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Abstract
The initial – boundary value problem is considered

for the Hamilton-Jacobi of evolutionary type in the case
when the state space is one-dimensional. The Hamil-
tonian depends on the state and momentum variables,
and the dependence on the momentum variable is ex-
ponential. The problem is considered on fixed bounded
time interval, and the state variable changes from a given
fixed value to infinity. The initial and boundary functions
are subdifferentiable. It is proved that such a problem
has a continuous generalized (viscosity) solution. The
representative formula is given for this solution. Suffi-
cient conditions are indicated under which the general-
ized solution is unique. Hamilton-Jacobi equations with
an exponential dependence on the momentum variable
are atypical for theory, but such equations arise in prac-
tical problems, for example, in molecular genetics.
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1 Introduction
Some practical problems and applied research, in par-

ticular, in molecular genetics [Saakian, Rozanova and
Akmetzhanov, 2008], lead to the need to study Hamil-
ton – Jacobi equations with an exponential dependence
of the Hamiltonian on the momentum (impulse) variable.
Such equations are atypical for the theory of Hamilton –
Jacobi equations, so there are no general existence and
uniqueness theorems for solutions of equations of this
type. Moreover, such equations, as a rule, do not have
classical solutions, and the solution must be understood

in some generalized sense.
This paper relies on the concept of a viscosity/minimax

approach [Crandall and Lions, 1983; Subbotin, 1995]
to defining a solution. This concept of solution is used
in various applications of partial differential equations,
in particular, in optimal control and differential games.
However, exact formulas for solutions can be obtained
in very few special cases. Therefore, a lot of research
is aimed at developing methods for the numerical con-
struction of solutions (see, for example, [Kolpakova and
Tokmantsev, 2012; Filippova, 2013]).

An initial-boundary value problem for the Hamilton-
Jacobi equation of the evolutionary type with a one-
dimensional state vector is considered in this paper. The
initial and boundary function are supposed to be subd-
ifferentiable and such that their Dini derivatives are fi-
nite. A procedure to construct a continuous viscosity so-
lution is proposed, and a representative formula for this
solution is obtained. Constructions are based on solv-
ing variational problems with moving boundaries and
on the method of generalized characteristics [Subbotina,
2006]. Also, sufficient conditions are indicated under
which such a solution is unique.

The problem considered here, which is of independent
interest, arises when constructing a continuous viscous
solution to an initial problem with a discontinuous three-
component Hamiltonian [Shagalova, 2021]. Earlier, the
Cauchy problem for an equation of such a type with a
concave Hamiltonian was studied [Subbotina and Sha-
galova, 2016] in a domain bounded in the state variable.

2 Problem Statement
Let time moment T > 0 and value x∗ ∈ R be given.

In the region G+ = {(t, x)|0 < t < T, x > x∗} the



274 CYBERNETICS AND PHYSICS, VOL. 10, NO. 4, 2021

following Hamilton-Jacobi equation is considered

∂u

∂t
+H

(
x,
∂u

∂x

)
= 0. (1)

Hamiltonian has the form

H(x, p) = f(x)ep. (2)

Here f(·) is continuously differentiable non-decreasing
function such that

0 < f(x∗) ≤ f(x) < K, x ∈ (x∗,∞), (3)

where K is a given positive number. Continuous func-
tions u0 : R → R and ϕ : [0, T ] → R are also given
such that

D−u0(x) 6= ∅ ∀x ∈ R; (4)
D−ϕ(t) 6= ∅ ∀t ∈ (0, T ). (5)

Here D−ϕ(t) denotes the subdifferential of function ϕ
at the point t.

It is supposed that the left derivative u′0−(0) of func-
tion u0 at point x∗ and the left derivative ϕ′−(0) of func-
tion ϕ at point 0 exist, and the following equalities hold

ϕ(0) = u0(x∗), ϕ′−(0) = u′0−(x∗). (6)

We also assume that all Dini derivatives of functions
u0 and ϕ are finite at all points x ∈ R and at all points
t ∈ (0, T ), respectively.

