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1    Introduction 
One-dimensional translating continua can be 

exemplified by a conveyor belt or a pipe conveying 
fluid. All, or a part, of the particles of such continua 
have an axial component of the velocity that is 
maintained by an external force. For a conveyor 
belt this force is provided by the pulleys, whereas 
the fluid flow through the pipe is forced by a pump. 
The necessarily present external forcing can 
destabilize vibration of the translating continua. 
Prediction of such instability is important for many 
engineering applications such as pipes conveying 
fluid, high speed magnetic tapes, conveyor belts, 
textile fibers, band saws, power transmission chains 
and other similar systems [Bolotin, 1963; Ziegler, 
1968; Wickert and Mote, 1989; Païdoussis, 1998; 
Lee and Mote,1997; Païdoussis, 1998]. 

Most often, prediction of the critical velocity that 
would lead to the instability of a translating 
continuum is based on a linearized equation of the 
transverse motion. Such prediction is usually in 
good correspondence with experimental data. 
However, in a number of cases, the prediction 
based on the eigenvalue analysis of the linearized 
equation of motion contradicts the energy 
considerations. The most notorious example is a 
simply-supported pipe that conveys fluid at a 
constant speed [Païdoussis, 1998]. The eigenvalue 
analysis of such pipe predicts divergence at a 
certain flow speed, whereas the conventional 
energy analysis suggests that the energy of the 
system must be constant. 

In this paper, to find the origin of the above-
formulated contradiction, the energy equation is 
sought for that describes the energy variation in a 
one-dimensional continuum that translates axially 
at a constant speed. First, it is attempted to derive 
the energy equation from the linearized equation of 
the transverse motion of the continuum. It is shown 
that this approach delivers ambiguous results as 
multiple energy equations can be derived from the 
linearized equation of motion. It is then attempted 

to identify “the correct” energy equation by 
considering (additionally) the axial momentum of 
the continuum. As in the case of the energy 
equation, however, a number of equations can be 
obtained that describe variation of what seems to be 
the axial momentum of the continuum. It remains 
unclear how to choose the “correct” momentum and 
energy equations.  

To reach to the origin of ambiguity of the energy 
and momentum equations, nonlinear considerations 
must be employed. In this paper, nonlinear 
vibrations of an inextensible conveyor belt are 
considered as an example. The energy density, the 
energy flux and the axial momentum are derived 
from the first principles in the same approximation 
as that lading to the linearized equation of motion. 
It is shown that the resulting expressions for the 
energy and axial momentum can not be guessed 
correctly based on the linearized equation of 
motion. It is also shown that the energy equation 
contains the work of a force that maintains 
translation of the belt.  

The analysis presented in this paper allows to 
state that a number of physical situations resulting 
in the same linearized equation of motion of a 
translating continuum can correspond to 
significantly different expressions for the energy, 
momentum and the fluxes thereof. 
 
2    Linearized equation of motion 

 Consider a generalized, uniform, one-
dimensional continuum that either translates or 
conveys fluid in the positive x -direction. The 
velocity  of translation or convection is constant. 
It is assumed that the solid part of the continuum 
(pipe, cable, etc.) can be modelled as a tensioned 
Euler-Bernoulli beam and a uniform plug-flow can 
be employed for the fluid flow description [Bolotin, 
1963; Ziegler, 1968; Wickert and Mote, 1989; Lee 
and Mote,1997; Païdoussis, 1998]. 

U



In accordance with [Païdoussis, 1998; Lee and 
Mote, 1997], the linearized equation of the 
transverse motion of such continuum is given as 
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where x∂  and  designate partial derivatives with 
respect to the coordinate and time, respectively, 

 is the transverse deflection of the 
continuum,  and  are the masses per unit 
length of the non-translating and translating parts of 
the continuum,  is the bending stiffness, and  
is the axial tension. This equation can be reduced to 
that of a translating tensioned beam by setting 

 and interpreting U  and  as the 
translation speed and the mass per unit length of the 
beam. A tensioned pipe convening fluid is obtained 
if U ,  and  are interpreted as the speed of the 
fluid flow through the pipe, the mass per unit length 
of the pipe and the mass per unit length of the fluid, 
respectively. 
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3    Energy equation 

The differential form of the energy equation of a 
one-dimensional continuum relates the energy of 
the continuum per unit length to the energy flux 
through a cross section of the continuum. In 
conservative systems, the energy equation is one of 
the conservations laws that can be readily obtained 
employing the Lagrangian formalism. The 
translating continua, being inherently non-
conservative, do not allow such a straightforward 
treatment.  

A countable set of “energy equations” can be 
obtained for the translating continua, all being in 
correspondence with the linearized equation of 
motion. A simple way to obtain the energy 
equations is to multiply the equation of motion by 

w t∂ ∂  and then rearrange the result into a form that 
resembles the energy variation law. In what follows 
three possible results of such rearrangement are 
given and discussed. 

