduction of new
products and processes, increasing demands for environ-
mental protection, etc.

In [Hsu, Yu, and Liou, 1990; Xianku and Yicheng,
2005] PI and PID controllers are proposed for distilla-
tion column regulation. In [Tyreus, 1979] the controller
is based on inversion of the distillation column transfer
function. In [Diggelen, Kiss, and Heemink, 2010] the
LGQ, LGQ/LTR, DNA/INA, IMC methods are applied
to controller design. The LQR optimal control problem
of the distillation column is considered in [Musch and
Steiner, 1995]. However, the methods [Hsu, Yu, and
Liou, 1990; Xianku and Yicheng, 2005; Tyreus, 1979;

Diggelen, Kiss, and Heemink, 2010; Musch and Steiner,
1995] are proposed under known model parameters. In
[Bouyahiaoui et sl., 2005; Khelassi, 1991; Afanasyev,
Kolmanovskii, and Nosov, 2003; Skogestad, Morari,
and Doyle, 1988; Razzaghi and Shahraki, 2006; Yu,
Poznyak, and Alvarez, 1999] an optimal fuzzy control
law and Hinf -control are proposed under small change
in parameters.

In [Skogestad, Morari, and Doyle, 1988] it is noted
that the processes in the distillation column are sensi-
tive to the change of external feeds and less sensitive to
the change of internal processes in the column. There-
fore, even an insignificant difference of model parame-
ters from the original ones will lead to a failure of stated
quality indicators or to a loss of stability, if the con-
trol system is based on algorithms [Hsu, Yu, and Liou,
1990; Xianku and Yicheng, 2005; Tyreus, 1979; Digge-
len, Kiss, and Heemink, 2010; Musch and Steiner, 1995;
Bouyahiaoui et sl., 2005; Khelassi, 1991; Afanasyev,
Kolmanovskii, and Nosov, 2003; Skogestad, Morari,
and Doyle, 1988; Razzaghi and Shahraki, 2006; Yu,
Poznyak, and Alvarez, 1999].

In the present paper the robust algorithm for control
of the distillation column is proposed. Column model is
represented by the differential equation with unknown
parameters and disturbances presented in feeds. The
goal is a design of the control law that provides tracking
of distillation column output to the reference signal with
the desired accuracy, where the parameters of the refer-
ence model are chosen optimal. The control law design
is based on the auxiliary loop algorithm [Furtat, 2014].
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The efficiency of the proposed scheme is illustrated by
the simulations for the model of the distillation column
with parameters from [Bouyahiaoui et sl., 2005].

2 Model of Distillation Column and Problem For-
mulation

Consider the distillation column in Fig. 1.

Figure 1. Simple scheme of the distillation column.

Let a model of the distillation column be described by
the equations

ẋ(t) = Ax(t) +Bu(t) +Df(t),
y(t) = Cx(t),

(1)

where

x(t) = [xd(t), xn(t), ..., xf (t), ..., x1(t),

xb(t), Pc(t), Vs(t)]
T

is the state vector, xd(t) is a concentration of the light
component in the distillate, xn(t) is a concentration of
the light component in the condensor, x2(t), ..., xn−1(t)
is a concentration of the light component in trays
2, ..., n − 1, x1(t) is a concentration of the light com-
ponent in the heater, xf (t) is a concentration of the
light component in the part of the column, which re-
ceives the feed stream, xb(t) is a concentration of the
light component in the bottoms product, Pc(t) is a pres-
sure in the upper tray of the column, Vs(t) us a boilup
flow rate, u(t) = Lr(t) is a reflux flow rate, f(t) =

[Pf (t), F (t), zf (t), Pss(t), Xv(t)]
T is a vector of un-

controlled perturbations, Pf (t), F (t) and zf (t) is a pres-
sure, flow rate and concentration of the light component
in the feed stream respectively, Pss(t), Xv(t)- pressure
and the amount of light component in the boilup flow,
C = [0, 1, 0, ..., 0]- matrix of corresponding dimension.

Let a reference model be defined as follows

ẋm(t) = Amxm(t) +Bmum(t) +Dmfm(t),
ym(t) = Cxm(t).

