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Abstract
In this report the Hamilton-Jacobi canonical sufficient

conditions of global optimality are developed. These
conditions are based on using sets of strongly mono-
tone nonsmooth functions of Lyapunov type, which
depend on initial data (t0, x0) (or final (t1, x1)). Be-
ing solutions of the corresponding Hamilton-Jacobi in-
equalities, these functions allow us to obtain lower
bounds for the cost functionals and sufficient global op-
timality conditions in optimal control problems. Some
applications of weakly monotone Lyapunov like func-
tions are shortly discussed.
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1 Introduction
The report is devoted to development of sufficient

global optimality conditions based on the solutions to
Hamilton-Jacobi inequalities for optimal control prob-
lems for the following dynamic system (S):

ẋ = f(t, x, u), u(t) ∈ U.

Solutions ϕ(t, x) to Hamilton-Jacobi inequalities and
equation are interpreted as Lyapunov functions in the
wide sense, called L-functions for short.
It is well-known that there are two types of L-

functions, namely, strongly and weakly monotone ones
[Clarke, Ledyaev, Stern and Wolenski, 1998]. For in-
stance, we say that a function ϕ : G → R, where
G ⊂ R × Rn, is strongly increasing on G if the func-
tion t → ϕ(t, x(t)) does not decrease along all tra-
jectories of system (S) which go through G, i.e., such
that graphx(·) ⊂ G. If ϕ(t, x(t)) does not decrease
along at least one trajectory passing through G, then ϕ

is weakly increasing on G. Strongly and weakly de-
creasing functions are defined in a similar way. Note
that it is not so important if L-function decreases or
increases. A strongly increasing L-function, for exam-
ple, becomes strongly decreasing just by sign reversal.
The principal question is whether the function is mono-
tone along all trajectories of the system or at least along
one of them. We denote by Φ+ the set of all strongly
increasing on Rn+1 L-functions.
The L-functions play a fundamental role in control

theory, and good overviews of modern theory of gener-
alized solutions to Hamilton-Jacobi equations and in-
equalities and their various applications are given in
[Clarke, Ledyaev, Stern and Wolenski, 1998; Bardi and
Capuzzo-Dolcetta, 1997; Subbotin, 1995].
The strongly monotone L-functions have rich applica-

bility in optimal control theory. For instance, the suf-
ficient conditions, proposed by Carathéodory in calcu-
lus of variations [Ioffe and Tikhomirov, 1979; Young,
1969], and by R. Bellman [Fleming and Rishel, 1975;
Vinter, 2000] and V.F. Krotov [Krotov, 1996; Krotov
and Gurman, 1973] in optimal control, involve strongly
monotone functions exactly. They are called some-
times verification functions, Bellman functions, Kro-
tov functions or K-functions, etc. The functions from
Φ+ also appear largely in numerous works on gen-
eralizations and refinements of these sufficient condi-
tions (in addition to the already mentioned references,
see surveys in [Dykhta, 2004; Krotov, 1996; Clarke,
1983; Gurman, 1997; Vinter, 2000; Dykhta and Sam-
sonyuk, 2011]). In particular, these generalizations in-
clude canonical optimality theory supposed in [Dykhta,
2004; Dykhta, 1990; Milyutin, 2000; Milyutin and Os-
molovskii, 1998].
Although many sufficient optimality conditions that

use L-functions (and Hamilton-Jacobi inequalities)
were conversed into necessary ones [Kotsiopoulos
and Vinter, 1993; Clarke and Nour, 2005], for op-
timal control problems with general endpoint con-
straints and cost functionals such conversions have



not yet obtained. Therefore, we suggest to extend
the class of used L-functions by introducing func-
tions V (t, x; t0, x0) (or V (t, x; t1, x1)), which para-
metrically depend on initial data (t0, x0) = (t0, x(t0))
(or final data (t1, x1) = (t1, x(t1))). Such L-functions
we call positional and functions of type ϕ(t, x) are
called ordinary. Recent researches [Dykha, 2010] sug-
gest that such extension of theL-function class is rather
useful, and probably it will admit to obtain not only suf-
ficient, but also necessary optimality conditions. How-
ever, in this report we discuss just only sufficient opti-
mality conditions based on a modification of canonical
theory with positional L-functions.
The limits on the report make it impossible to dwell

