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Abstract
We derive absolute observation stability and insta-

bility results for controlled evolutionary inequalities
which are based on frequency-domain characteristics
of the linear part of the inequalities. The uncertainty
parts of the inequalities (nonlinearities which represent
external forces and constitutive laws) are described by
certain local and integral quadratic constraints. Other
terms in the considered evolutionary inequalities re-
present contact-type properties of a mechanical system
with dry friction.
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1 Introduction
Suppose that Y0 is a real Hilbert space. We denote by

(·, ·)0 and ‖ · ‖0 the scalar product resp. the norm on
Y0. Let A : D(A) → Y0 be the generator of a C0-
semigroup on Y0 and define the set Y1 := D(A) . Here
D(A) is the domain of A, which is dense in Y0 since A
is a generator. We denote with ρ(A) the resolvent set
of A. The spectrum of A, which is the complement
of ρ (A), is denoted by σ(A). If we define with an
arbitrary but fixed β ∈ ρ (A) ∩ R for any y, η ∈ Y1,
the value

(y, η)1 := ((βI − A)y, (βI − A)η)0 , (1.1)

then the set Y1 equipped with this scalar product (·, ·)1
and the corresponding norm ‖ · ‖1 becomes a Hilbert
space (different numbers β give different but equiva-
lent norms). Denote by Y−1 the Hilbert space which is
the completion of Y0 with respect to the norm
‖y‖−1 := ‖(βI − A)−1y‖0 and which has the corre-
sponding scalar product

(y, η)−1 :=
(
(βI − A)−1y, (βI − A)−1η

)
0
,

∀ y, η ∈ Y−1. (1.2)

Thus, we get the inclusions Y1 ⊂ Y0 ⊂ Y−1,
which are dense with continuous embedding, i.e. for
α = 1, 0 Yα ⊂ Yα−1 , is dense and ‖y‖α−1 ≤
c‖y‖α , ∀ y ∈ Yα. Sometimes [Banks, Gilliam and
Shubov, 1997; Banks and Ito, 1988] the introduced
triple of spaces (Y1, Y0, Y−1) is called a Gelfand triple.
The pair (Y1, Y−1) is also called Hilbert rigging of the
pivot space Y0, Y1 is an interpolation space of Y0, and
Y−1 is an extrapolation space of Y0. Since for any
y ∈ Y0 and z ∈ Y1 we have

|(y, z)0| = |(βI − A)−1y, ((βI − A)z)0|
≤ ‖y‖−1‖z‖1 , (1.3)

we can extend (·, z)0 by continuity onto Y−1 obtaining
the inequality

|(y, z)0| ≤ ‖y‖−1‖z‖1 , ∀ y ∈ Y−1,∀ z ∈ Y1.

Let us denote this extension also by (·, ·)−1,1 and call
it duality pairing on Y−1 × Y1. The operator A has a
unique extension to an operator in L(Y0, Y−1) which
we denote by the same symbol. Suppose now that
T > 0 is arbitrary and define the norm for Bochner
measurable functions in L2(0, T ;Yj) (j = 1, 0,−1)
through

‖y(·)‖2,j :=
( T∫

0

‖y(t)‖2
j dt

)1/2

. (1.4)

Let LT be the space of functions such that y ∈
L2(0, T ;Y1) and ẏ ∈ L2(0, T ;Y−1), where the time
derivative ẏ is understood in the sense of distributions
with values in a Hilbert space. The space LT equipped
with the norm

‖y‖LT
:=

(‖y(·)‖2
2,1 + ‖ẏ(·)‖2

2,−1

)1/2
(1.5)

is a Hilbert space and will be used for the description
of solutions to evolutionary systems.



