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Abstract: Asymptotic behavior of a class of multidimensional discrete control systems
with periodic nonlinearities and denumerable set of equilibria is investigated. By
means of discrete version of Yakubovich-Kalman theorem and certain modification of
Lur’e-Postnikov function a frequency-domain criterion which guarantees that every
solution of a system tends to an equilibrium is obtained.
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1. INTRODUCTION

In this paper we go on with a number of publica-
tions devoted to asymptotic behavior of discrete
phase control systems (Koryakin and Leonov,
1976; Leonov and Smirnova, 2000; Smirnova et
al., 2006; Leonov, 2006). All these published
works have common object of investigation –
discrete phase control systems, common goal of
investigation – the asymptotic behavior of such
systems and common methods of investigation.
The latter are the second Lyapunov method and
Yakubovich-Kalman frequency theorem in dis-
crete case (Yakubovich, 1973). So all the re-
sults are formulated uniformly, in the form of
frequency-domain criteria with a number of vary-
ing parameters.

Phase systems are the systems of specific charac-
ter. They include periodic nonlinear functions of
phase coordinates and have a denumerable set of
equilibria (which may be both stable and unsta-
ble). That is why the Lyapunov function of Lur’e-
Postnikov type which is traditional for control
systems is of no use here.

In all the works (Koryakin and Leonov, 1976;
Leonov and Smirnova, 2000; Smirnova et al.,
2006; Leonov, 2006) another Lyapunov function
is used. It also has the form of ”quadratic form
plus integral of nonlinearity” just as the Lur’e-
Postnikov function has. But in contrast to the
Lur’e-Postnikov function the nonlinearity under
integral sign does not coincide with the nonlinear
function included into the phase system.

The nonlinearity, which has been used in pub-
lished works (Koryakin and Leonov, 1976; Leonov
and Smirnova, 2000; Smirnova et al., 2006; Leonov,
2006), is constructed on the base of the periodic
nonlinear function included into the system. It
also is periodic but it has a zero mean value on
the period. As a result the Lyapunov function has
a periodic summand.

In publications (Koryakin and Leonov, 1976;
Leonov and Smirnova, 2000; Smirnova et al., 2006;
Leonov, 2006) the nonlinear periodic function
with a zero mean value on the period is con-
structed by means of a special procedure, bor-
rowed from the paper (Bakaev and Guzh, 1965).
Being united with Yakubovich-Kalman theorem



this procedure leads to certain restrictions on the
varying parameters of the frequency-domain in-
equality.

In this paper the periodic nonlinearity with zero
mean value is borrowed from papers (Brockett,
1982; Leonov et al., 1992). The restrictions on
the varying parameters which appear on this
track differ from those which appear in connection
with Bakaev-Guzh procedure (Bakaev and Guzh,
1965).

2. DESCRIPTION OF THE PROBLEM. MAIN
RESULT

Consider a discrete control system of the type

x(n + 1) = Ax(n) + bξ(n),
σ(n + 1) = σ(n) + c∗x(n)− ρξ(n),

ξ(n) = ϕ(σ(n)), n = 0, 1, 2, . . .
(1)

Here A is a real (m×m)- matrix, b and c are
real m-vectors, ρ is a number. Values x and σ
are respectively m-dimensional and scalar compo-
nents of the state vector of the system, ϕ(σ) is a
scalar continuously differentiable ∆-periodic func-
tion. Symbol ∗ means an Hermite conjugation.

Suppose that all eigenvalues of A are situated
inside the unit circle, the pair (A, b) is controllable
and the pair (A, c) is observable. Suppose also that
function ϕ(σ) has two simple zeros: 0 ≤ σ1 < σ2 <
∆, and ϕ′(σ1) > 0, ϕ′(σ2) < 0. Suppose further
that

∆∫

0

ϕ(σ) dσ < 0. (2)

System (1) has a denumerable set of equilibria. It

consists of (m+1)-vectors
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(k = 0,±1,±2...). The goal of this paper is to es-
tablish the conditions which guarantee that every
solution of (1) tends to a certain equilibrium as n
tends to the infinity.

All the results of this paper are formulated in
terms of transfer function of the linear part of
system (1)

χ(p) = c∗(A− pEm)−1b + ρ, (p ∈ C).

Let now α1, α2 be such numbers that

α1 6 dϕ

dσ
6 α2. (3)

Notice that α1α2 < 0.