on applications of weakly monotone L-functions in op-
timal control. Nevertheless, let us notice that such L-
functions play an important role in issues of invariance,
controllability and attainability [Clarke, Ledyaev, Stern
and Wolenski, 1998; Guseinov and Ushakov, 1990;
Kurzhanskii and Filippova, 1993], in modern theory
of dynamical programming [Clarke, Ledyaev, Stern
and Wolenski, 1998; Clarke, Ledyaev and Subbotin,
1997; Subbotin, 1995; Bardi and Capuzzo-Dolcetta,
1997] and in numerical methods of control improve-
ment [Dykhta, 2009]. These problems may be studied
via positional L-functions as well.

2 Problem statement
Let us consider the following optimal control problem

(P ) in Mayer form with general (mixed) endpoint con-
straint and cost functional:

J(σ) = l(q)→ min; q ∈ Q,
ẋ = f(t, x, u), u(t) ∈ U. (1)

Here, q = (t0, x(t0); t1, x(t1)) is an endpoint vector,
a pair σ = (x(t), u(t) | t ∈ ∆) describes a process of
system (1), the time interval ∆ = [t0, t1] depends on σ,
x(·) and u(·) are absolutely continuous and measurable
bounded functions defined on ∆, dimx = n, dimu =
m. Let us denote by Σf and Σ the set of all processes
of the control system (1) and the set of processes that
are feasible in (P ) (that satisfy the endpoint constraint),
respectively.
For the sake of simplicity, we suppose everywhere that

functions f(t, x, u), l(q) are continuous with respect to
all arguments, Q is a closed set. All additional assump-
tions will be specified as necessary.
Let σ̄ = (x̄(t), ū(t) | t ∈ ∆̄ = [t̄0, t̄1]) ∈ Σ be

an examined process with the endpoint vector q̄ =(
t̄0, x̄(t̄0); t̄1, x̄(t̄1)

)
.

3 Positional L-functions and canonical sufficient
global optimality conditions

Let us rigorously define a notion of positional strongly
increasing L-function.

Definition 1. We say that a continuous function
V (t, x; t0, x0) : R2n+2 → R is a positional strongly
increasing L-function, if the following hold:

V (t0, x0; t0, x0) ≥ 0, ∀ (t0, x0) ∈ Rn+1; (2)

(
∀(t0, x0) ∈ Rn+1

)(
∀(t∗, x∗) ∈ [t0,+∞)×Rn

)(
∀σ ∈ Σf , x(t∗) = x∗

)
the function t→ V (t, x(t); t0, x0) does not
decrease on [t∗, t1].

The set of all such functions we denote by V+.

Notice that any ordinary L-function ϕ(t, x) ∈ Φ+ is
embedded in the set V+ by equality V (t, x; t0, x0) =
ϕ(t, x)− ϕ(t0, x0). Hence, Φ+ ⊂ V+.

Definition 2. Denote by R the set of quadruples q =
(t0, x0; t1, x1) such that, for any q ∈ R, there exists a
process σ ∈ Σf of system (1) with x(t0) = x0, x(t1) =
x1. We callR the conjoined set of system (1).

The following equality evidently holds:

min(P ) = min{l(q) | q ∈ R ∩Q} (3)

Here, min(P ) = min{J(σ) | σ ∈ Σ}. We shall use
similar brief notations for the values of other optimiza-
tion problems.
Let V ⊂ V+ be a certain set of positional strongly

increasing L-functions. Introduce the set

E(V) = {q | V (t1, x1; t0, x0) ≥ 0 ∀V ∈ V}

and consider the extremal problem (EP (V)):

l(q)→ inf, q ∈ E(V) ∩Q.

Theorem 1. (a) Every set V ⊂ V+ gives the estimate
min(P ) ≥ inf(EP (V)).
(b) Suppose that there exists a set V ⊂ V+ such that

the vector q̄ is a global minimum point in problem
(EP (V)), i.e., J(σ̄) = l(q̄) = min(EP (V)). Then
σ̄ is a global minimizer in (P ).

