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Abstract: This paper describes a procedure for adaptive output feedback sliding
mode control(SMC) based on Almost Strictly Positive Real(ASPR)-ness for a
class of multi-input/multi-output linear time invariant systems. Stability of the
control system is achieved by using the parallel feedforward compensator(PFC),
which guarantees ASPR-ness of the plant. Effectiveness of the proposed method
is confirmed through numerical simulations.
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1. INTRODUCTION

Sliding mode control(SMC) scheme has been ap-
plied to many industrial fields because of its su-
periority concerning robust control performance.
The design procedure of SMC system is divided
into two stages. The first phase is to choose
a set of switching surface such that the origi-
nal system restricted to the intersection of the
switching surfaces. The second phase is to de-
termine a switched control law that forces the
system’s trajectory to and maintains it on the
sliding surface(Utkin, 1978; Edwards and Spur-
geon, 1998). Unfortunately, most conventional
methods in SMC use either full state or estimated
state feedback so that they may be impractical
or over complicated to implement. To improve
the situation, there have been several propos-
als concerning static or dynamic output feedback

SMC(Diong and Medanic, 1992; El-Khazali and
DeCarlo, 1995; Yan et al., 2004).

Recently, Ohtsuka et al. (Ohtsuka et al., 2004;
Ohtsuka et al., 2006) have proposed a different de-
sign procedure using parallel feedforward compen-
sator(PFC). This method is based on the almost
strictly positive real(ASPR)ness of the controlled
plant and PFC is used if the original plant does
not satisfy the APSR condition(Iwai et al., 1994).
In this case, the sliding mode switching surface
can be specified by an augmented plant output
with PFC which guarantees the ASPR character-
istics of the augmented plant.

However, the design of PFC, especially so called
ladder network PFC, in MIMO system becomes
extremely complicated(Iwai and Mizumoto, 1994).
To improve the situation, Iwai et al. proposed



quite simple new PFC design scheme(Iwai et
al., 2006).

In steady state, existence of measurement noise in-
duces chattering phenomenon depending on mag-
nitude of switching gain matrix. This problem can
be alleviated by adaptive tuning of switching gain
matrix. So, we also propose adaptive tuning rule
of switching gain matrix.

Numerical simulation results are included to
demonstrate the effectiveness of the proposed
method.

2. SYSTEM DESCRIPTION AND PROBLEM
SETUP

Consider the following observable and measurable
n-th order m input/output system of the form

{
ẋ(t) = Ax(t) + Bu(t) + B1d(t)
y(t) = Cx(t) . (1)

where, x(t) ∈ Rn, u(t),y(t) ∈ Rm and d(t) ∈ R1

are state vector, control vector, output vector and
disturbance vector, respectively.

[Assumption 1] Disturbance d(t) and its deriva-
tives are bounded.

|d(i)(t)| ≤ di, i = 1, 2, · · · , ρ, di > 0 , (2)

where d(i)(t) denotes i-th derivative of d(t).

Let us introduce a reference vector r(t) ∈ Rm

defined by the reference model equation

D(s)[r(t)] = 0 , (3)

D(s) = sρ + gρ−1s
ρ−1 + · · ·+ g1s + g0 , (4)

where ‘s’ denotes the differential operator. The
control objective is to realize the tracking between
output y(t) and reference r(t) by using the output
feedback sliding mode control(SMC). To facilitate
the control law development, an appropriate sys-
tem form will be employed. Let us define z(t), v(t)
and tracking error e(t) as follows:

z(t) = D(s)[x(t)] , (5)

v(t) = D(s)[u(t)] , (6)

e(t) = y(t)− r(t) , (7)

where z(t) ∈ Rn, v(t), e(t) ∈ Rm.

Multiplying D(s) from the both side of (7) leads
to

e(ρ)(t) = Cz(t)− g0e(t)

−g1e
(1)(t)− · · · − gρ−1e

(ρ−1)(t) . (8)

From (1),(5),(6),(8), we have the following n̄ =
n+m×ρ-th order system with the input v(t) and
the output e(t):

{
˙̄x(t) = Āx̄(t) + B̄v(t) + g(t)
e(t) = C̄x̄(t) , (9)

x̄(t) =




z(t)
e(t)

e(1)(t)(t)
...

e(ρ−1)(t)(t)




, B̄ =




B
0
...
0


 ,

Ā =




A 0 · · · · · · 0
0 0 Im · · · 0
...

...
...

0 0 · · · · · · Im

C −g0Im · · · · · · −gρ−1Im




,

C̄ =
[
0 Im 0 · · · 0 ]

,

g(t) =
[
B1d̄(t) 0 · · · 0

]T

d̄(t) =
ρ∑

i=0

gid
(i)(t), gρ = 1 .