One candidate for the energy equation is given as 
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In Eqs. (2)-(4), ( )1 ,e x t  and (1 , )F x t  are the 
candidates for the energy per unit length and the 
energy flux through a cross-section x of the 
continuum (both excluding the constant terms 
associated with the translation).  

It is relatively easy to criticize Eqs. (3)-(4) as the 
expression for the “energy” ( )1 ,e x t  in Eq. (3) is 

not positive definite. Therefore, ( )1 ,e x t  can not 
pretend to describe the true energy density of the 
continuum. Usually, ( )1 ,e x t  is referred to as 
pseudo-energy [Goldstein, 1980]. Note that Eqs. (2)
-(4) can not be used for calculating the energy of 
translating continua based on the energy flux, see 
[Metrikine, Battjes and Kuiper, 2006]. 

Consider the next candidate for the energy 
equation. It is given as 
 
 2 2 0,t xe F∂ + ∂ =  (5) 
where 
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Obviously, Eqs. (6)-(7) do not describe the true 
energy density and the true energy flux in the 
continuum. For example, the last term in Eq. (6) is 
not positive-definite and a number of terms in Eq. 
(7) are not physically interpretable.  

The most apparent drawback of the “energy 
equations” (2) and (5) is that these equations do not 
contain what is generally believed to be the true 
energy of the translating continuum. The next 
possible “energy equation” is free of this drawback 
and is given as 
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Equations (8),(9) and (11) are fairly interpretable. 
The expression for , Eq. 3e (9), is generally 
believed to describe the energy per unit length of 
the translating continuum [Wickert and Mote, 1989; 
Lee and Mote,1997; Païdoussis, 1998]. 
Furthermore, Eq. (8) shows that the energy of a 
segment of the continuum can change not only due 
to the energy flux through the end cross-sections of 
this segment but also due to the work of an external 
force acting at each cross-section of the segment. 
The rate of this work is given by  on the right-
hand side of Eq. 

t R∂
(8). The presence of this term is 

favourable as it can help explain the bulk instability 
of long translating continua. The expression for  
given by Eq. 

R
(11) is quite transparent as well. It 

gives the axial projection of the force on a 
differential element of the continuum associated 
with the momentum variation caused by the 
translation. Thus, the set of equations (8)-(11) could 
be considered physically interpretable (in contrast 
to the previous sets) if not for Eq. (10). The latter 
equation is supposed to describe the energy flux 
through a cross-section of the continuum. The last 
term in Eq. (10) is hard to interpret though. It is 
supposed to describe the non-constant part of the 
energy flux that is associated with the continuum 
translation. Correspondingly, instead of the last 
term in Eq. (10) one would rather expect 

(tr 2t xm U w U w∂ + ∂  which is simply the flux of 
the non-constant part of the kinetic energy of 
translation.  

Thus, though multiple possibilities exist to 
formulate a sort of energy equation based on the 
linearized equation of motion, none of them seem 
to be physically interpretable. To resolve this, a 
nonlinear formulation of the problem is necessary. 
An example of such formulation will be considered 
in Section 5 of this paper. Before that, however, a 
brief look will be taken in the next section at the 
balance of pseudo-momentum in the translating 
continuum.  
 
4    Balance of pseudo-momentum 

In the linear equation of motion of the 
continuum, Eq. (1) , the axial displacement does not 
appear explicitly but its existence is nevertheless 
implied [Paidoussis, 2005]. The forces associated 
with this mathematically absent but physically 
existent motion (every transverse motion generates 

an axial counterpart) can sometimes be found by 
using the balance of pseudo-momentum [Vesnitski, 
Kaplan and Utkin, 1983]. The rate of change of 
pseudo-momentum is normally inapplicable as the 
measure for the force exerted by transverse waves 
[Rowland and Pask, 1999; Denisov, 2000]. 
However, see [Pippard, 1992], it is applicable to 
mechanical systems with ideal constraints provided 
that the force is analyzed using the approach 
proposed by Rayleigh [Rayleigh, 1902]. In any 
case, the balance of pseudo-momentum is a useful 
tool to uncover energy sources hidden in the 
models. 

As well as in the case of the “energy equations”, 
multiple “momentum equations” can be deduced 
from Eq. (1). Below, only one possibility is shown 
that is in correspondence with the most plausible 
energy equation derived in the previous section, 
namely with Eq. (8). This candidate for the 
momentum equation reads 

 
 ,t x xp T∂ + ∂ = ∂ R  (12) 
where   
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and  is given by Eq. R (11). 

In Eq. (12),  is the pseudo-momentum per unit 
length and T  is the pseudo-momentum flux, both 
in the axial direction. These are also often referred 
to as the wave momentum and wave pressure, 
respectively [Vesnitski, Kaplan and Utkin, 1983; 
Pippard, 1992].  

p

The wave momentum  in Eq. p (13) can be 
thought of as the necessary axial counterpart of the 
vertical momentum (they differ by the multiplier 

x w∂ ) that reflects the fact that each infinitesimal 
element of the transversely vibrating continuum has 
a small axial velocity (additional to the velocity of 
translation), unless the slope of this element relative 
to the undeformed axis is zero. Note that the wave 
momentum and the axial momentum of a 
continuum, as a rule, are not the same [Rowland 
and Pask, 1999].  

