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Abstract

In this paper a transient in some nonlinear systems
is constructed by using the multiple-scale method. In
particular, a system containing a linear oscillator,
linearly coupled to an essentially nonlinear
attachment with a comparatively small mass, is
considered. A damping is taken into account. A
transfer of energy from the initially perturbed linear
subsystem to the nonlinear one can be observed. A
similar construction is made to describe a transient in
a system which contains a linear oscillator and a
vibro-impact attachment with a comparatively small
mass. A transient in such system under the external
periodical excitation is considered too. Besides, a
transient in a system which describes an interaction of
some rotating subsystem and the elastic one is
constructed.
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1 Introduction

An investigation of transient is important in
engineering, in particular, in problem of absorption.
Over the past years different new devices have been
used for the vibration absorption and for the reduction
of the transient response of structures [Shaw, Shaw
and Haddow, 1989; Frolov K.V., 1995; Manevitch L.
and al., 2003]. It seems interesting to study nonlinear
passive absorbers for this reduction.

In presented paper the transient in a system
containing a linear oscillator, linearly coupled to an
essentially nonlinear attachment with a comparatively
small mass, is considered. A damping is taken into
account. It is assumed that some initial excitation
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implies vibrations of the linear oscillator.

The multiple scales method [Nayfeh, 1973] is used
to construct a process of transient in the system under
consideration. A transfer of energy from the initially
perturbed linear subsystem to the nonlinear absorber
can be observed. A similar construction is made to
describe the transient in a system which contains a
linear oscillator and a vibro-impact absorber. Both an
exact integration with regards to impact conditions,
and the multiple scales method are used for this
construction. The transient in the vibro-impact system
under the external periodical excitation was
considered too. Numerical simulation confirms an
efficiency of the analytical construction in these
systems.

2 Transient in a system containing an essentially
nonlinear oscillator as absorber

Let us consider a system with two connected
oscillators, namely one linear and one nonlinear with
a comparatively small mass (Fig.1).
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Fig.1. The system under consideration

This system is described passing by the following
differential equations:



3 1628 +ey(x—y) =0, 0

emX + gCx
My + 2y + 628y + ey(y — X) = 0,

where & is the dissipation coefficient, € is a formal
small parameter. In the first equation the small
parameter characterizes the smallness of the absorber
principal characteristics with respect to ones in the
linear subsystem.

The solution of the system (1) will be found by the
multiple-scale method. One has
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One obtains in zero approximation by the small

parameter the next equation:

gl MD02y0 + sz0 =0.
The solution of this equation is

Yo =A(l,t,..)cosy,,

where v, = Qty + ¢, (t,1,...), O L

One has in the next approximation by the small
parameter the following ODE system:
o {ijx0 +CXp + (X, = Y,) =0,
MD(?yl +2MD,D,y, + kzyl +7(Yo—%)=0.
Let us use the presentation of the x( in the form
Xg =By (ty,tp,...)cosyg + By (8, t;,.. ) cosyy,
where y, =Q,(t,t,,..)t, +¢,(1,,t,,...). Equating
cosine coefficients in the first equation and

eliminating secular terms in the second one we get
nonlinear algebraic equations:
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Escaping calculations of the next approximations in
the multiple scale method we give expressions for the
amplitudes, frequencies and phases of zero-

approximation X, Yo of (2):
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In such a way we have got a zero-approximation of
sought solution containing four constants with respect
to time ty » namely

0 =€ (3. l4s- ). =Gty b3, )G =C3 (o 3, ) =Tty b3, )
They could be found numerically by Newton method
from the next initial conditions, which model the
instant impact to the linear subsystem: x(0)=x(0)=0,
y(0)=0,y(0)=V .

Figs. 2 and 3 present results of comparing the
analytical solution (zero-approximation) with the
numerical simulation obtained by using the Runge-
Kutta procedure for different initial values and
parameters, namely

£=0.01, m=M =410, x=0.9/410,
c=0.18410 , V=0.127;
besides, 6=5, y:2/\/ﬁ in Fig.2;
5=1, y=3/10 inFig.3.
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Fig.2. Transient simulation (8=5, y= 2/ \/E )
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Fig.3. Transient simulation (8 =1, y = 3/ \/E )

3 Transient in the vibro-impact system
One considers the 2-DOF vibro-impact system with
the one-sided catch (Fig.4). This system contains the
linear oscillator and the absorber with a comparatively
small mass. It is presupposed to obtain analytical
description of transient, both for free and forced
oscillations, by using the multiple-scale method.
Equations of motion for the system under
consideration in a case of the free vibrations are the
following:

emX +gy(X— y) +£28% = 0;
{ 3)

My + 12y + ey(y — X) + €28y = 0,

here M is a mass of the main linear subsystem, m is a
mass of the absorber, & characterizes a linear
dissipation force, y and «? characterize elastic
springs. The formal small parameter is introduced to
select a smallness of the absorber mass, the
connection between oscillators and the dissipation.
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Fig.4. The vibro-impact system under consideration

It is presupposed that an impact here is
instantaneous. The restoration coefficient (0<e<1)
characterizes a lost of velocity in the instant of
impact. One has the following conditions of the
impact:

X(tk+):X(tk_):Xmaxa X(tk+):_ex(tk_):
y(t ) =yt ), Yt ) = Vit ) “)

Here t, is the impact instant (k is a mmmber of the
impact, t is an instant before impact, ty is one after
impact), Xmax 1S @ distance between the equilibrium
state and the catch.

