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Abstract
A new type of noise-induced synchronous behavior is

described. This phenomenon, calledincomplete noise-
induced synchronization, arises for one-dimensional
Ginzburg-Landau equations driven by common noise.
The mechanisms resulting in the incomplete noise-
induced synchronization in the spatially extended sys-
tems are revealed analytically. A very good agreement
between the theoretical results and the numerically cal-
culated data is shown.
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Noise-induced synchonization (Fahy and Hamann,
1992; Martian and Banavar, 1994) is an ubiquitous
phenomenon in nonlinear science. It arises as the
interplay between determined and random dynam-
ics (Hramovet al., 2006), with both the synchroniza-
tion and noise influence being recently the subjects of
considerable interest of scientific community. Indeed,
on the one hand the synchronous behavior of nonlin-
ear systems has attracted great attention of researchers
for a long time (Pecora and Carroll, 1990; Hramov
and Koronovskii, 2004). On the other hand discover-
ing the fact that fluctuations can actually induce some
degree of order in a large variety of nonlinear sys-
tems is one of the most surprising results of the last
decades in the field of stochastic processes (Pikovsky
and Kurths, 1997; Mangioniet al., 1997; Zaikin et
al., 2000). Moreover, both these phenomena are rele-
vant for physical, chemical, biological and other sys-
tems described in terms of nonlinear dynamics (see,

e.g., (Shuai and Wong, 1998)).
Noise-induced synchronization (NIS) means that the

random signal influencing two identical uncoupled dy-
namical chaotic systemsu(t) andv(t) (starting from
the different initial conditionsu(t0) andv(t0), u(t0) 6=
v(t0)) results in their synchronous (i.e., identical) be-
havioru(t) = v(t) after transient finished.
Noise-induced synchronization can be detected by

means of direct comparison of the states of two chaotic
systems,u(t), and,v(t), being under the influence of
noise. The other method of diagnostics of NIS is calcu-
lating the largest Lyapounov exponent (LE) of dynam-
ical system that measures the stability of the motion.
Indeed, in driven chaotic system the largest Lyapunov
exponent may become negative, that results in syn-
chronization: both systems forced by the same noise
“forget” their initial conditions and evolve to identical
state (Goldobin and Pikovsky, 2005). If the noise influ-
ence is vanishingly small the largest Lyapunov expo-
nent is positive for such a system.
In all cases of the noise-induced synchronization be-

ing known hitherto the boundary of the noise-induced
synchronization regime is associated with the point on
the parameter axis where the largest Lyapunov expo-
nent of the system under study crosses the zero value
when its sign is changed from “plus” to “minus”. In
this paper we report for the first time that the noise-
induced synchronization regime of two spatially ex-
tended uncoupled identical systems driven by common
noise may be preceded by a new type of behavior, when
the largest Lyapunov exponent remains to be zero in a
finite range of parameter values. This kind of behav-
ior called“incomplete noise induced synchronization”
(INIS) demonstrates the features of the synchronous
motion of two uncoupled identical systems driven by



common noise: although the states of the system differ
from each other, moving one system along the second
one someone can find such spatial shift that both sys-
tems start showing the identical behavior.
The system under study is represented by a pair

of uncoupled complex Ginzburg–Landau equations
(CGLEs) driven by common noise, whose equations
may be written as

ut = u − (1 − iβ)|u|2u + (1 + iα)uxx + Dζ(x, t),
vt = v − (1 − iβ)|v|2v + (1 + iα)vxx + Dζ(x, t),

