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1. System description. Consider a nonlinear affine in control system described by the following
stochastic differential equations with Markovian switching:

dxt = [a(xt, rt) + B(xt, rt)ut]dt +
N∑

l=1

γl[fl(xt, rt) + Gl(xt, rt)ut]dwl, (1.1)

zt = c(xt, rt), t ≥ t0, (1.2)

where xt ∈ Rn is the state vector, ut ∈ Rm is the input vector, zt ∈ Rk is the output vector, rt is a
homogenous Markov chain whose state space is a set of integers N = {1, 2, ..., ν} and transition matrix
P (τ) = [Pij(τ)]ν1 = [Prob{r(t + τ) = j | r(t) = i}]ν1 = exp(Πτ), 0 ≤ t ≤ t + τ, Π = [πij ]ν1 with
πij ≥ 0, j 6= i, πii = −∑ν

j 6=i πij , wt = [w1tw2t . . . wNt] is standard Wiener process defined on the
complete probability space (Ω,F ,P) with the natural filtration Ft, t ≥ t0 generated by w up to time
t; the initial conditions xt0 = x0 and rt0 = i0 are deterministic, wt and rt are independent and ut is
Ft-adapted.

Denote φ(xt, rt, ut) = a(xt, rt) + B(xt, rt)ut, Ψ(xt, rt, ut) = [f1(xt, rt) + G1(xt, rt)ut . . . fN (xt, rt) +
GN (xt, rt)ut]. To ensure the existence and uniqueness of the solution of (1.1) and the existence of a trivial
solution we assume that for all i ∈ N, φ(0, i, 0) ≡ 0, Ψ(0, i, 0) ≡ 0, φ and Ψ are continuous in u, locally
Lipschitz and have linear growth [1].

Let C2(Rn ×N;R) denote the set of non-negative functions V : Rn ×N→ R which are continuously
twice differentiable in x and consider an operator L on C2(Rn×N;R), which for V ∈ C2(Rn×N;R) and
for Ft-measurable u defines LuV : Rn × N→ R by

LuV (x, i) = Vx(x, i)[a(x, i) + B(x, i)u] +
ν∑

j=1

πijV (x, j) +

+
1
2

N∑

l=1

[fl(x, i) + Gl(x, i)u]′Vxx(x, i)[fl(x, i) + Gl(x, i)u], (1.3)

where as usual Vx(x, i) =
[

∂V (x,i)
∂x1

. . . ∂V (x,i)
∂xn

]
and Vxx(x, i) =

[
∂2V

∂xj∂xk

]
n×n

. This operator represents the

differential generator of Markov process [xt rt] in the hybrid state space Rn × N [1].

2. Dissipative diffusion processes with Markovian switching. Denote L2
F ([s, T ],Rm) the set

of all Ft-adapted input processes such that

‖ u ‖2L2([s,T ]), E
∫ T

s

‖ ut ‖2 dt < ∞, s ≥ 0.

Following to concept by Willems [2] consider a function W : Rm × Rk × N → R associated with the
system (1.1), (1.2). This function is called the supply rate on [s,∞) if it has the following property:
for any u ∈ L2

F ([s, T ],Rm) the output (1.2) of the system (1.1) with deterministic initial conditions
xs = x0, rs = i0 is such that

E
∫ T

s

| W (ut, rt, zt) | dt < ∞, ∀T ≥ s ≥ 0.

Definition 2.1. System (1.1), (1.2) with supply rate W is said to be exponentially dissipative on
[t0,∞), t0 ≥ 0, if there exists a nonnegative continuous function V : Rn × N → R called the storage
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function and function µ(x, i) > 0, x 6= 0, µ(0, i) = 0, such that for all t ≥ t0 ≥ 0, xt0 = x ∈ Rn, rt0 =
i ∈ N

Ex,i[V (xt, rt) +
∫ t

t0

µ(xt, rt)dt]− V (x, i) ≤ Ex,i

∫ t

t0

W (uτ , rτ , zτ )dτ. (2.1)

The above inequality following to [2] can be called the exponential dissipation inequality.
Definition 2.2. The available storage Va(x, i) of the system (1.1), (1.2) with supply rate W (u, i, z)

is the function defined for t ≥ t0 by

Va(x, i) = sup
u∈L2

F ([t0,t],Rm)

sup
t≥t0

Ex,i

∫ t

t0

[−W (uτ , rτ , zτ ) + µ(xτ , rτ )]dτ).

As in the deterministic case the available storage plays important role in determining whether or not
the system is dissipative. This is shown in the following theorem.