The pseudo-momentum flux  given by Eq. T (14) 
is supposed to represent the axial counterpart of the 
vertical force in the cross sections of the 
continuum. It is hard (if not impossible), however, 
to see whether this is the case indeed without 
digging into a non-linear formulation of the 



problem. An example of such formulation is 
considered in the next section. 
 
5   Variation of the energy and momentum in 
inextensible translating cable  

Consider a relatively simple example of an 
inextensible cable that has a negligible bending 
stiffness. As independent variables the time  and 
the arc length 

t
s  will be used, the latter identifying 

a particular material point of the cable. Dependent 
variables will be the position of this point ( ),s tr  
and the force in the corresponding cross-section. 
The condition of inextensibility entails that s∂ r  is a 
unit vector: 
 . (15) ( ) ( )s s 1∂ ⋅ ∂ =r r

 
The equation of motion of a differential element 

of the cable can be readily derived and is given as 
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where ( ) ( ), ss t sσ ∂ r t  is the force vector in a 
cross-section s .  

The energy per unit length of the cable is clearly 
given as 
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which is simply the density of the kinetic energy of 
the cable as  is the velocity of a 
differential element of the cable. Note that as the 
cable is assumed inextensible, it does not possess 
the potential energy. 

( t stU∂ + ∂r

The energy flux trough a cross-section consists of 
the rate of work done by the force (  and of 
the flux of the kinetic energy due to translation: 

sσ ∂ r
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The axial projection of the momentum can also be 
readily written as 
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Let us now consider the small slope 
approximation in the x y−  plane.  In this 
approximation the vector ( , )s tr  and ( ),s tσ  can 
be written as [Broer, 1970]: 
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where ε  is a small dimensionless parameter.  

Inserting equations (21)-(23) in Eq. (16) the 
following equations of motion in the vertical and 
horizontal directions are obtained: 
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Obviously, Eq. (24) is a particular case of Eq. (1) 
that can be obtained by setting . 0EI m= =

The condition of extensibility (15) reduces to  
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The energy density and the energy flux, Eqs. (17) 

and (18), upon substitution of Eqs. (21)-(23) take 
the form: 
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Obviously, both  and ce cF  depend on the 
horizontal movement ( ),u s t  of the cable. 

Expressions (27), (28) can not be directly 
compared with those obtained in Section 3 based on 
the equation of motion in the vertical direction. To 
enable the comparison, the horizontal movement 
( ),u s t  should be expressed through the vertical 

movement ( ),w s t  using the condition of 
inextensibility, Eq. (26). As follows from the latter 
condition 
 ( )( )st ts s tsu u w w∂ = ∂ = − ∂ ∂ , (29) 

 ( )( )ss s ssu w∂ = − ∂ ∂ w . (30) 
 
Using the above equations and employing the 
equation of motion in the horizontal direction, Eq. 
(25), one can obtain the following equations for 

ct e∂  and cs F∂ : 
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It can be readily seen that expressions (31) and (32) 
significantly differ from the corresponding 
particular cases of Eqs. (3),(6), (9) and Eqs. (4), (7), 
(10). For example, as follows from Eqs. (9) and 
(10) 3t e∂  and 3x F∂  in the case  read 0EI m= =
 

  (33)  ( ) ( )2
3 tr ,t x t xe N w m w U w∂ = ∂ + ∂ + ∂ 2

)

s

  (34) 
( )( )

( )(
3

tr ,
x x x

t x t

F N w w

m U w U w w

∂ =− ∂ ∂

+ ∂ + ∂ ∂
 
which is very different from equations (31) and 
(32). It is very unlikely and, most likely, impossible 
that expressions (31) and (32) can be guessed based 
on Eq. (24) alone. It is also clear that if the cable 
were assumed extensible, the rate of the energy 
density, Eq. (31) would be different though the 
linearized equation of the vertical motion would 
remain the same. 

Thus, the following, most important, conclusion 
of this study can be drawn: the linearized equation 
of motion and the expressions for the energy flux in 
and the energy density of a translating continuum 
are not in one-to-one correspondence. Though a 
number of physical situations would result in the 
same linearized equation of transverse motion, the 
corresponding energy equations would all be 
different. 

Let us now deduce the energy equation of the 
inextensible cable. Using equations (31) and (32) it 
can be found that 
 
 c ct se F V τ∂ + ∂ = ∂  (35) 
 
This equation shows that the energy of a segment of 
the cable can change due to the energy flux through 
the end cross-sections of this segment and due to 
the work of the axially varying stress in the cable. 
This work depends on the horizontal dynamics of 
the cable and can not be found without solving Eq. 
(25) subject to specific boundary conditions. 
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