It is required to construct a viscosity solution [Crandall
and Lions, 1983] u(·, ·) of the equation (1) which is con-
tinuous on the set clG+ – the closure of the domain G+,
and such that the following initial and boundary condi-
tions are satisfied

u(0, x) = u0(x), x ∈ R, x ≥ x∗; (7)
u(t, x∗) = ϕ(t), t ∈ [0;T ]. (8)

3 Subdifferentials and Viscosity Solutions
Let us recall some known concepts of nonsmooth anal-

ysis that we use in the paper.
Let a set G ⊂ Rn be given. The symbol C(G) denotes

the set of functions that are continuous onG. For vectors
ξ ∈ Rn and h ∈ Rn their inner product will be denoted
as 〈ξ, h〉. The norm of vector h will be denoted as |h|.

Let g(·) ∈ C(G), and y ∈ G.
The subdifferential of function g at point y is the set

D−g(y) ={
ξ ∈ Rn

∣∣∣∣lim inf
h→0

g(y + h)− g(y)− 〈ξ, h〉
|h|

≥ 0

}
.

The superdifferential of function g at point y is the set
D+g(y) ={

ξ ∈ Rn
∣∣∣∣lim sup
h→0

g(y + h)− g(y)− 〈ξ, h〉
|h|

≤ 0

}
.

Remark. It should be noted that the sub-/super- differ-
entials defined above are commonly known as Fréchet
sub/super- differentials (see, for example, [Kruger,
2003]).

It is known that a continuous function g(·) is (Fréchet)
differentiable at y ∈ G if and only if D−g(y) ∩
D+g(y) 6= ∅. Moreover, in this case, D−g(y) =
D+g(y) = Dg(y), where Dg(y) denotes the Fréchet
derivative of g at point y.

Definition 1. Continuous function g(·) will be called
subdifferentiable if at each interior point of its domainG
its subdifferential is not empty:

D−g(y) 6= ∅, ∀y ∈ intG.

For any upper continuous function the set of points at
which it is superdifferentiable is dense [Ferrera, 2014,
Theorem 4.21]. Any subdifferentiable function is con-
tinuous, so the set of its differentiability points is dense
too.

Let ψ(·) be a continuous function of one variable, ψ :
I → R, where I is an interval, I ⊆ R. Then, for any
y ∈ I , four Dini derivatives are defined. The lower left
and upper left Dini derivatives are defined respectively
as

ψ−(y) = lim inf
h→−0

ψ(y + h)− ψ(y)

h
,

ψ−(y) = lim sup
h→−0

ψ(y + h)− ψ(y)

h
.

The lower right and upper right Dini derivatives are de-
fined similarly.

ψ+(y) = lim inf
h→+0

ψ(y + h)− ψ(y)

h
,

ψ+(y) = lim sup
h→+0

ψ(y + h)− ψ(y)

h
.

The following statement is valid.

Lemma 1. Let ψ(·) be a subdifferential function of one
variable, ψ : I → R, where I is an interval, I ⊆ R. If
for all y ∈ I all Dini derivatives ψ−(y), ψ−(y), ψ+(y),
ψ+(y) are finite numbers, then subdifferential Dψ−(y)
is bounded for all y ∈ I and ψ(·) is differentiable almost
everywhere on I .

Proof. It follows from the definitions of the subdiffer-
ential and the Dini derivatives that the subdifferential is
closed interval in R.

Dψ−(y) = [ψ−(y), ψ+(y)], y ∈ I. (9)

Since Dini derivatives are finite numbers, we obtain from
(9) that the subdifferential is a bounded segment.
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By Denjoy-Young-Saks theorem [Bruckner, 1994,
Theorem 4.4], with the possible exception of a null set,
interval I on which continuous function ψ(·) is defined
can be decomposed into four sets:
A1, on which ψ(·) has a finite derivative;
A2, on which ψ−(y) = −∞, ψ+(y) = +∞,

ψ−(y) = ψ+(y) 6= ±∞;
A3, on which ψ−(y) = +∞, ψ+(y) = −∞,

ψ−(y) = ψ+(y) 6= ±∞;
A4, on which ψ−(y) = ψ+(y) = −∞,

ψ−(y) = ψ+(y) = +∞.
Since the Dini derivatives are finite, the sets A2, A3

and A4 are empty. So, function ψ(·) is differentiable
almost everywhere on I .