(1)
whereu(x, t), v(x, t) are complex states of the consid-
ered systems,α andβ = 4 are the control parameters,
D defines the intensity of a noise term. We have used
model noise with the asymmetrical probability distri-
bution of the real and imagine parts of the random vari-
able

p(ξ) =

{

2ξ, if 0 ≤ ξ ≤ 1,
0, otherwise

(2)

on the unit interval[0; 1]. The simulation of the ran-
dom variableζ with required probability distribution
p(ζ) was carried out in the same way as it was de-
scribed in (Sweetet al., 2001) for the exponential stag-
ger distribution. Equation (1) was solved with periodic
boundary conditions with all numerical calculations
being performed for a fixed system lengthL = 40π and
random initial conditions. To evaluate (1) the standard
numerical scheme has been used (Garcı́a-Ojalvo and
Sancho, 1999), the value of the grid spacing is∆x =
L/1024, the time step of the scheme∆t = 2.0×10−4.
If the noise intensity is equal to zero (D = 0) and

initial conditionsu(x, 0) andv(x, 0) are not identical,
both systems demonstrate the complex chaotic behav-
ior (both in time and in space), with the system states
being different, i.e.,u(x, t) 6= v(x, t) (Fig. 1,a). Al-
ternatively, if the noise intensityD is large enough
the states of both systems coincide with each other
(Fig. 1,b), that is the evidence of the noise-induced syn-
chronization.
To detect the presence of the noise–induced synchro-

nization regime the averaged difference

ε =
1

TL

τ+T
∫

τ

L
∫

0

|u(x, t) − v(x, t)| dxdt, (3)

between the spatio-temporal states of two CGLEs
driven by common noise was calculated. The averaging
process starts after a long-time transient with duration
τ = 200.
In the NIS regime the relationε = 0 takes place,

since in this case the difference between the states of
two identical spatially extended systems (1) in every
point of space tends to be zero. We have also calculated
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Figure 1. The evolution of the difference of the system states

|u(x, t) − v(x, t)| described by complex Ginzburg-Landau

equations (1) (a) without noise and (b) with noise with the inten-

sity D = 3. The control parameter values areα = 2, β = 4

the largest Lyapunov exponentλ for one of the sys-
tems (1). As it was mentioned above in the NIS regime
the largest Lyapunov exponentλ should be negative.
The dependencies of the largest Lyapunov exponent

λ(D) and the averaged differenceε(D) on the noise
intensityD are shown in Fig. 2 for two different values
of the control parameterα. For the control parameter
α = 1 (curves 1 in Fig. 2,a,b) the value of the noise
intensityD for which the largest Lyapunov exponentλ
crosses the zero value and becomes negative coincides
with the point where the averaged difference (3) starts
being vanishingly small. So, in this case the noise–
induced synchronization boundary isDNIS ≈ 1.5 and
we deal with the occurrence of the noise-induced syn-
chronization regime being typical and well-known.
Alternatively, the different scenario is observed in the

same system (1) if the control parameter valueα = 2
is considered (see curves 2 in Fig. 2,a,b). For such a
choice ofα-parameter value the largest Lyapunov ex-
ponent becomes equal to zero for the large enough in-
tensity of noiseDINIS ≈ 1.53 whereas the averaged
differenceε between the spatio-temporal states of two
CGLEs driven by common noise exceeds the zero value
sufficiently (Fig. 2,a,b). With further increase of the
noise intensityD the value ofε becomes equal to zero
and the largest Lyapunov exponent starts to be negative
that is the evidence of the presence of the noise-induced
synchronization regime.
In other words, there is the finite interval of the

noise intensity values(DINIS ; DNIS) for which the
noise-induced synchronization is not observed, and the
largest Lyapunov exponentλ is equal to zero. To prove
this fact we have calculated the largest Lyapunov ex-
ponent of the complex Ginzburg-Landau equation for
different values of the spatial grid spacing. We obtain
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Figure 2. The dependencies of (a) the averaged difference (3) and

(b) the largest Lyapounov exponent of the CGLE on the noise inten-

sity D for the different values of the control parameterα. Curves 1

correspond to the case ofα = 1, curves 2 were calculated for

α = 2. The values of noise intensity corresponding to the onset

of noise–induced synchronization are shown by arrows with labels

D1
NIS

andD2
NIS

for the curves 1 and 2, respectively. The bound-

ary of the incomplete noise-induced synchronization is also shown

by arrow marked asDINIS

that the largest Lyapunov exponent calculations with
the different values of the spatial grid step give the sim-
ilar results. Based on these calculations we come to
conclusion that the largest Lyapunov exponent is actu-
ally equal to zero in the finite range of the noise inten-
sity.
Despite the fact that the noise-induced synchroniza-

