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Abstract 

 Chaotic magnetic field lines play an important role in 

plasma confinement by tokamaks. They can either be 

generated in the plasma as results of natural instabilities or 

artificially produced by external conductors like ergodic 

magnetic limiter (EML). We consider a symplectic map 

for magnetic field lines in a tokamak with an ergodic 

limiter the nature of fixed points of EML map are studied 

in detail as perturbation parameter p and magnetic shear s 

are varied. The critical perturbation is determined for the 

surface with rotational-transform equal to the inverse 

golden mean. We describe the changes and the destruction 

of islands of stability for EML map. As the perturbation 

parameter increases the size of the island increases and 

then decreases abruptly. This decrease is due to the joining 

of an outer and inner chaotic domain. Critical value of the 

limiter strength p necessary to global chaos for the 

secondary islands as a function of the magnetic shear s is 

obtained. 
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1  Introduction 

One of the areas in which chaotic dynamics has received 

most attention in recent years is plasma physics. In this 

paper we will focus on a specific type of plasmas, namely 

those generated magnetically confined in fusion machines, 

chaotic dynamics is one of the striking properties of the 

magnetic field lines in tokamaks and other fusion 

machines [Martin and Taylor, 1984; Portela, Viana and 

Caldas, 2003; Balescu, Vlad and Spineanu, 1998; Balescu, 

1998]. We parametrize the field lines by using spatial 

ignorable coordinate (an azimuthal angle for axisymmetric 

configuration like in tokamaks). This parameter plays the 

role of time, so that magnetic field line equations can be 

viewed as canonical equations. One of the advantages of 

this approach is the possibility of describing field lines by 

means of a two dimentional Hamiltonian map. The 

equilibrium configurations are integrable systems whereas 

symmetry-breaking field perturbations such as 

EML[Martin and Taylor, 1984; Portela, Viana and Caldas, 

2003] spoil their integrabilities,  this may lead to chaotic 

behavior[Meiss, 1992; Lichtenberg and Lieberman, 1983; 

ott, 1993].  

One of the applications of the chaotic magnetic field lines 

is to control the impurities released from the inner wall of 

the tokamaks. Another application is related to the control 

of disruptive instabilities, which are usually preceded by 

Mirnov oscillations. 

For a periodic Hamiltonian system with two degrees of 

freedom the trajectory of the system winds around a torus 

which is called KAM surface. To study the motion on the 

torus the natural way is to look at the dynamics on the 

surface of section of the torus. The trajectories on the 

surface of section are called KAM curves. 

 For the perturbed Hamiltonian systems the possible stable 

fixed points are elliptic, near the elliptic point trajectories 

encircle it and do not approach it. These curves are known 

as main islands or simply islands. 

The main purpose of this paper is to study the existence of 

the most noble KAM surface, changes and destruction of 

the islands of stability, in the EML map. In particular we 

describe a numerical procedure to find accurately the 

barrier transition to global chaos, and investigate validity 

of the chirikov overlapping criterion [Chirikov, 1979]. 

The rest of this paper is organized as follows: in the next 

section we summarized the theory of integrable and near 

integrable Hamiltonian systems in order to derive the EML 

map. Section III shows the destruction of the inverse 

golden mean KAM surface and finally in section V we'll 

discuss about the size of the main island with respect to 

perturbation parameter p for the EML map. The last 

section devoted to our conclusion.  

 

2  The Ergodic magnetic limiter map   
A tokamak Fig(1) contains plasma by the combined of two 

basic magnetic fields, a toroidal field �������  along the � 

coordinate and poloidal field �������  along �  coordinate. The 

variables � and � are usually quoted as poloidal and 

toroidal angle. The equilibrium field  �	�����  = ������� + �������  has a 

helical shape and lies on constant-pressure flux surface. 

The winding number or rotational-transform is the average 

poloidal angle swept by field line after one complete 

toroidal turn. Mathematically it is given by: 
�� � 2� ���� � �����                                              (1) 

Where q(r) is safety factor of the flux surface. 

We consider straight tokamak, neglect toroidal curvature 

and approximate it by a periodic cylindrical coordinate 

with coordinates r, � and z = �	Φ such that the tokamak  



      

 

 
 

Figure  1. The local coordinates ( r , θ ,φ �  Φ  in tokamak. 
 

wall is located at r = b [Martin and Taylor, 1984; Portela, 

Viana and Caldas, 2003]. 

