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RAYLEIGH-B ÉNARD CONVECTION: THE
SYMMETRY-BASED APPROACH

Alexander Krishchenko
Mathematical Modeling

Bauman Moscow State Technical University
Russia

apkri@bmstu.ru

Konstantin Starkov
CITEDI

IPN
Mexico

konst@citedi.mx

Abstract
In our paper we study the localization problem of

compact invariant sets of the system modelling the
Rayleigh-B́enard convection. Our results are based on
using the first order extremum conditions, quadratic
localizing functions and the symmetrical prolongation
constructed between the Lorenz system and this sys-
tem.
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1 Introduction and some preliminaries
Localization problem of attractors of the Lorenz sys-

tem [Lorenz, 1963] was examined in many papers,
see eg. [Krishchenko and Starkov, 2006] with refer-
ences therein because of its importance for studies of
deterministic chaos of systems with complex dynam-
ics and various applications in secure communications
and other areas. In this paper we propose to inves-
tigate a location of all compact invariant sets of one
5-dimensional analog of the Lorenz system. The ap-
proach of this paper is based on using the first order ex-
tremum conditions and was described in details in our
papers [2 – 4]. For our convenience, we recall some
helpful results.
We consider a polynomial system

ẋ = f(x); (1)

x ∈ Rn is the state vector. Leth(x) be a polynomial
function such thath is not the first integral of (1). By
h|B we denote the restriction ofh on a setB ⊂ Rn.
By Sh we denote the set

Sh = {x ∈ Rn | Lfh(x) = 0},

whereLfh(x) is the Lie derivative.
Let us define

hinf = inf{h(x) | x ∈ Sh};
hsup = sup{h(x) | x ∈ Sh}.

The following assertion is useful in this paper [Kr-
ishchenko and Starkov, 2006].
Theorem 1 Each compact invariant setΓ of (1) is

contained in the localization set

K(h) = {x ∈ Rn | hinf ≤ h(x) ≤ hsup}.

The functionh used in the formulation of this result is
called localizing. A refinement of a localization bound
is realized with help of
Theorem 2 Let hj(x), j = 1, 2 be functions from
C∞(Rn). Sets

K1 = K(h1);
K2 = K1 ∩K12,

with

K12 = {x : h2,inf ≤ h2(x) ≤ h2,sup},
h2,sup = sup

S(h2)∩K1

h2(x),

h2,inf = inf
S(h2)∩K1

h2(x),

contain any compact invariant set of the system (1) and
K1 ⊇ K2.

It is evident that if all compact invariant sets are lo-
cated in setsN1 andN2, with N1;N2 ⊂ Rn, then they
are located in the setN1 ∩N2 as well.



2 The Rayleigh-B́enard convection - Lorenz model
The Rayleigh-B́enard convection - Lorenz model

ẋ1 = −σx1 + σy1
ẋ2 = −σx2 − σy2
ẏ1 = rx1 − x1z − y1
ẏ2 = −rx2 + x2z − y2
ż = x1y1 − x2y2 − bz

(2)

was derived by Chen and Price developing the five-
mode truncation scheme, with three modes used by
Lorenz [Lorenz, 1963] to ensure the occurence of
chaos and two other modes chosen to retain symme-
try of the Rayleigh-B́enard convection in the trunca-
tion model, see [Chen and Price, 2006]. We recall that
the Rayleigh-B́enard convection problem describing a
fluid motion in a layer of fluid of uniform depth heated
from below is based on the Boussinesq approxima-
tion applied to a coupled systems involving the Navier-
Stokes equation, thermal conductivity equation, con-
tinuity equation and density approximation. Parame-
ters of the system (2) have the same values as for the
Lorenz system, [Lorenz, 1963]. The resulting system
(2) resembles some important features in the behaviour
of the Lorenz system dynamics. It is also can be seen
from the careful algebraic analysis of right sides of
both of systems. That is why it is not surprising that
it is possible to transfer some localization results ob-
tain earlier for the Lorenz system, see in [Krishchenko
and Starkov, 2006], for the case of the system (2).
Suppose that a systemS has an invariant setM and

the setΩ contains all compact invariant sets ofS. Then
the setM ∩ Ω is a localization set for the systemS|M .
We note that in some cases one can propose a method
of constructing a localization set for the systemS if
we know a localization setω for the systemS|M . It i
clear that in this case the resulting localization set for
S depends on the continuation method ofS|M up toS.
It is found that the system (2) is a special continuation

of the Lorenz system which can be called a mirror con-
tinuation. Based on this continuation we can associate
localizing functions for the system (2) with localizing
functions for the Lorenz system.