Proof immediately follows from the evident inclusion
E(V) ⊃ R and equality (3).

Definition 3. A set V ⊂ V+ is said to be a lower sup-
port set for (P ) if min(P ) = inf(EP (V)).

It is easy to prove that if σ̄ and V satisfy assertion (b)
of Theorem 1, then every global optimal process σ̃ ∈ Σ
satisfies this proposition together with V . Therefore,
any lower support set V enables us to check optimality
of any process.
In applications it is useful to take into account par-

tial information about endpoint constraints. It may
be realized by considering and estimating the set



R[Q] := {q = (t0, x0; t1, x1) ∈ R | (t0, x0) ∈
prt0x0Q, (t1, x1) ∈ prt1x1Q} ⊃ R ∩Q instead ofR.
Notice that the property of strong monotonicity of
V ∈ V may be slightly weakened if the control sys-
tem has an invariant set S ⊂ Rn+1. It means that
(t, x(t)) ∈ S on ∆ along any σ ∈ Σ [Clarke, Ledyaev,
Stern and Wolenski, 1998; Vinter, 2000]. In this case,
it is enough to demand strong monotonicity of V only
along trajectories with graphx(·) ∈ S, and (EP (V))
should be completed by the constraints (t0, x(t0)) ∈ S,
(t1, x(t1)) ∈ S.
Since (t1, x1) and (t0, x0) are symmetrically included

in problem (P ), we can consider L-functions of the
form V (t, x; t1, x1) and reformulate the sufficient con-
ditions with such functions.
In [Dykha, 2010; Dykhta and Samsonyuk, 2011] it is

proved that canonical sufficient optimality conditions
are more flexible and general than the sufficient condi-
tions of Carathéodory and Krotov types. Namely, every
resolving set of L-functions for any of these alternative
approaches is a lower support set in the sense of Defi-
nition 3 as well.
We have obtained the canonical sufficient optimality

conditions in a preliminary form without any differen-
tial assumptions on L-functions. Let us recall some
infinitesimal tests for strong monotonicity [Subbotin,
1995; Clarke, Ledyaev, Stern and Wolenski, 1998; Vin-
ter, 2000].
Introduce the Pontryagin function H(t, x, ψ, u) =
ψ · f(t, x, u) and the lower Hamiltonian h(t, x, ψ) =
inf{H(t, x, ψ, u) | u ∈ U}.
Firstly, if V is smooth with respect to (t, x), then it is

strongly increasing if and only if it satisfies (2) and the
following inequality:

V̇ (t, x, u; t0, x0) := Vt +H(t, x, Vx, u) ≥ 0
∀ (t, x, u) ∈ [t0,+∞)×Rn × U,
∀ (t0, x0) ∈ Rn+1,

where∇txV = (Vt, Vx) is the gradient of V (·, ·; t0, x0)
at point (t, x).
Suppose that the following assumptions hold:

(H1) The set U is compact;
(H2) The function f(t, ·, u) is locally Lipschitz continu-

ous with respect to x uniformly in (t, u) ∈ R×U ;
(H3) There exists a constant c > 0 such that

|f(t, x, u)| ≤ c(1 + |x|) on Rn+1 × U ;
(H4) f(t, x, U) is a convex set ∀ (t, x) ∈ Rn+1.

When V (·, ·; t0, x0) is locally Lipschitz continuous,
the function V is strongly increasing if it satisfies (2)
and the following inequality holds at each point of dif-
ferentiability of V (·, ·; t0, x0):

h̄(t, x,∇txV ) := Vt + h(t, x, Vx) ≥ 0
∀ (t, x) ∈ [t0,+∞)×Rn,∀ (t0, x0) ∈ Rn+1.

Finally, let V (·, ·; t0, x0) be just continuous. Then
strong monotonicity of V is equivalent to the fact that

V satisfies the proximal Hamilton-Jacobi inequality
(together with (2)):

h̄(t, x, p) = pt + h(t, x, px) ≥ 0
∀ p = (pt, px) ∈ ∂PtxV (t, x; t0, x0),
∀ (t, x) ∈ [t0,+∞)×Rn,∀ (t0, x0) ∈ Rn+1.