In cylindrical approximation a flux surface is characterized 

by q(r) = const .In particular #$ � #�� � % is the 

magnetic shear: 

s = 
��$�&'  ����  | )�*$                                                         (2) 

The EML configuration we consider consists of a grid of 

current carrying wires in toroidal and poloidal 

directions(Fig(2)). There are m pairs of toroidal segments, 

equally spaced along poloidal direction, with adjacent 

segments conducting a current I in opposite senses. only 

the toroidal segments are relevant to the perturbing field of 

EML which produce islands structures among the flux 

surfaces and ergodic regions in which the flux surfaces are 

destroyed [Martin and Taylor, 1984]. 

We introduce a rectangular coordinate system (Fig(2))   x 

= b� and y = b – r where x is periodic and is in the range 

0 + , + 2�. y is radial distance from the wall and y > 0 is 

inside and y < 0 is outside the tokamak. 

The full derivation of EML map is done somewhere else 

[Martin and Taylor, 1984; Portela, Viana and Caldas, 

2003], we just summarize the results. 

Outside the limiter ( l < z < 2��	 ), the magnetic field line 

equation can be exactly integrated: to give the coordinates 

of (n + 1)th mapping point on the Poincare surface of 

section z = 0. 

 -.    /   ,01. � ,02 3 4 3 5602601. � 602                   )                                   ( 3 ) 

 

Where ,02  and 602 are auxiliary variables sampled at the 

EML edge z = l, and we define 4 �  ��$�&  . 
Inside the limiter the magnetic field line equations are near 

integrable 

-� 7   ,082 � ,08 9  :;<=>?  @A5,08                                                         6082 � 608 3 lnC@A5D ,08 9  :;<=>?  @A5,08  EF                         9 ln�@A5,08                                           �4 ) 
The EML map can be written as the composition of two 

mapping T = -� * -.  . Dropping the primes of the 

variables for simplicity 
 

 

 

 

 

 
Figure  2. Periodic cylindrical   approximation (straight tokamak )  and 

rectangular coordinate system x and y. 

 -  /,01. � ,0 3 560 3 H�,0 , 60 601. � 60 3  I�,0 , 60           )                          (5) 

 

where                       h�x, y � lnM NOP�Q<RSTUNOPQNOPQ  V                (6) g�x, y �  9pe<Zcosx 3 sh�x, y 
 

The map (5)-(6) is exactly area preserving, for its Jacobian 

is equal to unity. 

 

 

3  Destruction of the inverse golden mean surface  

A map  -0 denotes the quantity obtained upon inserting 

inside itself n-times. If after iterating the map n-times one 

returns to the same point, then the map has a periodic orbit 

of period n. on the other hand, irrational tori are densely 

filled-out upon repeated iteration. An important quantity is 

the rotation number, w, which is defined as [Morrison, 

2000; Hudson, 2004]  

w = lim]^∞

∆�]]                                          (7) 

Where θ is an arbitrary poloidal angle coordinate and  ∆�0 

=  �0 - �0<. is the angle in the nth iteration.  

It is likely that any finite approximation to the rotational-

transform limit will be a non-monotonic function of 

position in the chaotic region. In regular regions of space 

occupied predominantly with flux surfaces the situation is 

different. On KAM surfaces, the limit will converge to 

arbitrary accuracy by following a field line for a sufficient 

distance and efficient methods for evaluating the transform 

exist. Finally for the periodic field lines which close after a 

finite number of transits, the rotational-transform can be 

determined exactly after following the field line a finite 

distance. 

For the surface with rotational-transform equal to the 

inverse golden mean `<. = [0,1,1,1,…] = 

0.61803398874989 , The convergents are 1/2, 2/3, 3/5, …, 

377/610, 610/987, 987/1597, 1597/2584, 2584/4181,… . 

The denominator of each convergent corresponds to the 

number of secondary islands which are located inside and 

outside the  `<.  surface respectively.  

The rotational-transform of the main island for different 

values of the perturbation parameter p is determined 

numerically using formula (7). We found that the golden  



      

 

   

 

Figure  3. Poincare´ plot showing the golden mean surface for p =    

0.550925 and s = 2�. While the golden mean surface is destructed,     

there still exist KAM surfaces. The region in the rectangle is shown in 

Fig(4) and Fig(5).  
 

 

 
 

 

 

 

  

 

 

Figure  5. Poincare plot of the main island for s = 2� and p = 0.550925 

, after criticality (the rectangle area in Fig(3)). 
 

 

 
 

 
 

 

 

 

 Figure  4. Poincare plot of the main island for s = 2� & p = 0.550920,                 Figure  6.  Poincare´ plot showing the golden mean surface, and                             

  before criticality (the rectangle area in Fig(3)).                                                     the periodic orbits corresponding to its convergents, near criticality.                       
                                                                                    

 

 

 

 

 

 

mean surface exists for   0.519 ≤ p ≤ 0.550925 for s = 2π. 

