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Abstract 

In this paper a transient in some nonlinear systems 
is constructed by using the multiple-scale method. In 
particular, a system containing a linear oscillator, 
linearly coupled to an essentially nonlinear 
attachment with a comparatively small mass, is 
considered. A damping is taken into account. A 
transfer of energy from the initially perturbed linear 
subsystem to the nonlinear one can be observed. A 
similar construction is made to describe a transient in 
a system which contains a linear oscillator and a 
vibro-impact attachment with a comparatively small 
mass. A transient in such system under the external 
periodical excitation is considered too. Besides, a 
transient in a system which describes an interaction of 
some rotating subsystem and the elastic one is 
constructed.  
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1 Introduction 
An investigation of transient is important in 

engineering, in particular, in problem of absorption. 
Over the past years different new devices have been 
used for the vibration absorption and for the reduction 
of the transient response of structures [Shaw, Shaw 
and Haddow, 1989; Frolov K.V., 1995; Manevitch L. 
and al., 2003]. It seems interesting to study nonlinear 
passive absorbers for this reduction.  
  In presented paper the transient in a system 
containing a linear oscillator, linearly coupled to an 
essentially nonlinear attachment with a comparatively 
small mass, is considered. A damping is taken into 
account. It is assumed that some initial excitation 

implies vibrations of the linear oscillator.  
  The multiple scales method [Nayfeh, 1973] is used 
to construct a process of transient in the system under 
consideration. A transfer of energy from the initially 
perturbed linear subsystem to the nonlinear absorber 
can be observed. A similar construction is made to 
describe the transient in a system which contains a 
linear oscillator and a vibro-impact absorber. Both an 
exact integration with regards to impact conditions, 
and the multiple scales method are used for this 
construction. The transient in the vibro-impact system 
under the external periodical excitation was 
considered too. Numerical simulation confirms an 
efficiency of the analytical construction in these 
systems.   
 

2 Transient in a system containing an essentially 
nonlinear oscillator as absorber  
Let us consider a system with two connected 
oscillators, namely one linear and one nonlinear with 
a comparatively small mass (Fig.1).  
 

 
Fig.1. The system under consideration  

  
  This system is described passing by the following 
differential equations:  
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where δ  is the dissipation coefficient, ε is a formal 
small parameter. In the first equation the small 
parameter characterizes the smallness of the absorber 
principal characteristics with respect to ones in the 
linear subsystem.  
  The solution of the system (1) will be found by the 
multiple-scale method. One has  
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etc. 
  One obtains in zero approximation by the small 
parameter the next equation:  
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  The solution of this equation is 
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  One has in the next approximation by the small 
parameter the following ODE system:   
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 Let us use the presentation of the 0x  in the form 

121202110 cos),,(cos),,( ψψ …… ttBttBx += ,  
where ),,(),,( 21102111 …… ttttt ϕψ +Ω= . Equating 
cosine coefficients in the first equation and 
eliminating secular terms in the second one we get 
nonlinear algebraic equations:  
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  Escaping calculations of the next approximations in 
the multiple scale method we give expressions for the 
amplitudes, frequencies and phases of zero-
approximation 00 , yx  of (2):  
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  In such a way we have got a zero-approximation of 
sought solution containing four constants with respect 
to time 0t , namely 

),,(),,,(),,,(),,,( 32323332224311 ………… ttccttccttccttcc ==== ∗∗∗∗∗∗

They could be found numerically by Newton method 
from the next initial conditions, which model the 
instant impact to the linear subsystem: 0)0()0( == xx � , 

Vyy == )0(,0)0( � . 
Figs. 2 and 3 present results of comparing the 
analytical solution (zero-approximation) with the 
numerical simulation obtained by using the Runge-
Kutta procedure for different initial values and 
parameters, namely 

01.0=ε , 10== Mm , 109.0=κ ,  

1018.0=c , V=0.127;  

besides, 5=δ , 102=γ  in Fig.2; 

1=δ , 103=γ  in Fig.3. 
 

 
Fig.2. Transient simulation ( 5=δ , 102=γ ) 

 



 
Fig.3. Transient simulation ( 1=δ , 103=γ ) 

 

3 Transient in the vibro-impact system 
One considers the 2-DOF vibro-impact system with 
the one-sided catch (Fig.4). This system contains the 
linear oscillator and the absorber with a comparatively 
small mass. It is presupposed to obtain analytical 
description of transient, both for free and forced 
oscillations, by using the multiple-scale method.  
  Equations of motion for the system under 
consideration in a case of the free vibrations are the 
following: 
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here M is a mass of the main linear subsystem, m is a 
mass of the absorber, δ  characterizes a linear 
dissipation force, γ  and 2κ  characterize  elastic 
springs. The formal small parameter is introduced to 
select a smallness of the absorber mass, the 
connection between oscillators and the dissipation.   