The viscosity solution of the equation (1) can be de-
termined in many ways different in form, but essentially
equivalent. Here it is more convenient for us to define
such a solution using the differential inequalities for sub-
and superdifferentials.

Definition 2. Viscosity solution of equation (1) is a
continuous function u(t, x) : [0, T ]× [x∗,∞)→ R such
that the following inequalities are valid

a+H(x, s) ≤ 0, (10)

∀(t, x) ∈ (0, T )× (x∗,∞), (a, s) ∈ D+u(t, x),

a+H(x, s) ≥ 0, (11)

∀(t, x) ∈ (0, T )× (x∗,∞), (a, s) ∈ D−u(t, x).

4 Construction of the Solution. Main Result
The Hamiltonian has the form (2), where f(x) > 0.

So, the HamiltonianH is convex with respect to momen-
tum variable p. Consider the conjugate to Hamiltonian
function H∗, which is defined as

H∗(x, q) = sup
p∈R
{pq −H(x, p)} .

It is easy to see that for the Hamiltonian (2) the conjugate
function has the following form.

H∗(x, q) =


+∞, if q < 0
0, if q = 0

q ln
(

q
f(x)

)
− q, if q > 0.

The characteristic system for equation (1) with Hamil-
tonian (2) has the form

ẋ = Hp(x, p) = f(x)ep = H(x, p),

ṗ = −Hx(x, p) = −f ′(x)ep, (12)
u̇ = pHp(x, p)−H(x, p) = (p− 1)H(x, p).

Here symbolsHx andHp denote derivatives with respect
to the variables x and p, respectively.

The initial manifold from which it is necessary to re-
lease characteristics is split into two parts.

{(t, x, z)|t = 0, x ≥ x∗, z = u0(x)}∪
{(t, x, z)|0 ≤ t < T, x = x∗, z = ϕ(t) = u(t, x∗)},

so one must consider system (12) with two sets of initial
conditions.

I. For characteristics starting at the moment t = 0 ini-
tial conditions are of the next form

x(0, y) = y, p(0, y) ∈ D−u0(y), z(0, y) = u0(y),
(13)

where y ∈ [x∗;∞). If initial function u0 is non-
differentiable at point y then the whole bunch of char-
acteristics starts from point (0; y). It follows from
Lemma 1 that on the line t = 0 the set of such points
of non-differentiability has measure zero.

II. For characteristics starting at the moment t = τ,
τ ∈ (0, T ) from points on line x = x∗ initial conditions
have the form

x(τ) = x∗, p(τ) ∈ D−ϕ(τ), z(τ) = ϕ(τ). (14)

Here ϕ(τ) = u(τ, x∗). If ϕ is non-differentiable at the
point τ then the whole bunch of characteristics starts
from point (τ ;x∗). It follows from Lemma 1 that the
set of such points of non-differentiability has measure
zero.

It is not difficult to receive from the first two equations
of system (12) that p = − lnCf(x), and state com-
ponents of characteristics are straight lines of the form
x = x0 + f(x0)ep0t. Note that the slopes f(x0)ep0 of
all these lines are positive.

Let

Γ+ = {(t, x)|t = 0, x ≥ x∗}∪
{(t, x)|0 ≤ t < T, x = x∗}.

For point (t̄, x̄) ∈ G+ defineX(Γ+; t̄, x̄) as the set of all
state characteristics x(·) starting from Γ+ such that the
condition x(t̄) = x̄ is satisfied. One can check that the
set X(Γ+; t̄, x̄) is not empty.

Now, relying on the method of generalized character-
istics, one can write down the following representative
formula for solution of the initial-boundary value prob-
lem (1)-(8). u(t, x) =

min
X(Γ+; t, x)

u(τ \, x\) +

t∫
τ\

(
p(τ)Hp(x(τ), p(τ))

−H(x(τ), p(τ))
)
dτ

 . (15)

Here (τ \, x\) – point in Γ+ from which the state char-
acteristic x(·) starts; p(·) – the corresponding impulse
(momentum) characteristic,

u(τ \, x\) =

{
u0(x\), if τ \ = 0
ϕ(τ \), if 0 ≤ τ \ < T, x\ = x∗.