For less-than-critical perturbation p = 0.550920 and for-

larger-than critical perturbation p = 0.550925 the  

detailed Poincare plots Fig(3), Fig(4) and Fig(5) confirm 

the breakup of the `<. surface. 

For the open KAM surfaces the `<.  surface breaks up for 

approximately around p = 0.2251 for s = 2π which is 

illustrated in Fig(6), Fig(7) and Fig(8). As the figures for 

closed and open KAM show when the  `<.  surface is 

broken there still exist other noble surfaces. 

 

 

 

 

 

 



      

 

    
Figure  7. Poincare plot of the main island for s = 2� and p = 0.22540                Figure  8. Poincare plot of the main island for s = 2� and p = 0.22550  

before criticality (the rectangle area in Fig(3))                                                      after criticality (the rectangle area in Fig(3))  

 
                                                                 

4   The width of the main island and evolution of the 

secondary islands to global chaos 

The structure of an island is well known. It consists of 

invariant curves surrounding a stable periodic orbit and a 

hierarchy of secondary islands. The island is limited by a 

last KAM curve and beyond it there is a large chaotic sea, 

i.e. a large connected chaotic domain. However, as p 

increases, the last KAM curve is destroyed, i.e. it becomes 

a cantorus [Contopoulos, Harsoul, Voglis and Dvorak, 

1999; Efthymiopoulos, Contopoulos, Voglis and Dvorak, 

1997].  

The size of an island, which enables us to estimate the size 

of the chaotic region, can be found if we know the last 

KAM curve around it. We measured the width of the main 

island which is the distance along x-axis from the center of 

the island. In Fig(9) the size of the main island   n = 0 is 

shown for different values of p and s = 2π. As p increases, 

the size of the last KAM curve of the main island 

increases. But when this size becomes maximum the new 

last KAM curve is also destroyed and the size of the island 

decreases again (see the drops of the curve of Fig(9) at the 

resonances 1/21, 1/9, 1/8, … ). 

The set of the secondary islands moves outwards as p 

increases further and comes near the border of the main 

island. Eventually the last KAM curve changes and comes 

inside this set of islands, that are now left in the large 

‘chaotic sea’. 

As Fig(9) shows last KAM curve does not exist for p 

approximately greater than 0.6, which is confirmed by 

Greene residue criterion[Mackay, 1992; Green,1979; 

Bountis and Helleman,1981; Marmi and stark, 1981]: 

R = 
�<TcMe                                       

Where R is called residue and M is the linearized Jacobian 

matrix. If 0 f R f 1 the eigenvalues of  M are pure 

imaginary and complex conjugate of each other so that the 

fixed point is an elliptic point, or a center. Otherwise the 

eigenvalues are real numbers and the fixed point is a 

(hyperbolic) saddle point. 

Fig(10) is the plot of R with respect to p for s = 2π which 

shows for p greater than 0.6, R is greater than 1 and 

therefore there is no last KAM for p > 0.6. 

 

                                                       Figure  9. The width of the main island with respect to different values of p for s = 2� 



      

 

   
Figure  10. Residue with respect to perturbation parameter p for s = 2�.         Figure  11. Critical value :i with respect to s for secondary islands 1/5. 

                                                                                                             

In Fig(9) we noticed that the dramatic reduction in the size 

of the main island occurs for 1/5 and 1/4 islands. Inside the 

last KAM curve there are small domains of chaos around 

each unstable periodic orbit, but these chaotic domains do 

not communicate with the outer chaotic sea, i.e. a large 

connected chaotic domain. 

For p close to :i the chaotic domain around each 

secondary island merges to chaotic sea. In Fig(11) and 

Fig(12) we plot the critical value of perturbation parameter :i for different values of magnetic shear s for secondary 

islands 1/5 and 1/4 respectively. we select a point in a 

chaotic domain around each island and iterate the map 

500,000 times. If these points enter the chaotic sea then p 

has its critical value :i. Next we increase p by a small 

amount, say 10<e , and repeat this procedure. 

The full line is a least-squares power-law fit 

 :i(s) ~ 5<l 

Where   m ≈ 0.9 .  

 

5   Conclusion  

For EML map we found that the open and closed last 

KAM torus has not the simplest noble rotation number. 

We found for a fixed value of magnetic shear the value of 

p beyond which there does not exist any KAM surface for 

the main island. This value was confirmed by the Greene 

residue theorem. A power law relation was derived 

between critical perturbation parameter and magnetic 

shear for the secondary islands. 
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Figure  12. Critical value :i with respect to s  for secondary islands 1/4. 

 

 

 

 


