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Abstract

Connecting orbits in oscillator networks have been well studied for the
case of ideal transport delay between nodes and for weakly connected net-
works. This kind of behavior can emerge either as natural consequence of
the network symmetry, appearing as symmetry-breaking bifurcations from
equilibria; or in asymmetric networks as a global dynamics. The influence
of the transport delay between oscillators in this kind of dynamics has
been also studied for the case of scalar oscillators. In Symmetric bifurca-
tion analysis of synchronous states of time-delayed coupled Phase-Locked
Loop oscillators. Communications in Nonlinear Science and Numerical
Simulation, Elsevier BV, 2014, (on-line version), we presented an analysis
of bifurcations in time-delay fully-connected second-order PLL1 networks
focusing in bifurcations from the stable equilibria; in this work we continue
the analysis, this time looking for heteroclinic orbits at the linearization
for unstable equilibria. We begin to explore the emergency of conectiong
orbits steady-states steady-states using numerical simulation.

1 Introduction

We briefly explore some connecting orbits emerging from unstable-to-
stable equilibria in a fully-connected second-order PLL network. In a
previous work [6] we discussed how the time-delay between nodes can
lead to degenerate Hopf bifurcations; we use these previous results as a
starting point to explore how periodic solutions and steady-states can be
connected.

This work is divided as follows: In section 2, the full-phase model
used in our analysis is presented and conditions for degenerate Hopf bi-
furcations are given in terms of free parameters, in section 3 the existence
of connecting orbits between equilibria is shown based in numerical ev-
idence; we comment on the influence of the time-delay in these orbits;
finally, some comments and questions on the ongoing research are given
in section 4.

1PLL: Phase Locked Loop.
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2 The Full-phase model

In [6] the Full-phase model was used to find Hopf bifurcations in the
(µ, τ)-parameter space, the model for a N -node fully connected network
is:

φ̈i(t) + µφ̇i(t)− µωM =

Kµ

N − 1

N∑
j 6=i
N

j=1

[sin(φj(t− τ)− φi(t)) + sin(φj(t− τ) + φi(t))]

+εIn(t) + ηw(t),

(1)

here, following [1], we introduce an impulsive input In(t) with unit mag-
nitude, and wn(t) the uncorrelated white noise, to test the robustness
of the eventual connecting orbits, ε and η represent the impulsive input
amplitude and the noise strength respectively.

Equilibria in equation (1) are:

φ+(n) =
1

2

(
arcsin

(
−ωM
K

)
+ 2nπ

)
φ−(n) =

1

2

(
π − arcsin

(
−ωM
K

)
+ 2nπ

) , n ∈ Z, (2)

For N = 3, the unperturbed system (ε, η = 0) has S3 = D3 symmetry,
the dihedral group. Symmetry-breaking Hopf bifurcations can emerge in
three families of periodic orbits (modulo symmetry), the spatio-temporal
symmetry group H = Z3, the spatial symmetry group K = Z2(π1,2), and
the spatio-temporal symmetry group H = Z2(π1,2), for details see [6, 7].
For K = 1.05 and ωM = 1, equlibrium φ+(n) is unstable and φ−(n)
starts stable at τ = 0, for details see [2]. Curves for symmetry-breaking
and symmetry-preserving bifurcations computed in the parameter-space
(µ, τ), for the equlibrium φ−(0), are shown in figure 1.
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Figure 1: For the equilibrium φ−(0), K = 1.05, ωM = 1. Curves of symmetry-
breaking bifurcations are shown in red, and curves of symmetry-preserving bi-
furcations are shown in black; solid lines indicate bifurcations from the left to
the right and dashed lines bifurcations from the right to the left. Equilibrium
φ+(n) is unstable [2].

Using DDE-Biftool [5, 4], we identify an unstable root for the equi-
librium φ+(0), at µ = 0.075, K = 1.05 and τ = 0.1, see figure 2a; by
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continuating this solution, the branch undergoes to unstable Hopf bifur-
cation, see figure 2b.
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(a) Rightmost roots for µ = 0.075, K =
1.05 and τ = 0.1.
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(b) Branch of continuation for equilibrium
φ+

Figure 2: (a) Unstable root for equilibrium φ+(0), we identify the 1−D unstable
manifold. (b) Branch of solutions going to Hopf Bifurcation.

3 Connecting orbits

A connecting orbit is a collection of solution trajectories connecting se-
quence of periodic solutions, or equilibria invariant sets via saddle-sink
connections [8], for an example of a connecting orbit between φ+(0) and
φ−(−2) see figure 3.

For the system

ẋ(t) = f(x(t), x(t− τ), η), (3)

where τ > 0 is the time-delay, η ∈ Rp is the vector of parameters and
f : Rn×Rn×Rp → Rn, we say that x(t), a solution of (3), is a connecting
orbit if:

lim
t→−∞

x(t) = x1, lim
t→+∞

x(t) = x2. (4)

For the same set of parameters used to compute the unstable root and the
branch in figures 2a, 2b, and choosing a suitable time-delay, e observe that
both branches of the unstable 1D manifold in system (1) at the equilibrium
φ+(0) are connected to the stable manifold for equilibria φ−(n); hence,
with a suitable perturbation, i.e., φ = φ+±δv, (A0(η)+Aτ (η)e−λτ )v = 0,
with δ << 1, it is possible to reach some φ−(n) from φ+(0), λ is the

only unstable eigenvalue at τ , see figure 2a, and A0(η) =
∂

∂x
f(x∗, x∗, η),

Aτ (η) =
∂

∂xτ
f(x∗, x∗, η).

Simulations were made using sofware DDE-Biftools, and Matlab rou-
tines dde23 and ddesd, choosing τ lower than the corresponding to the de-
generate Hopf bifurcation point in figure 2b, we observe that for asymptot-
ically stable solutions, φ+(0)→ φ−(n); in figure 4, three connecting orbits
are shown for different values of time-delay (τ = {0.1, 1.17, 1.16, 1.41}),
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the last one is unstable. It is clear that unstable manifold is affected by
the time-delay.
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Figure 3: Connecting orbit form equilibrium φ+(0) to φ−(−2). For K = 1.05,
ωM = 1, µ = 0.075 and τ = 2.1509.

4 Comments and Questions

Finding a connecting orbit between steady state solutions is not a difficult
task, provided that an 1D unstable manifold can be found. However,
even when we know that connecting orbits between periodic solutions,
or between periodic solutions and steady-states are also possible due to
symmetry, locating such a heteroclinic cycles is a difficult task, a starting
point could be the approach introduced in [3] adapted to DDEs. It is
important to note that due to symmetry conditions we are dealing with
degenerate bifurcations. Bearing this in mind, some questions for further
research can be posed:

• How the 1D unstable manifold is influenced by the time-delay and
the other free parameters?.

• Are heteroclinic orbits possible in system (1)?

• If yes. How those orbits can be found?

• If not. What symmetry-breaking condition is needed to make them
possible?
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(a) τ = 0.1
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(b) τ = 1.17
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(c) τ = 1.16
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Figure 4: Connecting orbits φ+(0) → φ−(n), for µ = 0.075 and K = 1.05, for
different values of τ .
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