Note that the minimum in the expression (15) is attained.
So, now one can formulate the main result of this paper

as the following statement.
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Theorem 1. There exists a continuous viscosity solution
u : [0, T ] × [x∗,∞) → R to initial - boundary problem
(1)-(8).

Proof. It is not difficult to see that function u de-
fined by representative formula (15) is continuous on
[0, T ] × [x∗,∞) and satisfies initial condition (7) and
boundary condition (8). By construction, this function
satisfies differential inequalities (10), (11). So, function
(15) is a continuous viscosity solution to initial - bound-
ary problem (1)-(8).

5 On Uniqueness of the Solution
In the general case, it cannot be argued that the so-

lution to the initial-boundary problem (1)-(8) is unique.
Below in this section we give two statements containing
sufficient conditions under which the solution is unique.

Theorem 2. Let M > x∗. In the bounded region

GM+ = {(t, x)|0 ≤ t ≤ T, x∗ ≤ x < M}

the solution to initial-boundary Problem (1)-(8) is
unique.

Proof of Theorem 2 is based on the fact that in the
bounded region GM+ the momentum variable p is also
bounded, and HamiltonianH is Lipschitz continuous, so
the known [Subbotin, 1995] uniqueness conditions for
the minimax / viscosity solution are satisfied.

Theorem 3. Let f(·) be a constant function, f(x) =
f(x∗), ∀x ≥ x∗, and function u0 satisfy the global Lip-
schitz condition

|u0(x1)− u0(x2)| ≤ L|x1 − x2|, x1 ∈ R, x2 ∈ R.

Then the solution to initial-boundary Problem (1)-(8) is
unique.

Proof of Theorem 3 is based on using known [Bardi
and Evans, 1984] Hopf formula for Hamilton –Jacobi
equation with convex Hamiltonian.

The solution, the construction of which is described in
the previous section, in the domain G+ is formed from
the characteristics — solutions of the system of ordinary
differential equations (12). In this case, two types of
characteristics are considered: the first start at the mo-
ment t = 0 with the initial conditions (13), and the sec-
ond start at the moments τ ∈ [0, T ) with the initial con-
ditions (14).

Characteristics of the second type are involved in the
formation of a solution only in a bounded region. There
exists numberK > x∗ such that in the regionG+\clGK+
the solution is constructed only from characteristics of
the first type, and in this domain the solution of the prob-
lem (1)-(8) coincides with the solution of the Cauchy
problem for the following Hamilton–Jacobi equation

∂u

∂t
+ f(x∗)e∂u/∂x = 0, t ∈ (0, T ), x ∈ R (16)

with initial condition

u(0, x) = u0(x), x ∈ R (17)

It follows from [Bardi and Evans, 1984, Theorem 2.1]
that viscosity solution of the problem (16), (17) is
unique. Let a > 0. Since the viscosity solution of the
problem (1)-(8) is unique in the domainsG+ \clGK+ and
GK+a

+ , it is unique in the domain G+.

Acknowledgements
The work was supported by Russian Foundation for

Basic Research, project No. 20-01-00362.

References
Bardi, M. and Evans, L. C. (1984) On Hopf’s formulas

for solutions of Hamilton-Jacobi equations. Nonlinear
Analysis: Theory, Methods & Applications. vol. 8(11),
pp. 1373–1381.

Bruckner, A. (1994). Differentiation of real functions.
CRM monograph series, vol. 5, American Mathemati-
cal Society.

Crandall, M.G. and Lions, P.L. (1983) Viscosity so-
lutions of Hamilton–Jacobi equations. Trans. Amer.
Math. Soc. vol. 277(1), pp. 1–42.

Ferrera, J. (2014). An introduction to Nonsmooth Analy-
sis. Elsevier/Academic Press, Amsterdam.

Filippova, T. (2013) State Estimation for a Class of Non-
linear Dynamic Systems through HJB Technique. Cy-
bernetic and Physics. vol. 2(3), pp. 127–132.

Kruger, A.Ya. (2003) On Fréchet Subdifferentials. J.
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