In this report, the sliding hyperplanes are as-
sumed to be constructed by outputs of the system.
However the equation C̄B̄ = 0 holds. It means
that the outputs can not be controlled by any
control inputs. To avoid such a situation, here,
we introduce the following parallel feedforward
compensator(PFC).

{
ẋf (t) = Afxf (t) + Bfv(t)
yf (t) = Cfxf (t) (10)

where xf (t) ∈ Rnf , v(t),yf (t) ∈ Rm.

By adding the PFC to the system described by the
equation (9), the following na = n+m×ρ+nf -th
extended system is obtained.

{
ẋa(t) = Aaxa(t) + Bav(t) + ga(t)
σ(t) = Caxa(t) = e(t) + yf (t) . (11)

xa(t) =
[

x̄(t)
xf (t)

]
, Aa =

[
Ā 0
0 Af

]
, Ba =

[
B̄
Bf

]
,

Ca =
[
C̄ Cf

]
, ga(t) =

[
g(t) 0

]T
.

In the following, we assume that the extended
system satisfies the following assumption.

[Assumption 2] Extended system (11) satisfies
the following assumptions.

(1) The system is minimum phase.
(2) Relative MacMillan degree is (na −m)/na.
(3) High frequency gain matrix CaBa is positive

definite.

The system which satisfies the above mentioned
assumption is called as almost strictly positive



real(ASPR) system. From the condition (3) of
Assumption 2, the high frequency gain matrix of
the PFC should be selected to be positive definite.
That is, CaBa = CfBf > 0

3. SLIDING MODE CONTROL

Let σ(t) = 0 in (11) be the switching hyperplanes.
Then we consider the following sliding mode con-
trol law.

v(t) = −(CaBa)−1
(
CaAaxa(t)

+KT (t)
σ(t)

‖σ(t)‖+ δ

)
(12)

where K(t) ∈ Rm×m, K(t) > 0 denotes the adap-
tive switching input gain matrix, constant δ > 0
is introduced to avoid the chattering phenomenon
and ‖ · ‖ indicates the vector norm. Here K(t) is
tuned based on the following adaptive tuning rule:

K̇(t) =
1

‖σ(t)‖+ δ
Γσ(t)σT (t), (13)

where Γ ∈ Rm×m, Γ = ΓT > 0. Slid-
ing will occur along the hyperplanes σ(t) =
[σ1(t), · · · , σm(t)]T = 0 as long as the necessary
sliding condition σiσ̇i ≤ 0 holds in the neigh-
borhood of the given hyperplanes. When sliding
occurs on all m switching hyperplanes simulta-
neously, the state slides on the subspace, the in-
tersection of the m hyperplanes. Stability of the
system is discussed as follows.

[Theorem 1] Assume that Assumption 1 and
2 hold. Then the control law (12) and adaptive
rule (13) attain limt→∞ σ(t) = 0. Further it
guarantees the boundness of the tracking error
e(t). Especially if there exists no disturbance, it is
guaranteed that tracking error e(t) converges to
zero asymptotically.

[Proof] The proof of the stability is divided into
two stages.

The first stage: Consider the following candidate
of the Lyapunov function.

V (t) = V1(t) + V2(t) (14)

V1(t) =
1
2
σT (t)σ(t) (15)

V2(t) =
1
2
tr

[
(K(t)−K∗)T Γ−1 (K(t)−K∗)

]
(16)

where K∗ is an ideal positive definite switching
gain matrix and tr[X] indicates trace of matrix
X. The derivative of V1(t) along the trajectory
becomes

V̇1(t) = σT (t)σ̇(t)

= σT (t)
(
−KT (t)

σ(t)
‖σ(t)‖+ δ

+ Caga(t)
)

.

Since

Caga(t) =
[
0 Im 0 · · · 0 Cf

]



B1d̄(t)
0
...
0




= 0 , (17)

then

V̇1(t) =−σT (t)KT (t)
σ(t)

‖σ(t)‖+ δ

=− 1
‖σ(t)‖+ δ

tr
[
KT (t)σ(t)σT (t)

]
.(18)

Next the derivative of (16) along the trajectory
becomes

V̇2(t) =
1
2
tr

[
K̇T (t)Γ−1 (K(t)−K∗)

]

+
1
2
tr

[
(K(t)−K∗)T Γ−1K̇(t)

]

= tr
[
KT (t)Γ−1K̇(t)

]
− tr

[
K∗Γ−1K̇(t)

]
.

Taking into account (13), the above equation
becomes

V̇2(t) =
1

‖σ(t)‖+ δ
tr

[
KT (t)σ(t)σT (t)

]

− 1
‖σ(t)‖+ δ

tr
[
K∗T

σ(t)σT (t)
]

.(19)

From (18)(19), the derivative of V (t) becomes

V̇ (t) = V̇1(t) + V̇2(t)

=− 1
‖σ(t)‖+ δ

tr
[
K∗T

σ(t)σT (t)
]

< 0 ,

thus, limt→∞ σ(t) = 0 holds.