Theorem 2.3. The available storage Va(x, i) is finite for all x ∈ Rn, i ∈ N if and only if the system
(1.1), (1.2) is exponentially dissipative on [t0,∞), t0 ≥ 0. Moreover, for any possible storage function
V 0 ≤ Va(x, i) ≤ V (x, i) ∀x ∈ Rn, i ∈ N. and Va is itself a possible storage function.

Next we consider the supple rate in a special form

W (u, i, z) = z′Q(i)z + 2z′S(i)u + u′R(i)u, (2.2)

where Q(i) = Q′(i), S(i) and R(i) = R′(i) (i ∈ N) are matrices of compatible dimensions. The following
assumption allows to use the differential generator and to obtain some more constructive results.

Assumption 1. The storage function if it exists belongs to C2(Rn × N;R)
Theorem 2.4. A necessary and sufficient condition for system (1.1), (1.2) with a supply rate

W (·, ·, ·) to be dissipative on [t0,∞) is that there exists nonnegative function V ∈ C2(Rn × N;R) and
functions q : Rn × N→ Rn1×m and v : Rn × N→ Rn1×m for some integer n1 > 0, such that

−µ(x, i) + c′(x, i)Q(i)c(x, i)− Vx(x, i)a(x, i)−
ν∑

j=1

πijV (x, j)− 1
2

N∑

l=1

γ2
l f ′l (x, i)Vxx(x, i)fl(x, i) =

q′(x, i)q(x, i), (2.3)

2c′(x, i)S(x, i)− Vx(x, i)B(x, i)−
N∑

l=1

γ2
l f ′l (x, i)Vxx(x, i)Gl(x, i) = 2v′(x, i)q(x, i), (2.4)

R(i)− 1
2

N∑

l=1

γ2
l G′l(x, i)Vxx(x, i)Gl(x, i) = v′(x, i)v(x, i). (2.5)

The equations (2.3) – (2.5) represent a nonlinear generalization of stochastic Lur’e equations arising
in theory of absolute stochastic stability [3, 4].

3. Dissipativity and stabilization. In theory of deterministic systems an important role plays
the supply rate in the form of inner product of input and output variables:

W (u, i, z) = z′u. (3.1)

The dissipative system with supple rate (3.1) is said to be passive [3, 4]. The definition below gives a
possible extension of the passivity notion to stochastic systems [5].

Definition 3.1. System (1.1), (1.2) is said to be passive on [t0,∞), t0 ≥ 0 if it is dissipative on
[t0,∞), t0 ≥ 0, with supply rate (3.1) and the storage function satisfies V (0, i) = 0 for all i ∈ N.

Analyzing Lur’e equation (2.3) – (2.5) it is easy to see that notion of passivity makes sense only for
particular case of system (1.1), (1.2) with Gl(x, i) ≡ 0, in other case the equation (2.5) is unsolvable.

The exponentially dissipative system (1.1), (1.2) has the following property of stabilizability by output
feedback.

Theorem 3.2. Let the system (1.1), (1.2) exponentially dissipative with storage function V (x, i),
satisfying the inequality

λ1 ‖ x ‖2≤ V (x, i) ≤ λ2 ‖ x, ‖2, λ1, λ2 > 0, (3.2)
2



the supply rate has the form

W = z′Qz + z′Su + u′Ru

and µ(x, i) = x′Mx, M = M ′ > 0, i ∈ N. Let ϕ : Rm → Rp is a function satisfying the condition

z′Qz − z′Sϕ(z) + ϕ′(z)Rϕ(z) ≤ 0 ∀z 6= 0 ϕ(0) = 0. (3.3)

Then the output feedback control

u = −ϕ(z) (3.4)

provides exponential stability in the mean square of the trivial solution xt ≡ 0 of the system (1.1).
This theorem allows to use the exponential dissipativity instead passivity in the process of synthesis

of stabilizing control for stochastic systems.

4. Application to robust simultaneous stabilization of uncertain system. Let a set of
deterministic nonlinear systems described by the following differential equations:

ẋt = ai(xt) + Bi(xt)ut +
N∑

l=1

σl(t)(fli(xt) + Gli(xt)ut), (4.1)

zt = ci(xt), t ≥ t0, i = 1, . . . , ν, (4.2)

where σl(t), t ≥ 0, l = 1, . . . , N are uncertain parameters such that

| σl(t) |≤ δl, t ≥ 0, l = 1, . . . , N, (4.3)

other notations are the same as above. Consider the following robust simultaneous stabilization problem:
determine the output feedback control law

u = −υ(z), υ(0) = 0 (4.4)

such that all the closed loop systems from the set (4.1), (4.2) are asymptotically stable for all σl(t),
satisfying (4.3). As a generalization of the results [6] we obtain the following theorem.