Further in order to construct a ∆ - periodic
nonlinearity inside the Lyapunov function we shall
need the constant

ν =

∆∫
0

ϕ(σ)dσ

∆∫
0

|ϕ(σ)|
√

(α2 − ϕ′(σ))(ϕ′(σ)− α1)dσ

.

We shall also need the constants k1 = 2α1 − α2

and k2 = 2α2 − α1.

Theorem 1. Suppose that all eigenvalues of ma-
trix A are situated inside the open unit circle, the
pair (A, b) is controllable and the pair (A, c) is
observable. Suppose that there exist such num-
bers ε > 0, η > 0, æ 6= 0, τ > 0 that for all
p ∈ C, |p| = 1 the inequality

<e {æχ(p)− ε|χ(p)|2 − η +

τ(k1χ(p) + (p− 1))∗((p− 1) + k2χ(p))} ≥ 0 (4)

is valid and the following inequalities are true:

4ε > æα0(2 + |ν|
√

2(α2 − α1)), (5)

where α0 = α2 if æ ≥ 0 and α0 = α1 if æ < 0,
and

4τη > æ2ν2. (6)

Then
1) lim

n→∞
ϕ(σ(n)) = 0, (7)

2) lim
n→∞

(σ(n + 1)− σ(n)) = 0, (8)

3) lim
n→∞

σ(n) = σ0, (9)

where ϕ(σ0) = 0.

3. PRELIMINARY CONSIDERATION

First of all let us extend the state space of (1) as
it has been done in (Leonov and Smirnova, 2000).
For the purpose we introduce the notations

y =
∣∣∣∣
∣∣∣∣

x
ϕ(σ)
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ξ1(n) = ϕ(σ(n + 1))− ϕ(σ(n)).

Then system (1) can be represented as

y(n + 1) = Py(n) + Lξ1(n),
σ(n + 1) = σ(n) + c∗1y(n), n = 0, 1, 2, . . . .

(10)

Remark 1. (Leonov and Smirnova, 2000). If the
pair (A, b) is controllable then the pair (P, L) is
controllable too.

Remark 2. (Leonov and Smirnova, 2000). If p 6=
1 the following equalities are true:

c∗1(P − pE)−1L =
1

p− 1
χ(p),



L∗(P − pE)−1L = − 1
p− 1

.

Let us define quadratic forms of (m + 1) - vector
y and a scalar ξ1:

M(y, ξ1) = (Py+Lξ1)∗H(Py+Lξ1)−y∗Hy+F1(y, ξ1),

F1(y, ξ1) = æy∗Lc∗1y + εy∗c1c
∗
1y + ηy∗LL∗y

+τ(k1c
∗
1y − ξ1)∗(ξ1 − k2c

∗
1y),

where H = H∗ is a (m + 1) × (m + 1) - matrix
and æ, ε, η, τ, are scalar parameters.

The following assertion is true.

Lemma (Smirnova et al., 2006). Suppose the
pair (A, b) is controllable and the pair (A, c) is
observable and all eigenvalues of matrix A are
located inside the unit circle. If there exist such
numbers ε > 0, η > 0, æ 6= 0, τ > 0 that the
inequality (4) is true for all p ∈ C, |p| = 1 then
there exists matrix H = H∗ such that M(y, ξ1) ≤
0 for all y ∈ Rm+1, ξ1 ∈ R.

Corollary. Suppose the hypotheses of Lemma are
fulfilled. Consider then the sequence

W (n) = y∗(n)Hy(n) (n = 0, 1.2....)

where y(n) satisfies system (10). The sequence
W (n) is bounded.

The assertion of the corollary follows immediately
from the property of eigenvalues of matrix A and
the boundedness of ϕ(σ).

4. PROOF OF THE THEOREM 1

Let us introduce the functions

ϕ1(σ) =
√

(α2 − ϕ′(σ))(ϕ′(σ)− α1),

Φ(σ) = ϕ(σ)− ν|ϕ(σ)|ϕ1(σ).

Notice that Φ(σ) is a ∆ - periodic function with
zero mean value on [0, ∆), i.e.

∆∫

0

Φ(σ) dσ = 0. (11)

Let us define the sequence

V (n) = W (n) + æ
∫ σ(n)

σ(0)

Φ(σ)dσ

and consider the difference

V (n+1)−V (n) = W (n+1)−W (n)+æ

σ(n+1)∫

σ(n)

Φ(σ)dσ.