2 Evolutionary variational inequalities
Suppose that T > 0 is arbitrary and consider for a.a.

t ∈ [0, T ] the observed and controlled evolutionary
variational inequality

(ẏ − Ay − Bξ − f(t), η − y)−1,1 (2.1)

+ψ(η) − ψ(y) ≥ 0 , ∀ η ∈ Y1

y(0) = y0 ∈ Y0 ,

w(t) = Cy(t) , ξ(t) ∈ ϕ(t, w(t)) , (2.2)
ξ(0) = ξ0 ∈ E(y0) ,

z(t) = Dy(t) + E ξ(t) . (2.3)

In equations (2.1) − (2.3) it is supposed that C ∈
L(Y−1,W ),D ∈ L(Y1, Z) and E ∈ L(Ξ, Z) are
linear operators, Ξ,W and Z are real Hilbert spaces,
Y1 ⊂ Y0 ⊂ Y−1 is a real Gelfand triple and A ∈
L(Y0, Y−1), B ∈ L(Ξ, Y−1), ϕ : R+ × W → 2Ξ is a
set-valued map, ψ : Y1 → R+ and f : R+ → Y−1 are
given nonlinear maps. The calculation of ξ(t) in (2.2)
shows that this value in general also depends on certain
“initial state” ξ0 of ϕ taken from a set E(y0) ⊂ Ξ . This
situation is typical for hysteresis nonlinearities [Reit-
mann, 2005].
In the following we denote by ‖ · ‖Ξ, ‖ · ‖W and ‖ · ‖Z

the norm in Ξ,W resp. Z .
Let us now introduce the solution space for the prob-

lem (2.1), (2.2) .

Definition 2.1. Any pair of functions {y (·), ξ(·)} with
y ∈ LT and ξ ∈ L2

loc(0,∞; Ξ) such that Bξ ∈ LT ,
satisfying (2.1), (2.2) almost everywhere on (0, T ) ,
is called solution of the Cauchy problem y (0) =
y0, ξ(0) = ξ0 defined for (2.1), (2.2) .

In order to have an existence property for (2.1), (2.2)
we state the following assumption:

(C1) The Cauchy-problem (2.1), (2.2) has for arbi-
trary y0 ∈ Y0 and ξ0 ∈ E(y0) ⊂ Ξ at least one solution
{y (·), ξ(·)}.
Assumption (C1) is fulfilled, for example, in the fol-

lowing situation [Pankov, 1986].

(C2) a) The nonlinearity ϕ : R+ × W → Ξ is a func-
tion having the property that A(t) := −A−Bϕ(t, C·) :
Y1 → Y−1 is a family of monotone hemicontinuous op-
erators such that the inequality

‖A(t)y‖−1 ≤ c1‖y‖1 + c2 , ∀ y ∈ Y1 ,

is satisfied, where c1 > 0 and c2 ∈ R are constants not
depending on t ∈ [0, T ] . Furthermore for any y ∈ Y1

and for any bounded set U ⊂ Y1 the family of func-
tions {(A(t)η, y)−1,1 , η ∈ U} is equicontinuous with
respect to t on any compact subinterval of R+.

b) ψ is a proper, convex, and semicontinuous from be-
low function on D(ψ) ⊂ Y1.

(C3) f ∈ L2
loc(R+;Y−1).

(C4) In the sequel we consider only solutions y of
(2.1),(2.2) for which ẏ belongs to L2

loc(R;Y−1).

Remark 2.1 a) Note that in the special case when
ψ ≡ 0 in (2.1) the evolutionary variational inequality
is equivalent for a.a. t ∈ [0, T ] to the equation

ẏ = Ay + Bξ + f(t) in Y−1 ,

y(0) = Y0 , w(t) = Cy(t) , ξ(t) ∈ ϕ(t, w(t)) ,

ξ(0) ∈ E(y0) ,

z(t) = Dy(t) + Eξ(t).