Theorem 4.1. Assume that for the system (1.1), (1.2) with control law (4.4) and with a(x, i) =
â(x, i) + αI there exists a quadratic Lyapunov function

V (x) = x′Px, (4.5)

such that LV (x) ≤ 0 and

α− 1
2

N∑

l=1

δ2
l

γ2
l

> 0. (4.6)

Then this control law solves the robust simultaneous stabilization problem for the system (4.1), (4.2).
Corollary 4.2. Suppose that (4.4) is robust stabilizing control and moreover the system (1.1), (1.2)

with this control and with a(x, i) = â(x, i) + αI is exponentially dissipative with positive definite storage
function (4.5), supply rate

W = z′Qz + z′Su + u′Ru

and µ(x, i) = x′Mx, M = M ′ > 0, i ∈ N. If ϕ : Rm → Rp is the function satisfying condition (3.3), then

u = −(ϕ(z) + υ(z)) (4.7)

is the robust stabilizing control for the system (4.1), (4.2).
These results mean that we can use all known and new techniques of solution of stochastic simulta-

neous stabilization problem for solving the robust simultaneous stabilization problem. Moreover if the
closed loop system with a(x, i) = â(x, i) + αI is exponentially dissipative with storage function and sup-
ply rate above, then the set of systems (4.1), (4.2) does not lose the robustness property under control
variations satisfying (3.3).
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As a particular case consider the set of linear systems with uncertain parameters

ẋ = Aixt + Biut +
N∑

l=1

σl(t)(Alixt + Bliut), (4.8)

zt = Cxt, t ≥ 0, i = 1, . . . , ν. (4.9)

Define the gain matrix F such that all the closed loop systems from the set (4.8), (4.9) with output
feedback

u(t) = −υ(z) = −Fz(t) (4.10)

are asymptotically stable for parameters uncertainties satisfying (4.3) and for variations (4.7) of the
control law (4.10), satisfying (3.3).

After assignation of the noise intensities and parameter of stability margin α according to (4.6) the
solution of this problem is reduced to finding of the pair of matrices H = H ′ > 0 F , satisfying the system
of matrix quadratic inequalities

(Aαi −BiFC)′H + H(Aαi −BiFC) + M − C ′QC +
N∑

j=1

γ2
j (Aij − (4.11)

BijFC)′H(Aij −BijFC) + (HBi −
N∑

j=1

γ2
j (Aij −BijFC)′HBij − C ′S)(R−

N∑

j=1

γ2
j B′

ijHBij)−1(HBi −
N∑

l=1

γ2
l (Aij −BijFC)′HBij − C ′S)′ ≤ 0,

where Aαi = (Ai + αI). The solution of (4.11) even in particular cases is NP -hard problem [8]. In this
paper developing the results of [9, 10] we propose a two step procedure: first based on a convergent
iteration algorithm we obtain the gain matrix F of robust stabilizing control, then based on solution
of linear matrix inequalities which follow from (4.11) with given F we check the inequalities (3.3). A
numerical example is given.

REFERENCES

[1] X. Mao, Stability of stochastic differential equations with Markovian switching, Stoch. Process. Appl., (79) 1999, pp.
45–67.

[2] J. C. Willems , Dissipative dynamic systems. Part I: General theory. Part II: Linear systems with quadratic supply
rates, Archive for Rational Mechanics and Analysis, 45 (1972), pp. 321–393.

[3] C. I. Byrnes , A. Isidori and J. C Willems , Passivity, feedback equivalence, and the global stabilization of minimum
phase nonlinear systems, IEEE Trans. Automat. Contr., 36 (1991), pp. 1228–1240.

[4] I. G. Polushin, A. L. Fradkov and D. J. Hill, Passivity and passification of nonlinear systems, Automation and
Remote Control 61, Pt.1 (2000), pp.355–388.

[5] P. Florchinger, A passive system approach to feedback stabilization of nonlinear control stochastic systems, SIAM J.
Control Optimization, 37 (1999), pp. 1848–1864.

[6] D. S. Bernstein, Robust static and dynamic output-feedback stabilization: Deterministic and stochastic perspectives,
IEEE Trans. Automat. Contr., 32 (1987), pp. 1076–1084.

[7] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear matrix inequalities in control and system theory,
Society for Industrial and Applied Mathematics, Philadelphia, PA, 1994.

[8] V. Blondel and J. N. Tsitsiklis, NP-hardness of some linear control design problems, SIAM J. Control Optimization,
35. (1997) pp. 2118–2127.

[9] P. V. Pakshin, Robust stability and stabilization of the family of jumping stochastic systems, Nonlinear analysis, theory,
methods and applications, 30 (1997),pp. 2855–2866.

[10] J. Yu, A convergent algorithm for computing stabilizing static output feedback gains, IEEE Trans. Automat. Contr.,
49, (2004), pp. 2271–2275.

4