3 Symmetrical prolongations

Let us analyse the system (2). The change of variables
y2 → −y2 transforms this system into the system

ẋ1 = −σx1 + σy1
ẋ2 = −σx2 + σy2
ẏ1 = rx1 − x1z − y1
ẏ2 = rx2 − x2z − y2
ż = x1y1 + x2y2 − bz.

(3)

Coordinate3D-planes

Ox1y1z = {x2 = 0, y2 = 0},
Ox2y2z = {x1 = 0, y1 = 0}

are invariant manifolds of system (3).
The restriction of the system (3) on the invariant plane
Ox1y1z coinsides with the Lorenz system

ẋ1 = −σx1 + σy1
ẏ1 = rx1 − x1z − y1
ż = x1y1 − bz.

(4)

just as the restriction of the system (3) on the invariant
planeOx2y2z

ẋ2 = −σx2 + σy2

ẏ2 = rx2 − x2z − y2

ż = x2y2 − bz.

The intersection of the indicated invariant3D-planes
Ox1y1z∩Ox2y2z is the axisOz. The restriction of the
system (3) onOz is the system

ż = −bz.

Let D1 be the set of vector fields onR3 =
{(x1, y1, z)} of the form

φ(x1, y1, z)
∂

∂x1
+ ψ(x1, y1, z)

∂

∂y1
+ ξ(x1, y1, z)

∂

∂z
,

whereξ(x1, y1, z) is a polynomial inx1, y1,

ξ(x1, y1, z) =
s∑

i+j=0

cij(z)xi
1y

j
1,

and let D be the set of vector fields onR5 =
{(x1, x2, y1, y2, z)}.
The mapsymm : D1 → D is called a symmetrical

prolongation of vector fields if

symm(φ(x1, y1, z)
∂

∂x1
+ ψ(x1, y1, z)

∂

∂y1
+

ξ(x1, y1, z)
∂

∂z
) = φ(x1, y1, z)

∂

∂x1
+

φ(x2, y2, z)
∂

∂x2
+ ψ(x1, y1, z)

∂

∂y1
+

ψ(x2, y2, z)
∂

∂y2
+ Symm(ξ(x1, y1, z))

∂

∂z
,

whereSymm(ξ(x1, y1, z)) is a symmetrical prolonga-
tion of a polynomial inx1, y1,

Symm(ξ(x1, y1, z)) = Symm(
s∑

i+j=0

cij(z)xi
1y

j
1) =

c00(z) +
s∑

i+j=1

cij(z)(xi
1y

j
1 + xi

2y
j
2).



Let

F = (−σx1 + σy1)
∂

∂x1
+ (−σx2 + σy2)

∂

∂x2
+

(rx1 − x1z − y1)
∂

∂y1
+

(rx2 − x2z + y2)
∂

∂y2
+ (x1y1 + x2y2 − bz)

∂

∂z

be a vector field of system (3), and

L = (−σx1 + σy1)
∂

∂x1
+ (rx1 − x1z − y1)

∂

∂y1
+

(x1y1 − bz)
∂

∂z

be the vector field of system (4).
ThenL ∈ D1, F = symm(L), and for any polyno-

mial p(x1, y1, z) in x1, y1,

LFSymm(φ(x1, y1, z)) = Symm(LLφ(x1, y1, z)).

At last, we notice that localization sets obtained be-
low by using quadratic surfaces for the system (3) are
the same as for the system (2) because corresponding
localizing functions are even functions respecting the
variablesy1; y2.

4 Ellipsoidal localization

Let us take for the system (4) the localizing function
[Krishchenko and Starkov, 2006]

h = x2
1 + qy2

1 + qz2 − 2(σ + qr)z,

whereq > 0. Then

LLh = 2(−σx2
1 − qy2

1 − qbz2 + (σ + qr)bz).