(2)

Here xm(t) ∈ Rn+5 is the state vector of the reference
model, um(t) ∈ R, fm(t) ∈ R5, ym(t) ∈ R, Am ∈
R(n+5)×(n+5), Bm ∈ Rn+5, Dm ∈ R(n+5)×5 are ma-
trices and vector with known constant values. All signals
and parameters in (2) have the same physical meaning as
the corresponding signals and parameters in (1). Obvi-
ously, equation (2) represents the ideal case of the model
(1), i.e. when the model (1) is not affected by parametric
uncertainty and the disturbance f(t). The reference con-
trol law um(t) is calculated as um(t) = −R−1BTmPxm,
ATmP + PAm − PBR−1BTP + Q = 0, R>0 and
Q = QT ≥ 0.

Assumptions.
1. Unknown elements of the matricesA, B and D de-

pend on a vector of unknown parameters ϑ ∈ Ξ, where
Ξ is a known set.

2. Ordered pair (A,B) is controllable and the pair
(L,A) is observable.

3. Plant (1) is minimum-phase.
4. The relative degree of the plant and the reference

model equals γ.
5. Signals y(t), u(t) and ym(t) are available for mea-

surement.
It is required to design a control law that provides the

following inequality

|y(t)− ym(t)| < δ at t > T for ∀ϑ ∈ Ξ, (3)

where δ > 0, T > 0 is a transient time.

3 Control Law Design
Let us rewrite equation (1) as follows

y(t) = W1(D)u(t) +W2(D)f(t), (4)

where D = d/dtis a differential operator, W1(D),
W2(D) are transfer functions obtained by the transition
from (1) to (4). Considering (2) and (4), rewrite the
equation for the tracking error ε(t) = y(t) − ym(t) in
form

ε(t) = W1(D)u(t) +W2(D)f(t)− ym(t). (5)

According to (5) we express u(t)as

u(t) = W−11 (D)ε(t)
+W−11 (D) [ym(t)−W2(D)f(t)] .

(6)
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Figure 2. The proposed control scheme.

For compensation of disturbances we use the method
[Furtat, 2014]. According to [Furtat, 2014], introduce
the auxiliary loop

ε̄(t) = Wm(D)u(t), (7)

where ε̄(t) ∈ R is an output of the auxiliary loop,
Wm(D) is a stable minimum-phase transfer function
with the relative degree γ. Let us rewrite the mismatch
error e(t) = ε(t)− ε̄(t) to estimate proximity of the out-
puts (1) and (2)

e(t) = ε(t)−Wm(D)u(t). (8)

Insert therein signal u(t) that we obtained in (6)

e(t) =
[
1−Wm(D)W−11 (D)

]
ε(t)

−Wm(D)W−11 (D) [ym(t)−W2(D)f(t)] .
(9)

Introduce the control law as

u(t) = −W−1m (D)WR(µ,D)e(t), (10)

where WR(µ, λ) is a stable minimum-phase trans-
fer function with the relative degree γ, as well as
‖WR(µ, λ)‖∞ = 1, µ > 0 is a sufficiently small num-
ber.

Substituting (10) and (9) into (8) and then after ex-
pressing ε(t), one obtains the closed-loop system in the
form

ε(t) =

− (1−WR(µ,D))Wm(D)W−1
1 (D)

1−(1−WR(µ,D))(1−Wm(D)W−1
1 (D))

× [ym(t)−W2(D)f(t)] .

Substituting (10) into (8), the control law u(t) can be
rewritten as follows

u(t) =
W−1m (D)WR(µ,D)

WR(D)− 1
ε(t). (11)

As a result, we obtain a simplified control law, see Fig.
2.

4 Simulations
Consider the model of distillation column with seven

plates. It receives the feed stream F which arrives to
the fourth feeding plate. The appropriate model is given
in [Musch and Steiner, 1995; Bouyahiaoui et sl., 2005].
This column is used to separate a gasoline-toluic mix-
ture.

According to [Musch and Steiner, 1995; Bouyahiaoui
et sl., 2005], the reference model is defined by equation
(2), where

Am1 =



−0.0135 0.0063 0 0 0
0.029 −0.0436 0.0168 0 0

0 0.029 −0.0457 0.212 0
0 0 0.029 −0.0502 0.029
0 0 0 0.027 −0.0626
0 0 0 0 0.0356
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


, (12)

Am2 =



0 0 0 0 0 0
0 0 0 0 0 −0.049
0 0 0 0 0 −0.0908
0 0 0 0 0 −0.1369

0.0346 0 0 0 0 −0.1176
−0.0702 0.0446 0 0 0 −0.1369
0.0356 −0.0802 0.0548 0 0 −0.124