(4)

Here, ∂PtxV (t, x; t0, x0) is the partial proximal subd-
ifferential of V (·, ·; t0, x0) at (t, x) [Clarke, Ledyaev,
Stern and Wolenski, 1998; Vinter, 2000]. The inequal-
ity (4) should be verified only at points with ∂PtxV 6= ∅.
Note that this proximal criteria ensures strong mono-
tonicity even for a lower semicontinuous V .

4 Properties of lower support sets and optimal
processes

Following [Milyutin and Osmolovskii, 1998, p. 117],
we say that σ̄ is a point of almost global minimum in
(P ) if J(σ̄) is an isolated (from the left) point of J(Σ).
We call problem (P ) degenerated at the point σ̄ (in

the sense of almost global minimum at the point σ̄) if
the endpoint vector q̄ affords a local minimum in the
following finite-dimensional problem:

l(q)→ min; q ∈ Q.

If (P ) is degenerated at the point σ̄, then the singleton
V = {V ≡ 0} is a trivial lower support set. This fact is
obtained by using natural local variants of Theorem 1
and Definition 3. Hence, degenerated problems are not
interesting.

Theorem 2. Let (P ) be not degenerated at the point σ̄.
If V is a lower support set and it is uniformly continu-
ous at the point σ̄, then the following properties hold:

(a) ∀ ε > 0 Vε(σ̄) := {V ∈ V | V (q̄) ≤ ε} 6= ∅ and
inf
V ∈V

V (q̄) = 0;

(b) ∀V ∈ Vε(σ̄) the process σ̄ is an ε-optimal in the
following optimal control problem without end-
point constrains:

ω(V ;σ) := V (t1, x(t1); t0, x(t0))→ min;
σ ∈ Σf ; (5)

the ε-optimality of σ̄ in (5) means that ∀σ ∈ Σf
ω(V ;σ) ≥ ω(V ; σ̄)− ε;

(c) if V j(q̄) → 0 as j → ∞ for a compositionally
absolutely continuous sequence {V j} ⊂ V , then

d

dt
V j(t, x̄(t); t̄0, x̄(t̄0))→ 0 in L1(∆̄);

(d) the marginal function (the lower envelope of the
set V)

V∗(t, x; t0, x0) = inf
V ∈V

V (t, x; t0, x0)



satisfies the following statements:

1) V∗ is a strongly increasing L-function;
2) the singleton {V∗} is a lower support set for

(P );
3) problems (EP (V)) and (EP (V∗)) are

equivalent to each other.

From properties (a), (b), (c) one can obtain the con-
nection between Approximate Pontryagin Maximum
Principle [Mordukhovich, 2006] for control problems
(5) and supergradients of functions V ∈ Vε(σ̄) evalu-
ated along the trajectory x̄. Analogous relation occurs
for problem (P ) and the function V∗ under some addi-
tional compactness assumptions on the set V .
The property (d) is especially important for applica-

tions of Theorem 1.
Firstly, let us remark that the similar property does not

hold for a lower support set of ordinary L-functions (in
the conventional variant of canonical optimality condi-
tions [Dykhta, 2004; Dykhta, 1990; Milyutin and Os-
molovskii, 1998]). Indeed, in the simplest example

ẋ = 0 · u, |u| ≤ 1, J = x(0)x(1)→ min

the set Φ = {ϕ1 = x, ϕ2 = −x} ⊂ Φ+ is a lower
support set of ordinary L-functions. But the marginal
function

