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Abstract
The new methods of solving stabilization problems of

nonlinear systems are presented with use of the sign-
constant Lyapunov functional and Lyapunov functions.
This methods are results extension of [Andreev and
Peregudova, 2005; Andreev and Rumyantsev, 2007;
Andreev, 2009; Fu and Li, 2009; Pavlikov, 2007]. They
allow us to obtain effective solutions of control prob-
lems with programmed motions of mechanical, includ-
ing robotic systems. The motion control problem of the
flipped mathematical pendulum is solved as an exam-
ple.
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1 Problem statement
Consider the control system, whose motion is de-

scribed by a functional-differential equation with delay
[El’sgolz and Norkin, 1971; Hale, 1977]

ẋ(t) = f(t, xt, u), (1)

where x ∈ Rn, CH = {ϕ ∈ C : ‖ϕ‖ < H, 0 < H <
∞}, u ∈ Rm is a control, f : R+ × CH × Rm → Rn
is a continuous function.
Let X = {x : [t0 − h,∞) → DH},
(t0 > 0,DH = {x ∈ Rn : |x| < H}) be a class
of allowable programmed motions, i.e. absolutely
continuous functions, that are provided by the controls
u ∈ U , where U is a some set of functions u = u(t, ϕ),
that are piecewise continuous in domain R+ × CH .
Let u ∈ U be the some control, f0 = f0(t, ϕ) =
f(t, ϕ, u0) in the continuity domain R+ × D, D ⊂
CH of the function u = u0(t, ϕ). Redefine f0(t, ϕ) to
F (t, ϕ) in the points of discontinuity and consider the

functional-differential inclusion

ẋ(t) ∈ F (t, xt). (2)

Let x0(t) ∈ X be a some programmed motion, which
is provided by the control u = u0(t, ϕ), so that the
relation

ẋ0(t) ∈ F (t, x0t )

is valid. Moreover, we assume that the solution x =
x0(t) of the inclusion (2) is unique. One can define the
set of limit inclusions

ẋ(t) ∈ F ∗(t, xt). (3)

Let x0 ∈ X (or xt ∈ CH) be the some programmed
motion, u0 ∈ U be the realizing control, {x∗(t)} the
limit solution (3) to x0(t).

2 Theorems about stabilization
The following theorems allow us to determine the con-

ditions under which the control u = u0(t, ϕ) is stabi-
lizing for the motion x = x0(t).

Theorem 1. Suppose that there is a functional
V : R+ × CH1

→ R such that

1. a1(|ϕ(0)− x0(t)|) 6 V (t, ϕ) 6 a2(‖ϕ− x0t‖);
2. V̇ (t, ϕ) 6 −W (t, ϕ) 6 0;
3. for each limit pair (F ∗,W ∗) the set {W ∗(t, ϕ) =

0} does not contain the motions of (3), except for
x = x∗(t).

Then the control u0(t, ϕ) solves the problem of stabi-
lizing x0(t).

Theorem 2. Suppose that there is a functional V =
V (t, ϕ) such that



1. 0 6 V (t, ϕ) 6 a0(‖ϕ− x0t‖);
2. V̇ (t, ϕ) 6 −W (t, ϕ) 6 0;
3. for each limit pair (F ∗,W ∗) the set {V −1(t, c) =
c = c0 = const > 0} contains none of the solu-
tions (3);

4. the family of the limit solutions {x∗(t)} to x0(t)
accordingly uniformly asymptotically stable rela-
tive to the family {(F ∗,W ∗) , V −1∞ (t, 0)}.

Then the control u0(t, ϕ) solves the problem of stabi-
lizing x = x0(t).

Theorem 3. Suppose that there is a Lyapunov function
V = V (t, x), V ∈ C1 such that

1. a1(|x− x0(t)|) 6 V (t, x) 6 a2(|x− x0(t)|);
2. V̇ (t, ϕ) 6 0 for each function ϕ ∈ C such that
V (t+ s, ϕ(s)− x0(t)) 6 V (t, ϕ(0)− x0(0));

3. |V̇ | >W > 0 for all (t, ϕ) ∈ R+ × CH1
;

4. for all c0 > 0 and each pair (V ∗,W ∗) there does
not exist continuous curves υ : R → DH1 such
that for all τ ∈ R there is a θ ∈ [τ − h, τ ], so
the equalities

V ∗(θ, υ(θ)) = c,W ∗(θ, υθ) = 0

are satisfied simultaneously.

Then the control u = u0(t, ϕ) solves the problem of
stabilizing x = x0(t).