The second stage: In the sliding mode, switch-
ing hyperplane and its derivative satisfy σ(t) =
0,σ̇(t) = 0. Hence the equation governing the sys-
tem dynamics may be obtained by substituting an
equivalent control(Edwards and Spurgeon, 1998)

veq(t) = −(CaBa)−1CaAaxa(t) (20)

into the original controlled plant (11) as v(t) =
veq(t). Then we have

{
ẋa(t) = Aeqxa(t) + ga(t)
σ(t) = Caxa(t) (21)

where

Aeq = Aa −Ba (CaBa)−1
CaAa . (22)



Now let us introduce the following similarity
transformation

x̄a(t) = Taxa(t) , Ta =
[

Ca

P

]
. (23)

In (23), P is a matrix chosen to ensure that Ta

is nonsingular. By this similarity transformation
(23), (22) can rewritten in the following:





˙̄xa(t) =
[

0m 0
PAeqC

g
a PAeqP

g

]
x̄a(t) + Taga(t)

σ(t) = [Im 0] x̄a(t).
(24)

where Cg
a and P g are the generalized inverses of

Ca and P , respectively.

As to the disturbance term in (24), we can obtain
the following relation

Taga(t) =
[

Ca

P

]
ga(t) =

[
0

h(t)

]

where h(t) = Pga(t) is n + ρm + nf − m-th
order bounded disturbance. By dividing state vec-
tor x̄a(t) into two partial state vector, x̄a1(t) ∈
Rm, x̄a2(t) ∈ Rn+ρm+nf−m, the following equa-
tion is obtained.

{
˙̄xa1(t) = 0
˙̄xa2(t) = PAeqP

gx̄a2(t) + h(t) .
(25)

Taking into account that σ(t) = 0, σ̇ = 0 holds,
x̄a1(t) = 0. Further eigenvalues of Aeq consist of
m zeros and equivalent to n+ρm+nf−m system
zeros. According to Assumption 2, system under
consideration satisfies ASPR condition. It follows
that the eigenvalues of Aeq coincides with that of
stable system zeros in (11). From the boundness
of the disturbance h(t) in (25), we can obtain the
conclusion in Theorem 1. [Q.E.D.]

Expression CaAaxa(t) in (12) can be rewritten as

CaAaxa(t) =
[
C̄ Cf

] [
Ā 0
0 Af

] [
x̄(t)
xf (t)

]

= ė(t) + CfAfxf (t) . (26)

From CaBa = CfBf and (26), (12) can be written
as follows:

v(t) = − (CfBf )−1
(
ė(t) + CfAfxf (t)

+K(t)
σ(t)

‖ σ(t)‖+ δ

)
. (27)

It shows that v(t) can be constructed by using
output, its derivative ė(t) and the state vector
xf (t) of PFC.

From (13), it is clear that the integral adaptive
gains would diverge whenever perfect following is
not possible due to internal or external distur-
bances. This problem can be easily alleviated by
modifying the integral adaptive law by using small
positive constant σ,

K̇(t) =
1

‖σ(t)‖+ δ
Γσ(t)σT (t)− σK(t), (28)

maintains robustness of the adaptive control sys-
tem in the presence of any bounded input and
output disturbances.

4. DESIGN OF PFC

In order to realize the above stated control system,
we have to introduce PFC. As to the design of
PFC, many methods have been proposed(Kaufman
et al., 1998; Iwai and Mizumoto, 1994; Iwai et
al., 1994). Most design methods require some
restrictive conditions. For example, the so-called
ladder network structure PFC has relatively sim-
ple structure so that it is often used in practical
case. However it requires that the plant is mini-
mum phase and the relative degree of the plant
should be given before hand. In order to alleviate
the restrictive conditions, Iwai et al. proposed new
PFC construction method(Iwai et al., 2006). It is
sometimes called model based PFC(MBPFC). Its
specific feature is to use an approximated plant
model for PFC design.

Let G∗p(s) and Ḡ∗p(s) be an approximated model
transfer function matrix of (1) and (9), respec-
tively. Then Ḡ∗p(s) is defined as

Ḡ∗p(s) =
1

D(s)
G∗p(s) .

Further let GASPR(s) be an ASPR transfer func-
tion matrix which can be indicated by designers.
Then we construct PFC (10) as follows:

Gf (s) = GASPR(s)− Ḡ∗p(s) . (29)

It follows that

Ga(s) = Ḡp(s) + Gf (s)

= GASPR(s) + Ḡp(s)− Ḡ∗p(s)

= GASPR(s) (Im + ∆(s)) , (30)

where

∆(s) = G−1
ASPR(s)

(
Ḡp(s)− Ḡ∗p(s)

)
. (31)

Then the following Theorem 2 and Lemma 1 hold
(Iwai et al., 2006).