0 0.0356 −0.0904 0.0628 0 −0.0892
0 0 0.0081 −0.0157 0 −0.0123
0 0 0 −15.224 −5.0086 299.42
0 0 0.0004 0.0283 0.0084 −0.6868


,

Am = [Am1 Am2],

Bm =



0
0.533
0.0988
0.152
0.1653
0.1129
0.1023
0.0736
0.0102

0
0.0005


,

Dm =



0 0 0 0 0
−0.0005 0 0 0 0
−0.009 0 0 0 0
−0, 0014 0 0 0 0
−0.0019 −0.1169 0.0086 0 0
−0.0011 0.1129 0 0 0
−0.001 0.1023 0 0 0
−0.0007 0.0736 0 0 0
−0.0001 0.0102 0 0 0

0 0 0 0.6229 1.4409
0 0.0005 0 0 0


,
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L =
[

0 1 0 0 0 0 0 0 0 0 0
]
.

We define in a reference model (2): rm(t) =

0.1404, fm(t) = 0.14
[

1 0.2 1 1 1
]T

and x(0) =

[1 0.8983 1 1 1 1 1 1 0.4878 1 1]
T .

During the study of the distillation column’s model,
which is presented by the first equation in [Musch and
Steiner, 1995] with parameters (12), it has been revealed
that only transfer function for the output ym(t) and the
input r(t) is the minimum-phase one. Because of the
assumption (3), in this paper we construct the control
law for equation (1), i.e. distillate is regulated.

It is also obvious that the transfer function for the out-
put ym(t) and the input r(t) is stable with relative degree
γ = 1.

The goal is to choose an algorithm that provides imple-
mentation of the condition (3). Chose in (7) Wm(D) =

1
D+1 and α = 1. The auxiliary loop is then defined as

ẽ(t) =
1

D + 1
u(t).

Assume in (11) WR(D,µ) = 1
µD+1 and µ = 0, 1.

Obviously, ‖WR(D,µ)‖∞ = 1. Then, the control law
(11) that counterbalances the uncertainties (which act on
the distillation column) is defined as

u(t) = −D + 1

0.1D
ε(t) (13)

Assume that parameters in the distillation column (1)
are presented by

A1 =



−0.0135 0.0063 0 0 0
0.0823 0.0097 0.0701 0.0533 0.0533
0.0988 0.1278 0.0531 0.12 0.0988
0.152 0.152 0.181 0.1018 0.1018
0.1653 0.1653 0.1653 0.1923 0.1027
0.1129 0.1129 0.1129 0.1129 0.1485
0.1023 0.1023 0.1023 0.1023 0.1023
0.0736 0.0736 0.0736 0.0736 0.0736
0.0102 0.0102 0.0102 0.0102 0.0102

0 0 0 0 0
0.0005 0.0005 0.0005 0.0005 0.0005


,

A2 =



0 0 0 0 0 0
0.0533 0.0533 0.0533 0.0533 0.0533 0.0533
0.0988 0.0988 0.0988 0.0988 0.0988 0.008
0.152 0.152 0.152 0.152 0.152 0.0124
0.1999 0.1653 0.1653 0.1653 0.1653 0.0477
0.0427 0.1575 0.1129 0.1129 0.1129 −0.024
0.1379 0.0221 0.1571 0.1023 0.1023 −0.0217
0.0736 0.1092 −0.0168 0.1364 0.0736 −0.0156
0.0102 0.0102 0.0183 −0.0055 0.0102 −0.0021

0 0 0 −15.224 −5.0086 299.42
0.0005 0.0005 0.0009 0.0288 0.0089 −0.6863


,

A = [A1 A2],

B = 3



0
0.533
0.0988
0.152
0.1653
0.1129
0.1023
0.0736
0.0102

0
0.0005



F = 2



0 0 0 0 0
−0.0005 0 0 0 0
−0.009 0 0 0 0
−0.0014 0 0 0 0
−0.0019 −0.1169 0.0086 0 0
−0.0011 0.1129 0 0 0
−0.001 0.1023 0 0 0
−0.0007 0.0736 0 0 0
−0.0001 0.0102 0 0 0

0 0 0 0.6229 1.4409
0 0.0005 0 0 0


,

x(0) = [0.5 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.5 0.5]
T
,

f(t) = 0.14[1 + 2 sin t, 0, 2 + 2 sin 1.5t,
1 + 2 sin 2t, 1 + 2 sin 3t, 1 + 2 sin 0.5t]T .