tion is not observed in the region whereλ = 0, this
range of the noise intensities corresponds to the be-
havior showing the features of synchronous dynam-
ics. The manifestation of synchronism may be ob-
served if one of the complex media described by the
Ginzburg-Landau equation starts to be shifted slowly
along the second one with the spatial shiftδ. In other
words, if one uses the shifted state of one of the sys-
temv = v(x + δ, t) in Eq. (1) the averaged difference
ε changes depending on this shiftδ. This movement
of one of the systems supposed to be very slow for
the transient to be completed. In this case such a spa-
tial shift δ0 may be found that both Ginzburg-Landau
equations start to behave identically, with the largest
Lyapunov exponent being equal to zero. Therefore, we
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Figure 3. The dependence of the differenceε between the states of

the mediau(x, t) andv(x, t) described by the complex Ginzburg-

Landau equations (1) on the space shiftδ for the control parameters

α = 2, β = 4, D = 2

have called this regime“incomplete noise-induced syn-
chronization” (INIS).

This statement is illustrated in Fig. 3 where the de-
pendence of the differenceε (3) on the space shiftδ is
shown. One can see that there is the valueδ0 of the shift
δ for which the averaged differenceε becomes equal to
zero. Therefore, for this space shiftδ0 both systems
demonstrate identical behavior and the noise-induced
synchronization is observed. This shiftδ0 depends on
the initial conditions. For the other values of the spa-
tial shift δ the system states (both in space and time)
are different, but the largest Lyapunov exponent is al-
ways equal to zero for the considered set of the control
parameter values.

We study the mechanisms resulting in the occur-
rence of the incomplete noise-induced synchronization
regime. In work (Hramovet al., 2006) it has been
shown, that for dynamical systems with small num-
ber of degrees of freedom the mechanisms of arising
of noise-induced synchronization and generalized syn-
chronization are equivalent. The mechanism of the
generalized synchronization occurrence can be consid-
ered with the help of the modified system approach as
it was done in Ref. (Hramov and Koronovskii, 2005)
for the chaotical systems with small number of de-
grees of freedom and in Ref. (Hramovet al., 2005)
for the spatially extended system. It is possible to
assume, that the mechanism of the incomplete noise-
induced synchronization arising may be also explained
in the same way. Therefore, following Ref. (Hramov
et al., 2006; Hramov and Koronovskii, 2005; Hramov
et al., 2005) we consider the dynamics of the modified
spatially extended system with the additional term de-
termined by the mean value of noise.

The modified Ginzburg-Landau equation with the ad-
ditional term, determined by the noise with the mean
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value〈Dζ〉 can be written as

∂um

∂t
= um−(1−iβ)|um|2um+(1+iα)

∂2um

∂x2
+〈Dζ〉.

(4)
For the selected kind of noise with the probability dis-
tribution (2)〈Dζ〉 = 2D/3.
Equation (4) is forced CGLE, widely studied and well

documented in the literature (see, e.g. (Coullet and
Emilsson, 1992; Glendinning and Proctor, 1993; Chate
et al., 1999)). It is well-known, that the different types
of the spatio-temporal patterns may be observed de-
pending on the domain of the control parameter values.
If the valueD is large enough, the homogeneous sta-
tionary stateu0 = u0(x, t) = const is observed in the
system (4). In this case the largest Lyapunov exponent
is negative, with the stationary state regime in the sys-
tem (4) corresponding to the noise-induced synchro-
nization in the system (1). With decrease of the noise
intensity D the stationary stateu0 loses its stability
that corresponds to the boundary of the noise-induced
synchronization of the initial Ginsburg-Landau equa-
tions (1) driven by noise.
At the same time the loss of the stability of the homo-

geneous stationary state occurs in the different ways
depending on the control parameter values of the mod-
ified Ginzburg-Landau equation (4).
Indeed, the homogeneous stationary stateu0 can be

obtained numerically from equation

u0 − (1 − iβ)|u0|
2u0 + 2D/3 = 0, (5)