[Theorem 2] Extended system (11) becomes
ASPR if the following conditions are satisfied.



(1) GASPR(s) is ASPR.
(2) ∆(s) ∈ RHm×m

∞ .
(3) ‖∆(s)‖∞ < 1 (where ‖ ·‖∞ indicates the H∞

norm of the transfer function matrix.)

[Lemma 1] The condition (2) of Theorem 2 is
satisfied if G(s) and G∗(s) are stable transfer
function matrices and D(s) is a stable polynomial.

From Lemma 1, D(s) should be stable polynomial
when we use the above mentioned MBFPC. Thus
from (3), step input is not included in this case.
To improve the situation, we assume

D(s)[r(t)] = r̄(t) 6= 0 . (32)

Then, g(t) in (9) and (17) becomes

g(t) =
[
B1d̄(t), 0, · · · , 0,−r̄(t)

]
, (33)

Caga(t) =
[
0 Im 0 · · · 0 Cf

]




B1d̄(t)
0
...
0

−r̄(t)
0




= 0 , (34)

respectively. From this, it can be seen that the
condition (2) of Theorem 2 does not affect the
final result of Theorem 1.

5. SIMULATION RESULTS

In numerical simulation, consider the following
transfer function matrix of liquid level process
identified by Prony’s method(Iwai et al., 2005).

G(s) = (35)


0.138s2 + 9.58× 10−4s + 7.23× 10−5

s3 + 0.04s2 + 3.96× 10−4s + 5.92× 10−7

1.087680× 10−5

s3 + 0.163s2 + 3.98× 10−4s + 4.13× 10−7

6.360× 10−6

s3 + 0.043s2 + 1.85× 10−4s + 2.77× 10−7

0.02s + 2.01× 10−4

s3 + 0.19s2 + 1.62× 10−3s + 2.91× 10−6


 .

Based on (35), G∗(s) is chosen as follows:

G∗(s) = (36)


7.20× 10−5

s3 + 0.04s2 + 3.96× 10−4s + 5.92× 10−7

1.10× 10−5

s3 + 0.163s2 + 3.98× 10−4s + 4.13× 10−7

6.0× 10−6

s3 + 0.043s2 + 1.85× 10−4s + 2.77× 10−7

2.0× 10−4

s3 + 0.19s2 + 1.62× 10−3s + 2.91× 10−6


 .

ASPR model GASPR(s) and other design param-
eters are set as follows:

GASPR(s) =




122
600s + 1.0

21.7
400s + 1.0

26.7
400s + 1.0

68.8
450s + 1.0


 ,

D(s) = diag [1.0, 1.0] ,Γ = diag [0.01, 0.01] ,

δ = 10.0, σ = 0.01 . (37)

In all numerical simulations, white noise is added
as output disturbance.
Reference input :r(t) = [40.0, 30.0]T

Input disturbance : B1 = B ,

d(t) =
{

[0.08, 0.08]T , t ≥ 3000 [sec]
[0.0, 0.0]T , otherwise

.

Control input limitation: −8.0 ∼ 4.0 (dimension-
less expression)
To confirm the effectiveness of proposed method,
we compare our method with fixed SMC and fixed
PID in the following. The MIMO PID parameter
matrices are chosen by partial model matching
method(Eguchi et al., 2005). Fixed SMC gain ma-
trix and PID gain matrices are chosen as follows:

K =
[

0.6 0.01
0.01 0.4

]
,

Kp =
[

1.38× 10−2 −2.46× 10−3

−4.22× 10−3 1.94× 10−2

]
,

Ki =
[

2.77× 10−5 −1.07× 10−5

−1.13× 10−5 4.19× 10−5

]
,

Kd =
[

2.01 1.04
3.98× 10−2 −5.62× 10−4

]
.

Results are shown in Fig. 1−4. The upper row of
Fig. 1 shows y1(t), the lower raw shows y2(t). The
upper, middle and lower row of Fig. 2 and Fig.
3 shows control inputs of the proposed method,
fixed SMC and fixed PID, respectively.
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Fig. 1. Control Output

From these results, it can be concluded that, al-
though the both of proposed method and fixed
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SMC attain good control performance, the chat-
tering phenomenon in steady state is suppressed
by adaptive SMC. Moreover, in this case, SMC is
more effective than MIMO PID.

6. CONCLUSION

We have proposed a design scheme of MIMO
adaptive output feedback sliding mode tracking
controller by using MBPFC. Also stability anal-
ysis of the control system is derived. The effec-

tiveness of the proposed method was confirmed
through numerical simulations on liquid-level con-
trol process.
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