Assume that the controls u =
(u1(t, ϕ), u2(t, ϕ), . . . , um(t, ϕ)) are piecewise
continuous and have a discontinuity at the surface
{ψj(t, ϕ) = 0}

(
j = 1, l

)
, where ψj : R+ × CH → R

are bounded, uniformly continuous functions.

Theorem 4. Suppose that there is a Lyapunov func-
tional V = V (t, ϕ) such that

1. a1(|ψ(t, ϕ)|) 6 V (t, ϕ) 6 a2(‖ϕ− x0t‖);
2. V̇ ∗(t, ϕ) 6 a3(|ψ(t, ϕ)|) for each function ϕ ∈ C

such that V (t + s, ϕ(s) − x0(t)) 6 V (t, ϕ(0) −
x0(0));

3. the family {x = x∗t } is asymptotically stable rel-
ative to the set {ψ∗(t, x) = 0} uniformly accord-
ingly with respect to {ẋ(t) ∈ F ∗(t, xt)}.

Then the control u = u0(t, ϕ) is stabilizing for the mo-
tion x = x0(t).

Theorem 5. Assume that there is a Lyapunov func-
tional V = V (t, ϕ) such that

1. the conditions 1) and 3) of the theorem 4 are satis-
fied;

2. in the second condition of the theorem 4 a3 ∈ K.

Then, in addition to the conclusion of the theorem 4
each motion (2) reaches the surface {ψ(t, ϕ) = 0} for
the finite time T , xT ∈ {ψ(T, ϕ) = 0}.

3 Example 1
Consider the one-dimensional control system

ẋ = u. (4)

Determine a class of nonlinear controls of the form

u = −f(t, x(t− h(t)), f(t, 0) = 0,

0 6 h(t) 6 h0, h0 > 0
(5)

that stabilize x = 0.
We assume that f ∈ C1, its derivatives f ′t and f ′x are

bounded, uniformly continuous with respect to (t, x) ∈
R+ × R, |f(t, x)| > a(|x|), a ∈ K is a monotonically
increasing function.
Choose the Lyapunov function of the form

V =
1

2
f2(t, x).

We have the equalities

f(t, x(t− h(t))) = f(t, x(t))−

−
t∫

t−h(t)

f ′x(t, x(τ))ẋ(τ) dτ =

f(t, x(t))−
t∫

t−h(t)

f ′x(t, x(τ))f(τ, x(τ − h(τ))) dτ.

For any function ϕ ∈ [−2h0, 0] such that

f2(t+ s, ϕ(s)) 6 f2(t, ϕ(0))

we find

V̇ 6 f ′t(t, ϕ(0))f(t, ϕ(0))−
f2(t, ϕ(0)) +mf2(t, ϕ(0))h(t) 6

6 −µ0f
2(t, ϕ(0)) 6 0

if

f ′t(t, ϕ(0))f(t, ϕ(0))+ 6

6 (1− µ0 −mh0) f2(t, ϕ(0)).
(6)

By the theorem 3 the control (5) solves the problem of
stabilizing x = 0 of the system (4), if the condition (6)
is met.



4 Example 2
Consider stabilization problem of the programmed

motion

(ϕ0(t), ϕ̇0(t)) , |ϕ̇0(t)| 6 m = const, |ϕ̈0(t)| 6 l = const

of the flipped mathematical pendulum

ϕ̈ = ω2
0 sinϕ+ u.

Let us assume that the control u is determined with
delay by ϕ

u = −µsign
(
ϕ̇(t)− ϕ̇0(t)+

+ k sin
ϕ(t− h)− ϕ0(t− h)

2

)
, (k > 0) . (7)

For the functional derivative

V =
1

2

(
ϕ̇(t)− ϕ̇0(t)+

+ k sin
ϕ(t− h)− ϕ0(t− h)

2

)2

we find the estimation

V̇ 6 −µ0

∣∣∣∣ϕ̇(t)− ϕ̇0(t)+

+ k sin
ϕ(t− h)− ϕ0(t− h)

2

∣∣∣∣ 6 0

if µ− ω2
0 −m > 2µ0 > 0.

One can show that the motion (ϕ0(t), ϕ̇0(t)) uni-
formly asymptotically stable relative to the motions
(ϕ(t), ϕ̇(t)) that lie on the set

ϕ̇(t) 6= k sin
ϕ(t− h)− ϕ0(t− h)

2
= ϕ̇0(t)

where h < 1/m. By the theorem 5 the control (7) with
delay h < 1/m solves the stabilization problem of the
given pendulum motion (ϕ0(t), ϕ̇0(t)).
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