First of all we shall carry out the estimation of
the integral

σ(n+1)∫

σ(n)

Φ(σ)dσ.

For the purpose we shall represent it in the form
σ(n+1)∫

σ(n)

Φ(σ)dσ =

σ(n+1)∫

σ(n)

ϕ(σ)dσ+

|ν|
σ(n+1)∫

σ(n)

|ϕ(σ)|ϕ1(σ)dσ. (12)

and apply to the second summand in the right
part of (12) a mean value theorem. Then

σ(n+1)∫

σ(n)

|ϕ(σ)|ϕ1(σ)dσ = ϕ1(σ′n)

σ(n+1)∫

σ(n)

|ϕ(σ)|dσ,

where σ(n)<
>σ′n

<
>σ(n + 1) and

σ(n+1)∫

σ(n)

Φ(σ)dσ =

σ(n+1)∫

σ(n)

(ϕ(σ)+|ν|ϕ1(σ′n)|ϕ(σ|))dσ.

Now we can use the estimates (5.4.11) (Leonov
and Smirnova, 2000) destined just for the integral

b∫

a

(ϕ(σ) + Θ|ϕ(σ)|) dσ(Θ > 0).

In virtue of these estimates we have

(ϕ(σ(n)) + Θ|ϕ(σ(n))|)(σ(n + 1)− σ(n))+

α1

2
(1 + Θ)(σ(n + 1)− σ(n))2 ≤

σ(n+1)∫

σ(n)

Φ(σ)dσ ≤

(ϕ(σ(n)) + Θ|ϕ(σ(n))|)(σ(n + 1)− σ(n))+

α2

2
(1 + Θ)(σ(n + 1)− σ(n))2, (13)

where Θ = |ν|ϕ1(σ′n). Consequently,

V (n+1)−V (n) ≤ W (n+1)−W (n)+æ(ϕ(σ(n))+

Θ|ϕ(σ(n))|)[σ(n + 1)− σ(n)]+

æα0

2
(1 + Θ)(σ(n + 1)− σ(n))2. (14)

Let us define the function

Z(n) = W (n+1)−W (n)+æϕ(σ(n)[σ(n+1)−σ(n)]

+ε(σ(n + 1)− σ(n))2 + ηϕ2(σ(n))
+τ [k1(σ(n+1)−σ(n))− (ϕ(σ(n+1)−ϕ(σ(n))]∗·
[ϕ(σ(n + 1)))− ϕ(σ(n))− k2(σ(n + 1)− σ(n)].

Then (14) can be written as follows

V (n + 1)−V (n) ≤ Z(n) + æΘ|ϕ(σ(n)|(σ(n + 1)−
σ(n))+ (

æα0

2
(1+Θ)− ε)(σ(n+1)−σ(n))2− ηϕ2

−τ(k1c
∗
1y(n)− ξ1(n))∗(ξ1(n)− k2c

∗
1y(n)). (15)

It follows from (5) and the form of ϕ1(σ(n) that
æα0

2
(1 + Θ)− ε < 0. (16)



As soon as y(n) is a solution of system (10) we
have

W (n+1)−W (n) = (y∗(n)P +L∗ξ1(n))H(P (y(n))

+Lξ1(n))− y∗(n)H(y(n));ϕ(σ(n) = y∗L;
σ(n + 1)− σ(n) = c∗1y(n).

Hence
Z(n) = M(y(n), ξ1(n)).

It follows from the hypotheses of the theorem and
the lemma that

Z(n) ≤ 0. (17)

It is easy to see that

[k1(σ(n + 1)− σ(n))− (ϕ(σ(n + 1))− ϕ(σ(n)))]·
[(ϕ(σ(n + 1))−ϕ(σ(n)))− k2(σ(n + 1)−σ(n))] =

(ϕ′(σ
′′′
n )−k2)(k1−ϕ′(σ

′′
n))(σ(n+1)−σ(n))2, (18)

where σ(n)<
>σ

′′
n

<
>σ(n+1) and σ(n)<

>σ
′′′
n

<
>σ(n+1).

