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Abstract

The new methods of solving stabilization problems of
nonlinear systems are presented with use of the sign-
constant Lyapunov functional and Lyapunov functions.
This methods are results extension of [Andreev and
Peregudova, 2005; Andreev and Rumyantsev, 2007;
Andreev, 2009; Fu and Li, 2009; Pavlikov, 2007]. They
allow us to obtain effective solutions of control prob-
lems with programmed motions of mechanical, includ-
ing robotic systems. The motion control problem of the
flipped mathematical pendulum is solved as an exam-
ple.
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1 Problem statement
Consider the control system, whose motion is de-

scribed by a functional-differential equation with delay
[El’sgolz and Norkin, 1971; Hale, 1977]

i(t) = f(t, e, u), (1)

wherex € R", Cyp ={p € C: |l¢|| < H,0< H <
oo}, u € R™is acontrol, f: RT x Cyg x R™ — R"
is a continuous function.

Let X = {{EZ [t(] — h7 OO) — DH},
(to>0,Dg ={x eR™: |z|] <H}) be a class
of allowable programmed motions, i.e. absolutely
continuous functions, that are provided by the controls
u € U, where U is a some set of functions u = u(t, ¢),
that are piecewise continuous in domain R™ x Cp.

Let u € U be the some control, fy = fo(t,¢) =
f(t,,u%) in the continuity domain Rt x D, D C
Cp of the function u = u°(t, ©). Redefine fo(t, ) to
F(t, ) in the points of discontinuity and consider the

functional-differential inclusion
z(t) € F(t,x¢). 2)

Let 2%(t) € X be a some programmed motion, which
is provided by the control u = u°(t,¢), so that the
relation

i0(t) € F(t,z?)

is valid. Moreover, we assume that the solution x =
20(t) of the inclusion (2) is unique. One can define the
set of limit inclusions

#(t) € F*(t, ;). 3)

Let 2° € X (orz; € Cy) be the some programmed
motion, u® € U be the realizing control, {z*(¢)} the
limit solution (3) to 2°(t).

2 Theorems about stabilization

The following theorems allow us to determine the con-
ditions under which the control u = u°(t, ¢) is stabi-
lizing for the motion z = z°(¢).

Theorem 1. Suppose that there is a functional
V:R* x Cy, — R such that

1. a1(lp(0) —2°(1)]) < V(¢ 0) < az(lle — 2f|1);

3. for each limit pair (F*,W*) the set {W*(t,p) =
0} does not contain the motions of (3), except for
x = z*(t).

Then the control u°(t, ) solves the problem of stabi-
lizing z°(t).

Theorem 2. Suppose that there is a functional V. =
V(t, ) such that



1L 0<V(t, o) <aollle —2f|);

2 V(o) < ~W(tp) <0;

3. for each limit pair (F*,W*) the set {V ~1(t,c) =
¢ = ¢o = const > 0} contains none of the solu-
tions (3);

4. the family of the limit solutions {x*(t)} to x°(t)
accordingly uniformly asymptotically stable rela-
tive to the family {(F*,W*),V.Z1(t,0)}.

Then the control u°(t, @) solves the problem of stabi-
lizing x = 2°(t).

Theorem 3. Suppose that there is a Lyapunov function
V =V(t,x), V € C' such that

Loay(lo = 22(t)]) < V(£ ) < ag(fo = 22(2)));

2. V(t, ©) < 0 for each function ¢ € C such that
V(t+s,0(s) = 2°(t)) < V(t,9(0) — 2°(0));

3|V =W >0forall (t,p) € RT x Cy,;

for all ¢y > 0 and each pair (V*,W*) there does

not exist continuous curves v: R — Dy, such

that for all T € R there is a § € [T — h, 7], so

the equalities

A

V*(0,0(0)) = ¢, W*(0,vg) =0

are satisfied simultaneously.

Then the control u = u°(t, ) solves the problem of
stabilizing v = z°(t).

Assume that the controls U =
(ur(t, @), uz(t, @), ..., um(t,p)) are  piecewise
continuous and have a discontinuity at the surface
{v;(t,) =0} (j =1,1), where v;: R* x Cy = R
are bounded, uniformly continuous functions.

Theorem 4. Suppose that there is a Lyapunov func-
tional V.=V (t, ) such that

1 a9t 9)) <Vt ) < aslllp — 2]);

2. V*(t,p) < as(|v(t, p)|) for each function p € C
such that V (t + s, p(s) — 2°(t)) < V(t,(0) —
29(0));

3. the family {x = x}} is asymptotically stable rel-
ative to the set {1p*(t,x) = 0} uniformly accord-
ingly with respect to {x(t) € F*(t,x:)}.

Then the control u = u°(t, ) is stabilizing for the mo-
tion x = z°(t).

Theorem 5. Assume that there is a Lyapunov func-
tional V.=V (t, ) such that

1. the conditions 1) and 3) of the theorem 4 are satis-

fied;

2. in the second condition of the theorem 4 a3 € K.

Then, in addition to the conclusion of the theorem 4
each motion (2) reaches the surface {1 (t,p) = 0} for
the finite time T, x7 € {¢(T, ) = 0}.

3 Example 1
Consider the one-dimensional control system

&= u. “4)

Determine a class of nonlinear controls of the form

w=—f(ta(t - h(t)), f(£,0) =0,

5
0 < h(t) < ho, ho >0 ®

that stabilize z = 0.

We assume that f € C, its derivatives f; and f., are
bounded, uniformly continuous with respect to (¢, z) €
R* x R, |f(t,z)| = a(|z]), a € K is a monotonically
increasing function.

Choose the Lyapunov function of the form

1
V= 5 f2(t, ).

We have the equalities

fQta(t = h(t)) = f(t,2(t)—

t

- / fo(t,(r))i(r) dr =
t—h(t)

ft,a(t) - fet2(r) f(r,2(m = h(r))) dr.

t—h(t)
For any function ¢ € [—2hy, 0] such that

2t +s,0(5) < f2(t0(0)

we find
V < f{(t,0(0)) f(t,0(0))—
F2(t,0(0)) + mf2(t, 0(0)h(t) <
< —nof2(t,9(0) <0
if

ft’(w(O))f(t’w(O)): < ©

< (1 — po — mhg) f2(t, (0)).

By the theorem 3 the control (5) solves the problem of
stabilizing x = 0 of the system (4), if the condition (6)
is met.



4 Example 2

Consider stabilization problem of the programmed
motion

(0(t): @o(t)) , o(t)] < m = const, |@o(t)] <1 = const

of the flipped mathematical pendulum

gb:wgsingo—i—u.

Let us assume that the control u is determined with
delay by ¢

u/mgn<¢@>¢aw+

p(t—h) — ot —h)
2

+ ksin ),(k>0). 7

For the functional derivative

v =3 (60 - polt)+

+ ksin

w(th)wo(th)>2
2

we find the estimation

V < —po|@(t) — o(t)+

p(t = h) = ot —h)

ki
+ ksin 5

<0

if g —wig —m = 2p > 0.

One can show that the motion (¢ (t), ¢o(t)) uni-
formly asymptotically stable relative to the motions
(p(t), $(t)) that lie on the set

(t—h) — ot —h)

o(t) # ksin? 5

$o(t)

where h < 1/m. By the theorem 5 the control (7) with
delay h < 1/m solves the stabilization problem of the
given pendulum motion (g (t), ¥o(t)).
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