ϕ∗(x) = min{ϕ1 = x, ϕ2 = −x} = −|x| ∈ Φ+

is not lower support.
Secondly, the property (d) allows to interpret the

search of a lower support set as a constructive method
of finding a single lower support function V∗. Notice
that V∗ may have a very complicated structure, and di-
rect search of V∗ by solving Hamilton-Jacobi inequality
(equation) may be a difficult problem.
Finally, the property (d) admits to construct an op-

timal (or suboptimal) feedback control of the form
u∗(t, x; t0, x0) even if no examined process is given
a priori. This feedback control is obtained by
marginal function V∗ via well-known methods of dy-
namical programming [Bardi and Capuzzo-Dolcetta,
1997; Krasovskii and Subbotin, 1988; Subbotin, 1995;
Clarke, Ledyaev, Stern and Wolenski, 1998; Clarke,
Ledyaev and Subbotin, 1997]; the most general and
natural ones are N.N. Krasovskii method of extremal
aiming and its modifications allowing discontinuity of
strategy u∗. We omit details of construction of this ex-
tremal (w.r.t. V∗) positional control. We just note that
in this way sufficient optimality conditions from Theo-
rem 1 become a solving method for (P ) rather than a
verification test for a given process σ̄.

5 Examples
Positional strongly monotone L-functions may be

found by different constructive methods that were de-
veloped in dynamic programming and applications of

ordinary L-functions in optimal control theory [Kro-
tov and Gurman, 1973; Krotov, 1996; Gurman, 1997;
Dykhta, 2004; Subbotin, 1995; Bardi and Capuzzo-
Dolcetta, 1997]. Here, we consider two examples to
illustrate Theorem 1 and some methods of construction
of lower support sets.
Example 1. Linear-quadratic optimal control problems
traditionally attract attention of researchers since they
have reach applications. Here, we give two variants
of a nonstandard linear-quadratic example with a cost
functional containing mixed endpoint term.
(A) Variant with unbounded control:
Let us write the considered problem in Mayer form:

J = y(T ) + x2(0) + 4x(0)x(T ) + x2(T )→ inf;

ẋ = u, ẏ = u2, y(0) = 0. (6)

By modifying the standard method of dynamical pro-
gramming for linear-quadratic problems [Fleming and
Rishel, 1975; Krotov, 1996; Krotov and Gurman, 1973]
we can find the following positional linear-quadratic
(w.r.t. state variable x) strongly increasing L-function

V (t, x, y;x0) =
1

T + 1− t
x2 +

4
T + 1− t

xx0+

4
T + 1− t

x2
0 −

9
T + 1

x2
0 + y.

The extremal feedback control

u∗(t, x;x0) = −Vx
2

= − x+ 2x0

T + 1− t

is obtained via minimization of the total derivative V̇
w.r.t. control.
Solving of endpoint problem (EP (V )) and further us-

ing of u∗ show that V is a lower support function and:

1) if T < 2, then the unique global optimal process is
σ̄ = 0 and J(σ̄) = 0;

2) if T = 2, then there exist infinite number of global
optimal processes σ̃(x0) such that ũ(t, x0) ≡
−x0, x̃(t, x0) = x0(1 − t), ỹ(t, x0) = x2

0t,
x0 ∈ R, and J(σ̃) = 0;

3) if T > 2, then there is no optimal process and the
cost functional J is unbounded from below.

(B) Variant with bounded control is obtained from (A)
by adding the constraint |u(t)| ≤ 1. Obviously, in the
case T < 2 the answer is the same as in variant (A);
when T = 2 the processes σ̃(x0), |x0| ≤ 1, are opti-
mal (other processes of collection σ̃(x0) are not admis-
sible).
The case T > 2 is the most interesting. Here, there

are two global optimal processes

σ1 =
(
x1(t) = t− T/2, y1(t) = t, u1(t) ≡ 1

)
,

σ2 =
(
x2(t) = −t+ T/2, y2(t) = t, u2(t) ≡ −1

)
.



They can be found by using the lower support set V
consisting of the following collections of L-functions:

V1,2(t, x;x0) = t± (x− x0),
V3(y) = y, V4(t, y) = t− y;

clearly, this collection allows to exactly describe the
reachable sets of each equation from (6); and

V5(t, x, y;x0) =

− (x− x0)2

t
+ y, |x− x0| < t,

−2|x− x0|+ t+ y, |x− x0| ≥ t;

it is constructed as the lower envelope of a family of
linear L-functions V ψ = ψ(x−x0)+ ψ2

4 t+y, |ψ| ≤ 2.
Notice that in both variants of the example the triv-

ial extremal σ = 0 has the conjugate point T = 2.
However, we did use no special test for checking Ja-
cobi conjugate point condition.
Example 2. Consider the nonlinear control system