Under the assumption that ϕ is a single valued func-
tion this class was considered in [Banks, Gilliam and
Shubov, 1997; Banks and Ito, 1988; Brusin, 1976]. �

Definition 2.2. a) Suppose F and G are quadratic
forms on Y1 × Ξ. The class of nonlinearities N (F,G)
defined by F and G consists of all maps ϕ : R+ ×
W → 2Ξ such that for any y(·) ∈ L2

loc(0,∞;Y1) with
ẏ(·) ∈ L2

loc(0,∞;Y−1) and any ξ(·) ∈ L2
loc(0,∞; Ξ)

with ξ(t) ∈ ϕ(t, Cy(t)) for a.e. t ≥ 0, it follows
that F (y(t), ξ(t)) ≥ 0 for a.e. t ≥ 0 and (for any
such pair {y, ξ}) there exists a continuous functional
Φ : W → R such that for any times 0 ≤ s < t we have

t∫
s

G(y(τ), ξ(τ))dτ ≥ Φ(Cy(t)) − Φ(Cy(s)) .

b) The class of functionals M(d) defined by a con-
stant d > 0 consists of all maps ψ : Y1 → R+ such that
for any y ∈ L2

loc(0,∞;Y0) with ẏ ∈ L2
loc(0,∞;Y1) the

function t �→ ψ(y(t)) belongs to L1(0,∞; R) satisfy-

ing

∞∫
0

ψ(y(t))dt ≤ d and for any ϕ ∈ N (F,G) and

any ψ ∈ M(d) the Cauchy-problem (2.1) − (2.3) has
a solution {y(·), ξ(·)} on any time interval [0, T ].

3 Basic assumptions

(F1) The operator A ∈ L(Y1, Y−1) is regular [Du-
vant and Lions, 1976; Likhtarnikov and Yakubovich,
1976], i.e., for any T > 0, y0 ∈ Y1, ψT ∈ Y1 and
f ∈ L2(0, T ;Y0) the solutions of the direct problem

ẏ = Ay + f(t) , y(0) = y0 , a.a. t ∈ [0, T ]

and of the dual problem

ψ̇ = −A∗ψ + f(t) , ψ(T ) = ψT , a.a. t ∈ [0, T ]

are strongly continuous in t in the norm of Y1. Here
(and in the following) A∗ ∈ L(Y−1, Y0) denotes the ad-
joint to A, i.e., (Ay, η)−1,1 = (y,A∗η)−1,1 , ∀ y, η ∈
Y1 .



Remark 3.1 The assumption (F1) is satisfied
[Likhtarnikov and Yakubovich, 1976] if the embed-
ding Y1 ⊂ Y0 is completely continuous, i.e., transforms
bounded sets from Y1 into compact sets in Y0. �
(F2) The pair (A,B) is L2-controllable, [Brusin,

1976; Likhtarnikov and Yakubovich, 1976] i.e., for
arbitrary y0 ∈ Y0 there exists a control ξ(·) ∈
L2(0,∞; Ξ) such that the problem

ẏ = Ay + Bξ , y(0) = y0

is well-posed on the semiaxis [0,+∞) , i.e., there exists
a solution y(·) ∈ L∞ with y (0) = y0 .
It is easy to see that a pair (A,B) is L2-controllable

if this pair is exponentially stabilizable, i.e., if an ope-
rator K ∈ L(Y0,Ξ) exists such that the solution y(·)
of the Cauchy-problem ẏ = (A + BK) y, y(0) = y0 ,
decreases exponentially as t → ∞ , i.e.,

∃ c > 0 ∃ ε > 0 : ‖y(t)‖0 ≤ c e−εt ‖y0‖0 , ∀ t ≥ 0 .

(F3) Let F (y, ξ) be a Hermitian form on Y1 ×Ξ , i.e.,

F (y, ξ) = (F1y, y)−1,1 + 2Re (F2y, ξ)Ξ + (F3 ξ, ξ)Ξ,

where

F1 = F ∗
1 ∈ L(Y1, Y−1) , F2 ∈ L(Y0,Ξ) ,

F3 = F ∗
3 ∈ L(Ξ,Ξ) .

Define the frequency-domain condition

α := sup
ω,y,ξ

(‖y‖2
1 + ‖ξ‖2

Ξ)−1F (y, ξ) ,

where the supremum is taken over all triples (ω, y, ξ) ∈
R+ × Y1 × Ξ such that iωy = Ay + Bξ .