 
Fig.4. The vibro-impact system under consideration 
 
  It is presupposed that an impact here is 
instantaneous. The restoration coefficient ( 10 ≤≤ e ) 
characterizes a lost of velocity in the instant of 
impact. One has the following conditions of the 
impact:    
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Here kt  is the impact instant (k is a number of the 
impact, −

kt  is an instant before impact, +
kt  is one after 

impact), maxx is a distance between the equilibrium 
state and the catch.  

3.1 Free oscillations in the vibro-impact system 
  To construct an analytical solution by using the 
multiple scale method, the expansions (2) are used. In 
zero approximation by small parameter the next 
solution can be obtained:  
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. Conditions of elimination 
of secular terms in the next approximation by the 
small parameter give us the following expressions for 
amplitudes of the zero approximation:    
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  Taking onto account the next approximation, one has 
the approximate solution of the form:  
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  Impact conditions (4) gives the next relations 
connecting coefficients iC before ( k

iC ) and after 
impact ( 1+k

iC ):  
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  The numeric simulation was realized for the next 



values of parameters: М=1, m=0.01, ε =1, δ =0.001, 
e=0.9, maxx =1.4, γ =1.5, κ =1. Initial values model 
the instant impact to the linear subsystem: 

,0)0(,0)0( == xx � 1)0(,0)0( 0 === Vyy �� . Comparison of 
the analytical solution and numerical simulation 
shows a good exactness of the analytical 
approximation (Fig.5). A number of the integration 
steps is shown on the horizontal axis.   

 
Fig.5. Transient in a case of free oscillations in the 
vibro-impact system 
 

3.2 Transient in a case of forced oscillations 
One considers the same 2-DOF vibro-impact system 
in a case when an external periodic force acts to linear 
subsystem. The multiple scales method can be 
successfully used in this case too. In contrast with the 
solution, obtained in the sub-section 3.1, the part, 
corresponding to the external excitation, have to be 
added. One has     
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  Impact conditions (4) gives some relations 
connecting coefficients iC before ( k

iC ) and after 
impact ( 1+k

iC ). These relations are not presented 
here.   
  Numerical simulation was made for the same 
parameters and initial values, as in the preceding sub-
section. Comparison of the analytical solution and 
numerical simulation (Fig.6) shows a good exactness 
of obtained analytical approximation. A number of 
the integration steps is shown on the horizontal axis.   

 
Fig.6. Transient in a case of forced vibrations in the 

vibro-impact system. 

4 Transient in 2-DOF nonlinear system with 
limited power supply  

One considers a transient in a system which 
describes an interaction of some rotating subsystem 
and the linear elastic one. A model of this system is 
presented in Fig.7. Equations of motion of this system 
are the following:     
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Here the function )(ϕ�L  is a controlled torque of the 

unbalanced rotor of DC motor; ( )H ϕ�  is a resistance 
torque of the rotor. The system under consideration is 
known as non-ideal system [Kononenko, 1969; 
Balthazar et al., 2003]. It means that the excitation is 
influenced by the response of the supporting elastic 
structure and that the energy source has a limited 
power supply (non-ideal excitation).  
 

 
Fig.7. The nonlinear system with limited power 

supply. 
 
  The equations (7) may be simplified when we accept 
the torques as linear. One has in this case:  
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the equations (7) as  
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Here prime denotes a derivation by τ . A procedure 

of multiple-scale method which is similar to (2) can 
be used here.  

One has the next equations of the zero 
approximation by the small parameter, and the 
corresponding solution in the form:  
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(The operator 0D  was introduced in the Section 2)    
  To simplify a construction of solution in the next 
approximations we will consider the transient after 
some instant when the exponent in (9) can be 
negligible. Note that in concrete systems this instant is 
very small.  
  In this case to eliminate secular terms in the next 
approximation by the small parameter ε , it must 
satisfy the next equations:   
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  Then we can write equations of the first 
approximation by the small parameter, namely:  
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  After some transformation the transient can be 
presented as  
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Here )/( ω=Ω NM . The solution (12) describes a 
transfer to a non-resonance stationary solution having 
frequencies Ω  and Ω2 . Vibration amplitudes of this 
non-resonance regime are not large. The numerical 
checking calculation shows a very good exactness of 
the transfer analytical presentation in a region of the 
non-resonance stationary regime stability. But if this 
stationary regime is unstable, on has a transfer to the 
1:1 resonance stationary regime with large 
amplitudes.  
 

5 Conclusion 
The obtained results show an affectivity of the 

multiple-scale method to describe a transient in 
different kinds of nonlinear systems, including 
essentially nonlinear systems. It is important that an 
exactness of the analytical presentation is good for 
sufficiently large time interval.    
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