Let us take for the system (2) the localizing function

H = Symm(h) = x2
1+x

2
2+q(y

2
1+y2

2+z2)−2(σ+qr)z,

Then

LFH = 2(−σ(x2
1 + x2

2)− q(y2
1 + y2

2)− qbz2 +
(σ + qr)bz) = Symm(LLh).

and

SH = {(x1, y1, x2, y2, z) : σ(x2
1 + x2

2) +
q(y2

1 + y2
2) + qbz2 − (σ + qr)bz = 0}

which is an ellipsoid because it is also expressed by

σx2
1 + σx2

2 + qy2
1 + qy2

2 + qb(z − σ + qr

2q
)2 =

R :=
(σ + qr)2b

4q
.

Thus onSH

|x1,2| ≤
√
R

σ
; |y1,2| ≤

√
R

q
;

|z − σ + qr

2q
| ≤

√
R

qb
=
σ + qr

2q
,

and under

0 ≤ z ≤ (σ + qr)/q

we get

qz2 − 2(σ + qr)z ≤ 0,

therefore,

Hsup ≤ [x2
1 + x2

2 + q(y2
1 + y2

2)] |SH
≤ 2

R

σ
+ 2R =

2
R

σ
(σ + 1) =

(σ + qr)2b
2qσ

(σ + 1).

So each compact invariant set is contained in

Kq(H) := {x2
1 + x2

2 + q(y2
1 + y2

2 + z2)−

2(σ + qr)z ≤ (σ + qr)2b(σ + 1)
2qσ

, q > 0}.

The setKq(H) can be written as

{x2
1 + x2

2 + q(y2
1 + y2

2) + q(z − σ + qr

q
)2 ≤

(σ + qr)2(b+ bσ + 2σ)
2σq

, q > 0}.

Since

x2
1 + x2

2 ≤
(σ + qr)2(b+ bσ + 2σ)

2σq
, q > 0,

we have that

x2
1 + x2

2 ≤ min
q>0

(σ + qr)2(b+ bσ + 2σ)
2σq

=

= 2r(b+ bσ + 2σ).



As a result, we get bounds

| xj |≤
√

2r(b+ bσ + 2σ), j = 1; 2. (5)

By the same calculation we get bounds

| yj | ≤ r

√
b

2σ
+
b

2
+ 1, j = 1; 2, (6)

|z − r| ≤ r

√
b

2σ
+
b

2
+ 1. (7)

Now we have that each compact invariant set is con-
tained in the setK defined as

K = ∩q>0Kq(H) =

∩q>0{q2(y2
1 + y2

2 + z2 − 2rz − b+ bσ

2σ
r2) +

q(x2
1 + x2

2 − 2σz − b(1 + σ)r)− b(1 + σ)
σ

2
≤ 0}

which leads to

K = {(y2
1 + y2

2 + z2 − 2rz − b+bσ
2σ r2 ≤ 0,

x2
1 + x2

2 − 2σz − b(1 + σ)r ≤

≤
√

2b(σ + σ2)(2rz + b+bσ
2σ r2 − y2

1 − y2
2 − z2)}.

5 Localization by cylindrical surfaces
5.1 The case I
Let us take for the system (4) the localizing function

[Krishchenko and Starkov, 2006]

h1 = x2
1 − 2σz.

Then

LLh1 = −2σx2
1 + 2bσz.

Therefore the setSh1 is given by

z = b−1x2
1

and

h1 |Sh1
= (1− 2σb−1)x2

1.

Thus if b = 2σ then all compact invariant sets of the
system (4) are located in

K(h1) = {(x1, y1, z) : x2
1 − 2σz = 0}.

If b > 2σ then

h1 inf = 0,
h1 sup = +∞,

and all compact invariant sets are located in

K(h1) = {(x1, y1, z) : x2
1 − 2σz ≥ 0}.

If b < 2σ then

h1 sup = 0,
h1 inf = −∞,

and all compact invariant sets are located in

K(h1) = {(x1, y1, z) : x2
1 − 2σz ≤ 0}.