Remark 3.2 a) Let, in addition to the above assump-
tion, A be the generator of a C0-group on Y0 and the
pair (A,−B) be L2-controllable. Then the condition
α ≤ 0 , where α is from (F3), is sufficient for the appli-
cation of a theorem by [Likhtarnikov and Yakubovich,
1976]. Note that the existence of C0-groups is given
for conservative wave equations, plate problems, and
other important PDE classes [Flandoli, Lasiecka and
Triggiani, 1988]. �

4 Absolute observation - stability of evolutionary
inequalities

We continue the investigation of energy like proper-
ties for the observation operators from the inequality
problem (2.1), (2.2) with f ≡ 0.
The next definition generalizes the concepts which are

introduced in [Likhtarnikov and Yakubovich, 1976] for

output operators of evolution equations, namely in ex-
tending them to the observation operators of a class of
evolutionary variational inequalities. In the following
we denote for a function z(·) ∈ L2 (R+;Z) their norm
by

‖z(·)‖2,Z :=
(∫ ∞

0

‖z(t)‖2
Z dt

)1/2

.

Definition 4.1. a) The inequality (2.1), (2.2) is said
to be absolutely dichotomic (i.e., in the classes
N (F,G),M(d)) with respect to the observation z
from (2.3) if for any solution {y(·), ξ(·)} of (2.1), (2.2)
with y(0) = y0, ξ(0) = ξ0 ∈ E(y0) the following
is true: Either y(·) is unbounded on [0,∞) in the
Y0-norm or y(·) is bounded in Y0 in this norm and
there exist constants c1 and c2 (which depend only on
A,B,N (F,G) and M(d)) such that

‖Dy(·) + Eξ(·)‖2
2,Z ≤ c1(‖y0‖2

0 + c2) . (4.1)

b) The inequality (2.1), (2.2) is said to be absolutely
stable with respect to the observation z from (2.3) if
(4.1) holds for any solution {y(·), ξ(·)} of (2.1), (2.2).

Definition 4.2. The inequality (2.1)−(2.3) with f ≡ 0
is said to be minimally stable if the resulting equa-
tion for ψ ≡ 0 is minimally stable, i.e., there exists
a bounded linear operator K : Y1 → Ξ such that the
operator A + BK is stable, i.e. for some ε > 0

σ(A + BK) ⊂ {s ∈ C : Re s ≤ −ε < 0}
with F (y,Ky) ≥ 0 , ∀ y ∈ Y1 ,

(4.2)

and

t∫
s

G(y(τ) , Ky(τ))dτ ≥ 0 ,

∀ s, t : 0 ≤ s < t , ∀ y ∈ L2
loc(R+;Y1) .

(4.3)

With the superscript c we denote the complexification
of spaces and operators and the extension of quadratic
forms to Hermitian forms.

Theorem 4.1. Consider the evolution problem (2.1) −
(2.3) with ϕ ∈ N (F,G) and ψ ∈ M(d). Suppose that
for the operators Ac, Bc the assumptions (F1) and (F2)
are satisfied. Suppose also that there exist an α > 0
such that with the transfer operator

χ(z)(s) = Dc(sIc − Ac)−1Bc + Ec (s ∈ σ(Ac))
(4.4)

the frequency-domain condition

F c ((iωIc − Ac)−1Bcξ, ξ)

+ Gc ((iωIc − Ac)−1Bcξ, ξ) ≤ −α‖χ(z)(iω)ξ‖2
Zc

∀ ω ∈ R : iω ∈ σ(Ac) , ∀ ξ ∈ Ξc



is satisfied and the functional

J(y(·), ξ(·)) :=

∞∫
0

[F c(y(τ), ξ(τ)) + Gc(y(τ), ξ(τ))

+ α‖Dcy(τ) + Ecξ(τ)‖2
Zc

]
dτ

is bounded from above on any set

My0 := {y(·), ξ(·) : ẏ = Ay + Bξ on R+,

y(0) = y0 , y(·) ∈ L∞ , ξ(·) ∈ L2(0,∞; Ξ)} .