In Fig. 3 simulations of outputs y(t) andym(t) are
shown. In Fig. 4 the simulations for error ε(t) are given.

Figure 3. The graphs of y(t) and ym(t).

The simulations have been shown that the proposed
control law rejects parametric uncertainty and external
disturbances and provides the goal (3) with given accu-
racy δ. Quality of transient responses depends on the
choice of transfer function and coefficient α in auxiliary
loop (7), and the value of µ in (10) (or (11)). It should
be noted that implementation of the control law and cal-
culation of its parameters are simpler compared with
[Afanasyev, Kolmanovskii, and Nosov, 2003; Skoges-
tad, Morari, and Doyle, 1988; Razzaghi and Shahraki,
2006; Yu, Poznyak, and Alvarez, 1999] .
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Figure 4. Results of simulation for error ε(t).
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6 Conclusion
In this paper an algorithm for robust control of the dis-

tillation column is proposed. Column’s model is repre-
sented by parametrically and functionally indefinite lin-
ear differential equation. The problem is solved by us-
ing the approach [Furtat, 2014]. The aim of control
was the synthesis of continuous control law that pro-
vides tracking of output of the distillation column to the
reference signal with the desired accuracy. The simula-
tion showed good indicators of quality of transient re-
sponses and confirmed the results of analytical calcu-
lations. In contrast to [Afanasyev, Kolmanovskii, and
Nosov, 2003; Skogestad, Morari, and Doyle, 1988; Raz-
zaghi and Shahraki, 2006; Yu, Poznyak, and Alvarez,
1999] we propose an algorithm that is simpler in tech-
nical implementation and calculation of adjustable pa-
rameters. The algorithm provides better quality indi-
cators of transient responses for bounded disturbances
than ones from [Afanasyev, Kolmanovskii, and Nosov,
2003; Skogestad, Morari, and Doyle, 1988; Razzaghi
and Shahraki, 2006; Yu, Poznyak, and Alvarez, 1999].

References
Afanasyev, V. N., Kolmanovskii, V. B., and Nosov, V. R.

(2003). The Mathematical Theory of Designing Con-

trol Systems, Moscow: Vishaya Shkola (in Russian).
Bouyahiaoui, C., Grigoriev, L. I., Laaouad, F., and Khe-

lassi, A. (2005). Optimal fuzzy control to reduce en-
ergy consumption in distillation columns, Automation
and Remote Control, 66: 2, pp. 200–208.

Diggelen, R. C., Kiss, A. A. and Heemink, W. (2010).
Comparison of control strategies for dividing-wall
columns, Industrial & Engineering Chemistry Re-
search, 49:1, pp. 288–307.

Furtat, I. B. (2014). Robust control with disturbances
compensation for plants with unknown dynamical or-
der, In: Proc. of the 22nd Mediterranean Conference
on Control and Automation (MED 2014), University
of Palermo, Palermo, Italy, pp. 1566–1571.

Hsu, T.-S., Yu, C.-C., and Liou, C.-T. (1990).Composi-
tion control of high-purity distillation columns, Jour-
nal of Chine Institute of Chemistry Engineering, 21:2,
pp. 105–113,

Khelassi, A. (1991). Analysis and Assessment of Interac-
tion in Process Control Systems, PhD thisis, University
of Nottingham, England.

Musch, H. E. and Steiner, M. (1995). Robust PID con-
trol for an industrial distillation column, IEEE Control
Systems Magazine, 15: 4, pp. 46–55.

Razzaghi, K. and Shahraki, F. (2006). Robust control
of a high-purity distillation column using µ-synthesis,
Iranian Journal of Chemical Engineering, 3: 2, pp.
20–32.

Skogestad, S., Morari, M., and Doyle, J. (1988). Robust
control of ill-conditioned plants: high-purity distilla-
tion, IEEE Transaction on Automatic Control, 33: 12,
pp. 1092–1105.

Tyreus, B. D. (1979). Multivariable control system de-
sign for an industrial distillation column, Industrial &
Engineering Chemistry Process Design and Develop-
ment, 18:1, pp. 177–182.

Xianku, Z. and Yicheng, J. (2005). Control of a
multivariable high purity distillation column based
on closed-loop gain shaping algorithm, International
Journal of Information Technology, 11: 5, pp. 116–
123.

Yu, W., Poznyak, A.S., and Alvarez, J. (1999). Nero con-
trol multicomponent distillation column, 14th World
Congress of IFAC, Beijing, pp. 379–384.