Let us consider the right part of (18):

(ϕ′(σ
′′
n)− k1)(k2 − ϕ′(σ

′′′
n )) = [(ϕ′(σ

′′
n)− α1)+

(ϕ′(σ
′
n)− α1) + (α2 − ϕ′(σ

′
n))][(α2 − ϕ′(σ

′′′
n ))+

(α2 − ϕ′(σ
′
n)) + (ϕ′(σ

′
n)− α1)] ≥

(α2 − ϕ′(σ
′
n))(ϕ′(σ

′
n)− α1) = ϕ2

1(σ
′
n). (19)

It follows from (15)-(19) that

V (n + 1)− V (n) ≤ −τϕ2
1(σ

′
n)(σ(n + 1)− σ(n))2−

ηϕ2(σ(n)) + æ|ν|ϕ1(σ
′
n)(σ(n + 1)− σ(n)). (20)

The right part of (20) is a quadratic form with
respect to the values ϕ1(σ

′
n)(σ(n+1)−σ(n)) and

ϕ(σ(n). In virtue of (6) we have that

V (n + 1)− V (n) ≤ −δ|ϕ(σ(n)|2(δ > 0). (21)

Since the sequence W(n) (n= 0,1,2, ...) is bounded
and the function Φ(σ) has a zero mean value on
the period the sequence V(n) (n= 0,1,2, ...) is
bounded as well. Then it follows from (21) that
the series ∞∑

n=1

|ϕ(n)|2

converges. Hence

lim
n→∞

ϕ(σ(n)) = 0. (22)

As all the eigenvalues of matrix A are situated
inside the unit circle, the relation (22) implies

lim
n→∞

x(n)) = 0. (23)

Then

σ(n + 1)− σ(n)) → 0 as n → +∞ (24)

and consequently (Leonov and Smirnova, 2000)

σ(n) → σ0 as n → +∞,

with ϕ(σ0) = 0. Theorem is proved.

5. EXTENSION OF THE MAIN RESULT

The frequency-domain criterion of gradient-like
behavior proved for system (1) can be extended
easily for the system

x(n + 1) = Ax(n) + Bf(σ(n)),
σ(n + 1) = σ(n) + C∗x(n)−Rf(σ(n)),

n = 0, 1, 2, . . . ,
(25)

where B,C and R are real matrices of order m ×
l, m × l and l × l respectively and f(σ) is a
vector-value function having the property f(σ) =
(ϕ1(σ1), ϕ2(σ2), ..., ϕl(σl)) for σ = (σl, ...σl). We
assume that every component ϕj(σj) is ∆j -
periodic, belongs to C1 and has two zeros on
[0,∆j). Assume also that

α1j 6 dϕj

dσ
6 α2j . (26)

for all σ ∈ R where α1j < 0 < α2j(j = 1, ...l) are
certain numbers.

Let us determine for each j = 1, ..., l the value

νj =

∆∫
0

ϕj(σ)dσ

∆∫
0

|ϕj(σ)|√(α2j − ϕj ′(σ))(ϕj ′(σ)− α1j)dσ

.

and define the l × l - matrix

N = diag{|ν1|, ..., |νl|}.
Let k1j = 2α1j − α2j , k2j = 2α2j − α1j and

K1 = diag{k11, ..., k1l}, K2 = diag{k21, ..., k2l}.
The transfer matrix of the linear part of (25) is as
follows

K(p) = C∗(A− pEm)−1B + R, (p ∈ C).

Theorem 2. Suppose that all eigenvalues of ma-
trix A lie inside the open unit circle, the pair
(A,B) is controllable and the pair (A,C) is ob-
servable. Suppose that there exist diagonal l× l -
matrices

E = diag{ε1, ..., εl} > 0, D = diag{η1, ..., ηl} > 0,

T = diag{τ1, ..., τl} > 0, J = diag{æ1, ..., æl}
such that the following properties hold:

1.
J<eK(p)−K(p)∗EK(p)−D+

<e[K1K(p)+(p−1)El]∗T [(p−1)El+K2K(p)] ≥ 0
(27)

for all complex p with |p| = 1;

2.
4E > JM0(2E + NP ),

where M0 = diag{α01, ..., α0l} with α0j = α1j if
æj < 0 and α0j = α2j if æj ≥ 0, and



P = diag{√α21 − α11, ...,
√

α2l − α1l};
3.

4TD > (JN)2.

Then
lim

n→∞
f(σ(n)) = 0,

lim
n→∞

x(n) = 0,

lim
n→∞

σ(n) = const.

6. CONCLUSIONS

The problem of asymptotic behavior of discrete
phase systems with multiple equilibria is con-
sidered. By means of Lyapunov function with
a periodic summand and the discrete version of
Yakubovich-Kalman theorem a frequency-domain
criterion for gradient-like behavior of discrete
phase systems is obtained.
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