Suppose further that the inequality (2.1−(2.3) with
f ≡ 0 is minimally stable, i.e., (4.2) and (4.3) are sat-
isfied with some operator K ∈ L(Y1,Ξ) and that the
pair (A + BK,D + EK) is observable in the sense of
Kalman [Brusin, 1976], i.e., for any solution y(·) of

ẏ = (A + BK)y , y(0) = y0 ,

with z(t) = (D + EK)y (t) = 0 for a.a. t ≥ 0 it
follows that y(0) = y0 = 0 .
Then inequality (2.1), (2.2) is absolutely stable with

respect to the observation z from (2.3).

Proof Under the assumptions of the given theorem
there exist by [Likhtarnikov and Yakubovich, 1976] a
(real) operator P = P ∗ ∈ L (Y−1, Y0)∩L(Y0, Y1) and
a number δ > 0 such that the dissipation inequality is
satisfied. Setting in this inequality ξ = Ky from (4.2)
with arbitrary y ∈ Y1 we get with (4.3) the property

((A + BK)y , Py)−1,1 ≤ −δ ‖Dy + EKy ‖2
Z ,

∀ y ∈ Y1 . (4.5)

Using the fact that A + BK is a stable operator and
the pair (A + BK,D + EK) is observable, it follows
[Brusin, 1976] from (4.5) that P = P ∗ ≥ 0 . Suppose
now that {y(·), ξ(·)} is an arbitrary solution of (2.1),
(2.2) with f ≡ 0. With the Lyapunov-functional
V (y) = (y, Py)0 ≥ 0 it follows from the dissipation
inequality that for arbitrary t ≥ 0

−V (y0) − Φ(Cy0)

+

t∫
0

[ψ(y(τ)) − ψ(−Py(τ) + y(τ))]dτ

+ δ

t∫
0

‖Dy(τ) + E ξ(τ)‖2
Z dτ ≤ 0 . (4.6)

Since by assumption

t∫
0

[ψ(y(τ) − ψ(−Py(τ) +

y(τ))]dτ ≥ −c2 > −∞ we get from (4.6) for arbi-
trary t ≥ 0 the inequalities

δ

t∫
0

‖Dy(τ) + E ξ(τ)‖2
Z dτ

≤ V (y0) + Φ(Cy0) + c2

≤ V (y0) + c ‖y0‖2
0 + c2 . (4.7)

The properties (4.7) imply now the estimate (4.1) . �

5 Application of observation stability to the beam
equation

Consider the equation of a beam of length l, with
damping and Hookean material, given as

ρA
∂2u

∂t2
+ γ

∂u

∂t
− ∂

∂x

(
EA
3

g̃

(
∂u

∂x

))
= 0 , (5.1)

u(0, t) = u(l, t) = 0 for t > 0 , (5.2)
u(x, 0) = u0(x) , ut(x, 0) = u1(x) (5.3)

for x ∈ (0, l) .

Here u is the deformation in the x direction. Assume
that the cross section area A, the viscose damping γ,
the mass density ρ and the generalized modulus of elas-
ticity E are constant. The nonlinear stress-strain law g̃,
is given by

g̃(w) = 1 + w − (1 + w)−2 , w ∈ (−1, 1) . (5.4)

Let us break the stress-strain law into the sum of a lin-
ear term and a nonlinear term as g̃(w) = g(w) + w .
Then the above model (5.1) can be rewritten as

ρA
∂ 2u

∂t2
− ∂

∂x

(
EA
3

∂u

∂x

)

+ γ
∂u

∂t
− ∂

∂x

(
EA
3

g

(
∂u

∂x

))
= 0 . (5.5)

Assume the Gelfand triple V1 ⊂ V0 ⊂ V−1 with

V0 := L2(0, l) , V1 : = H1
0 (0, l)

and V−1 : = H−1(0, l) . (5.6)

Then equation (5.1) − (5.3) can be rewritten in V−1 as

ρAutt + A1u + A2ut + C∗g(Cu) = 0 , (5.7)
u(0) = u0 , ut(0) = u1 , (5.8)

with A1 ∈ L(V1,V−1) , A2 ∈ L(V1,V−1) (strong
damping), C ∈ L(V1,V0) and g : V0 → V0. The



operators A1 and A2 are associated with their bilin-
ear forms ai : V1 × V1 → R (i = 1, 2) through
(Aiv, w)V−1,V1 = ai(v, w) , ∀ v, w ∈ V0 .
In order to get a variational interpretation of (5.7),