To analyze the stability of Eq. (5) we have to consider
the linearization of the modified Ginzburg-Landau
equation in the vicinity of the stationary solutionu0.
Let ũ = ũr + iũi be a small perturbation of the
homogenous stationary stateu0 = ur + iui, i.e.,
um = u0 + ũ. Having linearized equation (4)
and assuming that̃ur(x, t) = ûr(k) exp(Λt + ikx),
ũi(x, t) = ûi(k) exp(Λt + ikx) we obtain the dis-
persion relationΛ(k) determining the stability of
the homogenous stationary stateu0. The homoge-
nous stationary stateu0 is stable if the condition
Re Λ(k) < 0, ∀k is satisfied.
The evolution ofRe Λ(k) with the decrease ofD-

value forα = 1 andα = 2 is shown in Fig. 4,a and
Fig. 4,b, respectively. One can see, that forα = 1 the
homogenous stationary stateu0 loses its stability when
D ≈ 1.5. In this case the spatial perturbation with
the wave numberk = 0 starts growing exponentially.
As a result, the stationary stateu0 becomes unstable,
the spatio-temporal chaos taking place in system (4).
The largest Lyapunov exponent becoming positive both
in the modified (4) and original (1) Ginzburg-Landau
equation, the noise-induced synchronization regime in
Eq. (1) is destroyed.

For the value of the control parameterα = 2 the
homogenous stationary stateu0 loses its stability for
D ≈ 2.5 and the spatial mode with the wave number
k = ±0.5 becomes unstable in contrast to the case
of α = 1 considered before (see Fig. 4,b). There-
fore, for α = 2 the periodic spatial stateuk(x) =
uk(x + l) (wherel is close to2π/k due to periodical
boundary conditions) being stationary in time replaces
the homogenous stateu0 in the modified Ginzburg-
Landau equation. Obviously, for such stationary states
the largest Lyapunov exponent is equal to zero. Evi-
dently, in the initial Ginzburg-Landau equation driven
by noise,Dζ(x, t), with the mean value〈Dζ〉 the sta-
tionary in time and periodical in space structureuk(x)
is perturbed by the fluctuations. Therefore, the spatio-
temporal dynamics ofuk(x) looks like aperiodic mo-
tion, with the largest Lyapunov exponent being also
equal to zero. Since two identical media,u(x, t),
and, v(x, t), driven by common noise start with dif-
ferent initial conditionsu(x, 0) and v(x, 0) the peri-
odical in space structures do not coincide with each
other, i.e.,uk(x) 6= vk(x), but there is such a shift in
spaceδ0 depending on the initial conditionsu(x, 0)
and v(x, 0) that uk(x) = vk(x + δ0). Therefore, for
DINIS < D < DNIS Ginzburg-Landau equations (1)
driven by common noise are characterized by zero
largest Lyapunov exponent and their states are not iden-
tical. If one of the systems is shifted along the sec-
ond one with a certain shiftδ0 that, depending on
initial conditions, satisfies the requirementuk(x) =
vk(x + δ0), the identical behavior of both considered
systems is observed.

We come to conclusion that the occurrence of the in-
complete noise-induced synchronization regime is de-
termined by the mean value of noise, whereas the vari-



ation of it practically does not play the role.
So, we have reported for the first time a new type of

noise-induced synchronous behavior occurring in the
spatially extended systems. Such a type of incomplete
noise-induced synchronization differs remarkably from
all the other types of synchronous behavior known so
far. It may be observed in a certain range of the noise
intensity values, where the largest Lyapunov exponent
is equal to zero and the states of two identical spa-
tially extended systems driven by common noise are
different, although there is an indication of the syn-
chronism: if one of the systems is shifted along the
second one on the certain shift the identical behavior
of the considered systems is observed. The theoretical
equations allowing to explain the mechanism resulting
in such a type of behavior have also been given, and
they are in perfect agreement with the numerically ob-
tained data. Since the noise influence may result in the
pattern formation we suppose that incomplete noise-
induced synchronization can be also observed for noise
with the zero mean value, with the other types of the
spatio-temporal patterns (e.g., traveling waves) being
observed.
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