Now let us consider for the system (2) the localizing
function

H1 = Symm(h1) = x2
1 + x2

2 − 2σz.

Then

LFH1 = −2σ(x2
1 + x2

2) + 2bσz = Symm(LLh1).

Therefore the setSH1 is given by

z = b−1(x2
1 + x2

2)

and

H1 |SH1
= (1− 2σb−1)(x2

1 + x2
2).

Thus if b = 2σ then all compact invariant sets of the
system (2) are located in

K(H1) = {(x1, y1, x2, y2, z) : x2
1 + x2

2 − 2σz = 0}.

If b > 2σ then

H1 inf = 0,
H1 sup = +∞,

and all compact invariant sets are located in

K(H1) = {(x1, y1, x2, y2, z) : x2
1 + x2

2 − 2σz ≥ 0}.



If b < 2σ then

H1 sup = 0,
H1 inf = −∞,

and all compact invariant sets are located in

K(H1) = {(x1, y1, x2, y2, z) : x2
1 + x2

2 − 2σz ≤ 0}.

5.2 The case 2
Let us take for the system (4) the localizing function

[Krishchenko and Starkov, 2006]

h2 = (y2
1 + z2)/2− rz.

Then

LLh2 = −y2
1 − bz2 + brz.

Therefore the setSh is given by

y2
1 = −bz2 + brz

and

h2 |Sh2
= (1− b)z2/2 + r(b− 2)z/2,

where−bz2 + brz ≥ 0. Thus

h2 inf = −r2/2.

If 0 < b ≤ 2 then

h2 sup = 0,

if b > 2 then

h2 sup = r2(b− 2)2/8(b− 1),

and all compact invariant sets are located in

K(h2) = {(x1, y1, z) : y2
1 + z2 − 2rz ≤ 2h2 sup}

because

−r2 ≤ y2
1 + z2 − 2rz

for all y1, z.

In the caseb > 2

K(h2) = {(x1, y1, z) : y2
1 + (z − r)2 ≤ r2b2

4(b− 1)
},

and therefore for all compact invariant sets we have the
localization set

ω1 := {(x1, y1, z) : |y1| ≤
rb

2
√
b− 1

,

|z − r| ≤ rb

2
√
b− 1

}.

Let us take for the system (2) the localizing function

H2 = Symm(h2) = (y2
1 + y2

2 + z2)/2− rz.

Then

LFH2 = −y2
1 − y2

2 − bz2 + brz = Symm(LLh2).

Therefore the setSH2 is given by

y2
1 + y2

2 = −bz2 + brz

and

H2 |SH2
= (1− b)z2/2 + r(b− 2)z/2,

where−bz2 + brz ≥ 0. ThusH2 inf = −r2/2,

H2 sup = 0 if 0 < b ≤ 2;

H2 sup =
r2(b− 2)2

8(b− 1)
, if b > 2,

and all compact invariant sets are located in

K(H2) = {(x1, y1, x2, y2, z) :
y2
1 + y2

2 + z2 − 2rz ≤ 2H2 sup}

because

−r2 ≤ y2
1 + y2

2 + z2 − 2rz

for all y1, y2, z.
In the caseb > 2

K(H2) = {(x1, y1, x2, y2, z) :

y2
1 + y2

2 + (z − r)2 ≤ r2b2

4(b− 1)
},



and therefore for all compact invariant sets we have the
localization set

ω1 = {(x1, y1, x2, y2, z) :

|yi| ≤
rb

2
√
b− 1

, i = 1, 2,

|z − r| ≤ rb

2
√
b− 1

}.

6 Conclusion
In this paper we show how we can localize all com-

pact invariant sets of the Rayleigh-Bnard convection
- Lorenz model with help of localization sets of the
Lorenz system which have been obtained by the au-
thors in the earlier publication. With this goal we con-
struct special symmetries called symmetrical prolon-
gations allowing us to associate not only the Lorenz
system with the Rayleigh-Bnard convection - Lorenz
model but corresponding localizing functions applied
here as well. Our approach essentially simplifies nec-
essary computations for finding bounds of localization
sets.
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