(5.8) we make the following assumptions [Banks,
Gilliam and Shubov, 1997; Banks and Ito, 1988] :

(A1)

a) The form a1 is symmetric on V0 × V;

b) a1 is V1 continuous, i.e., for some c1 > 0 holds
|a1(v, w)| ≤ c1‖v‖V1‖w‖V1 , ∀ v, w ∈ V1 ;

c) a1 is strictly V1-elliptic, i.e., for some k1 > 0
holds a1(v, v) ≥ k1‖v‖2

V1
, ∀ v ∈ V1 .

(A2)

a) The form a2 is V1 continuous, i.e., for some c2 > 0
holds |a2(v, w)| ≤ c2‖v‖V1‖w‖V1 , ∀ v, w ∈ V1 .

b) The form a2 is V1 coercive and symmetric, i.e.,
there are k2 > 0 and λ0 ≥ 0 s.t.

a2(v, v) + λ0‖v‖2
V0

≥ k2‖v‖2
V1

and

a2(v, w) = a2(w, v) , ∀ v, w ∈ V1 .

(A3)

a) The operator C ∈ L(V1,V0) satisfies with some
k ≥ 0 the inequality

‖Cv‖V0 ≤
√

k‖v‖V1 , ∀ v ∈ V1 .

g : V0 → V0 is continuous and ‖g(v)‖V0 ≤
c1‖v‖V0 + c2 for v ∈ V0 , where c1 and c2 are
nonnegative constants.

b) g is of gradient type, i.e., there exists a coninu-
ous Frechét-differentiable functional G : V0 → R,
whose Frechét derivative G

′
(v) ∈ L(V0 , R) at any

v ∈ V0 can be represented in the form

G
′
(v)w = (g(v), w)V0 , ∀w ∈ V0 .

c) g(0) = 0 and for some positive ε < 1 we have for
all v, w ∈ V0

(g(v) − g(w), v − w)V0

≥ −εk1k
−1‖v − w‖2

V0
. (5.9)

We say that u ∈ LT is a weak solution of (5.7), (5.8)
if

(utt, η)V−1,V1 + a1 (u, η) + a2 (ut, η)
(5.10)

+ (g(Cu), Cu)0 = 0 ∀ η ∈ LT , a.a. t ∈ [0, T ] .

Let us formulate our problem (5.10) in first order form
on the energetic space Y0 := V1×V0 in the coordinates

y = (y1, y2) = (u, ut) . Define for this Y1 := V1 × V1

and a : Y1 × Y1 → R by

a((v1, v2), (w1, w2))
= (v2, w1)V1 − a1(v1, w2) − a2(v2, w2) ,

∀ (v1, v2), (w1, w2) ∈ Y1 × Y1 . (5.11)

The norms in the product spaces Y0 and Y1 are given in
the standard way by

‖(y1, y2)‖2
0 := ‖y1‖2

V1
+ ‖y2‖2

V0
, (y1, y2) ∈ Y0 ,

and

‖(y1, y2)‖2
1 := ‖y1‖2

V1
+ ‖y2‖2

V1
, (y1, y2) ∈ Y1 .

Then (5.10) can be rewritten as

(ẏ, η)−1,1 − a(y, η) = (Bϕ(Cy), η)−1,1 , (5.12)
y(0) = (u0, u1) , ∀ η ∈ Y1 ,

where

Bϕ(Cy) :=
(

0
−C∗g (Cy1)

)
. (5.13)

We can also write (5.12), (5.13) formally in the opera-
tor form

ẏ = Ay + Bϕ (Cy), y(0) = y0 , (5.14)

where A is defined by

a(v, w) = (Av,w)−1,1 , ∀ v, w ∈ Y1 ,

i.e., A =
[

0 I
−A1 −A2

]
.