ẋi = gi(xi)ui, i = 1, n,

u = (ui) ∈
{
u ∈ Rn+ |

n∑
1
ui = 1

}
,

(7)

where x = (xi) ∈ Rn++ := {x > 0} and the func-
tions gi(xi) > 0 on R+ are continuous. This system
arises in some generalized economical models of opti-
mal resource allocation [Danskin, 1967]. We will show
that any problem in Mayer form in this system may be
reduced to finite-dimensional one. This procedure is
carried out by applying an infinite set of solutions to a
Hamilton-Jacobi equation, which exactly describes the
conjoined set of the system.
For this system

h(x, ψ) = min
u∈U

n∑
1

ψigi(xi)ui = min
1≤i≤n

ψigi(xi)

and, for ϕ ∈ C1, the Hamilton-Jacobi equation is

h̄(x, ϕx, ϕt) =ϕt(t, x)+
min

1≤i≤n
ϕxi

(t, x)gi(xi) = 0. (8)

To solve this equation we apply the method of separa-
tion of variables, assuming that

ϕ(t, x) =
n∑
1
ϕi(t, xi),

ϕixi(t, xi)gi(xi) = αi, i = 1, n,

where αi are arbitrary constants. It is easy to check that
this solution is

ϕ(t, x) =
n∑
1

αiGi(xi) + (t1 − t)m(α)

= α ·G(x) + (t1 − t)m(α), α ∈ Rn,
(9)

where

Gi(xi) =
∫

dxi
gi(xi)

, i = 1, n,

G(x) = (Gi(xi)), m(α) = min
u∈U
〈α, u〉.

(10)

Formula (9) defines the n-parameterized set Φ =
{ϕα(t, x) | α ∈ Rn} of solutions to equation (8).
Thus every ϕ ∈ Φ is an ordinary strongly increasing
L-function.
The set E(Φ) corresponding to Φ is described by the

infinite system of inequalities:

E(Φ) = {q = (x0, x1, t1) |
α · (G(x1)−G(x0)) ≥ t1m(α) ∀α ∈ Rn}.

But m(α) coincides with the support function of the
simplex U modulo sign (see (10)). Therefore, these
inequalities turn into the inclusion

E(Φ) = {q | G(x1)−G(x0) ∈ t1U}. (11)

We know that this set is an outer estimate for the con-
joined setR, that is E(Φ) ⊃ R.
Let us show that, in fact, this estimate is exact and
E(Φ) = R. We will use elements of the Goh’s non-
linear transformation [Dykhta, 2004], that is quite use-
ful for linear w.r.t. control problems with commutative
vector fields. Supplement system (7) with the equation
ẏ = u, y(t0) = y(0) = 0. It is easy to verify that the
vector-function

η(x, y) = G(x)− y

is a first integral of the completed system (and, conse-
quently, its components may be interpreted as strongly
increasing L-functions for this system). So, the equal-
ity

G(x(t))− y(t) = G(x0) ∀ t ∈ [0, t1]

holds along any trajectory (x(·), y(·)) of the supple-
mented system.
It is obvious that we have alternatively obtained the

exact description of the conjoined setR and established
the accuracy of the estimating set (11).



6 Conclusion
In the report a new class of Lyapunov like functions

called positional is introduced. In common with ordi-
nary L-functions, the positional ones are found by cor-
responding Hamilton-Jacobi differential inequalities.
In term of appropriate set of positional strongly mono-
tone L-functions the canonical sufficient conditions of
global optimality are formulated and analyzed apply-
ing to Mayer optimal control problem with general end-
point constraints and cost functional. Particularly, there
is ascertained the possibility for passage from a resolv-
ing (lower support) set of positional strongly monotone
L-functions to a single one that is a lower envelope of
the given set. This feature allows us to suggest an ap-
proach to construction of optimal (or suboptimal) feed-
back control thought a natural modification of dynam-
ical programming technique. The efficiency of pro-
posed sufficient optimality conditions is illustrated on
two examples.
Positional L-function may be useful in another issues

of control theory too.
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