It is shown in [Banks, Gilliam and Shubov, 1997;
Banks and Ito, 1988] that the embedding Y1 ⊂ Y0 is
completely continuous and the operator A generates an
analytic semigroup on Y1, Y0 and Y−1 = V1 × V−1 .
Furthermore, its semigroup is exponentially stable on
Y1, Y0 and Y−1 . From this it follows that the pair
(A,B) is exponentially stabilizable. Let us consider
with parameters ε > 0 and α ∈ R a more simplified
form of (5.1) − (5.3) written as

∂2u

∂t2
+ 2ε

∂u

∂t
− α

∂2u

∂x2
(5.15)

= −α

(
∂

∂x

(
−g

(
∂u

∂x

)))
=: α

∂

∂x
ξ

together with the boundary and initial conditions (5.2),
(5.3), where we have ξ = −g = ϕ introduced as



new nonlinearity. According to (5.9) in (A3)a) we
can assume that ϕ ∈ N (F ) with the quadratic form
F (w, ξ) = µw2 − ξw on R × R , where µ > 0 is a
certain parameter. Note that it is possible to include
a second quadratic form G if we use the information
from (A3)b).
Suppose that λk > 0 and ek (k = 1, 2, . . .) are the
eigenvalues resp. eigenfunctions of the operator −∆
with zero boundary conditions. We write formally the
Fourier series of the solution u(x, t) and the perturba-
tion ξ (x, t) to the (linear) equation (5.15) as

u (x, t) =
∞∑

k=1

uk(t)ek and ξ (x, t) =
∞∑

k=1

ξk(t)ek .

(5.16)
If we introduce the Fourier transforms ũ and ξ̃ of
(5.16) with respect to the time variable we get from
(5.15) for k = 1, 2, . . . the equations

−ω2ũk (iω) + 2iωεũk (iω) + λkũk(iω)

= −α
√

λk ξ̃k (iω) . (5.17)

It follows from (5.17) that for k = 1, 2, . . .

ũk = χ (iω, λk) ξ̃k , (5.18)

where

χ (iω, λk) = (−ω2 + 2iωε + αλk)−1 (αλk) ,

∀ ω ∈ R : −ω2 + 2iωε + αλk = 0 .
(5.19)

In order to check the sufficient conditions for Theorem
4.1 we consider the functional

J(w, ξ) := Re
∫ ∞

0

∫ l

0

(µ|w|2 − wξ∗) dxdt . (5.20)

Using the Parseval equality for (5.20) with

|w̃|2 =
∞∑

k=1

λk|ũk|2 =
∞∑

k=1

λk|ũk|2

=
∞∑

k=1

λk|χ(iω, λk)|2|ξ̃k|2

and

w̃ ξ̃∗ =
∞∑

k=1

√
λk ũk (ξ̃ k)∗ =

∞∑
k=1

√
λk χ (iω, λk)|ξ̃k|2,

we conclude [Arov and Yakubovich, 1982] that the
functional (5.20) is bounded from above if and only if
the functional

Re
∫ +∞

−∞

∫ l

0

[µ

( ∞∑
k=1

λk|χ(iω, λk)|2|ξ̃k|2

−
∞∑

k=1

√
λk χ (iω, λk)|ξ̃k|2 ] dxdω (5.21)

is bounded on the subspace of Fourier-transforms de-
fined by (5.18), (5.19) or, using again a result of [Arov
and Yakubovich, 1982], that the frequency-domain
condition

µλk|χ (iω, λk)|2 −
√

λk Re χ(iω, λk) < 0 , (5.22)
∀ω ∈ R : −ω2 + 2 iωε + αλk = 0 , k = 1, 2, . . . ,

is satisfied, where χ (iω, λk) = (−ω2 + 2iωε +
αλk)−1(−α

√
λk) . Clearly, (5.22) describes a certain

domain Q in the space of parameters µ > 0, ε >
0, α ∈ R . Theorem 4.1 shows that (5.14), associated
with (5.15),(5.2),(5.3) is absolutely stable with respect
to the observation z = (y1, y2) , if the parameter from
Q also guarantee the minimal stability of (5.14).
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