3.1 Free oscillations in the vibro-impact system

To construct an analytical solution by using the
multiple scale method, the expansions (2) are used. In
zero approximation by small parameter the next
solution can be obtained:

Yo = Ay, 1,1, )cosQty + By (t, 1, 15,...)sin Qgty
where Q) = x> /M ;
Xo = B(Ay(t;,...)cos Qty + By (t,...)sin Qty ) +

+ A (ty,..)cos4/y/mty + By (t;,..)sin{/¥/mt,,

where B=+2. Conditions of elimination
of secular tg}ﬁ’ig My {Re) next approximation by the
small parameter give us the following expressions for
amplitudes of the zero approximation:
AO = _Cl sin Qltl + C2 COs ‘Qltl 5
BO = Cl cos ‘Qltl + C2 sin ‘Qltl ,
o 1B
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Taking onto account the next approximation, one has
the approximate solution of the form:
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Impact conditions (4) gives the next relations
connecting coefficients C; before (Cik ) and after
impact (Cf*1):
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The numeric simulation was realized for the next



values of parameters: M=1, m=0.01, & =1, §=0.001,
€=0.9, Xmax =1.4, y=1.5, x=1. Initial values model
the instant impact to the linear subsystem:
x(0) =0, X(0) =0, y(0)=0, y(0) =V =1. Comparison of
the analytical solution and numerical simulation
shows a good exactness of the analytical

approximation (Fig.5). A number of the integration
steps is shown on the horizontal axis.
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Fig.5. Transient in a case of free oscillations in the
vibro-impact system

3.2 Transient in a case of forced oscillations

One considers the same 2-DOF vibro-impact system
in a case when an external periodic force acts to linear
subsystem. The multiple scales method can be
successfully used in this case too. In contrast with the
solution, obtained in the sub-section 3.1, the part,
corresponding to the external excitation, have to be
added. One has
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Impact conditions (4) gives some relations

connecting coefficients C; before (Cik) and after
impact (Cik+l). These relations are not presented
here.

Numerical simulation was made for the same
parameters and initial values, as in the preceding sub-
section. Comparison of the analytical solution and
numerical simulation (Fig.6) shows a good exactness
of obtained analytical approximation. A number of
the integration steps is shown on the horizontal axis.
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Fig.6. Transient in a case of forced vibrations in the

vibro-impact system.

4 Transient in 2-DOF nonlinear system with
limited power supply

One considers a transient in a system which
describes an interaction of some rotating subsystem
and the linear elastic one. A model of this system is
presented in Fig.7. Equations of motion of this system
are the following:

{ mMX + BX% +cX = ¢, sin(¢) R
19 = L(¢) = H(9) +Cr(Xx —rsin(p))cos(¢)

Here the function L(¢) is a controlled torque of the
unbalanced rotor of DC motor; H(¢) is a resistance

torque of the rotor. The system under consideration is
known as non-ideal system [Kononenko, 1969;
Balthazar et al., 2003]. It means that the excitation is
influenced by the response of the supporting elastic
structure and that the energy source has a limited
power supply (non-ideal excitation).
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Fig.7. The nonlinear system with limited power
supply.

The equations (7) may be simplified when we accept
the torques as linear. One has in this case:

L(@)-H(¢)=A-Bo

variables,
parameters,

Introducing the new dimensionless
y=x/r, t=ot, and the  next

M = A/(lo*),N = B/(lo*),eq =¢,r* /(1o?),
eK = ¢, /(mw?), eh =B/ Mmo),

(here ¢ is a formal small parameter) one can rewrite
the equations (7) as

y"+ehy’ + o’y = eK sin ¢ ®)
lo"=M — No + &q(ycos ¢ —0.5sin 2¢)



Here prime denotes a derivation by 7 . A procedure
of multiple-scale method which is similar to (2) can
be used here.

One has the next equations of the zero
approximation by the small parameter, and the
corresponding solution in the form:

P { D()2y0+y0:0
Dg(”o =M - NwD,p, 9)

Yo = AT, T)sin(T, + ¥ (T,,T,))
M 1 s
@, =D, (T,T,)+—T, + F,(T,,T,)—e "
N o N o

(The operator D, was introduced in the Section 2)

To simplify a construction of solution in the next
approximations we will consider the transient after
some instant when the exponent in (9) can be
negligible. Note that in concrete systems this instant is
very small.

In this case to eliminate secular terms in the next
approximation by the small parameter ¢, it must
satisfy the next equations:

o .
222 A0 5 A =ATET
1
ov 10
_AOa_Tlozo - W, =Y,(T,) (10)
NP0 5 o, =0T

1

Then we can write equations of the first
approximation by the small parameter, namely:

D2y, +y; = Ksin(®, + MT, /(Nw)
D@, + NoDyg; = gA, sin(T, +¥,)
~0.5qsin(2(®, + MT, /(Nw)

After some transformation the transient can be
presented as

(11

y(0)=A (Ty)e "™ Zsin(Ty + W (T)) +
eK(1-Q%) ' sin(@,(T,) + QT,) ’

0(1) = ®,(T,) + QT, + F,(T)e "™ /(No) +
s(—% A (Ty)e M2 (Nw) +(1-07)*) ™ /1- 0
sin((1- Q)T 7+, — @, +arctg(No/(1-Q)))+
e(—% A (T)e 2 (Nw) +(1+Q2)2) 0% 140 x
sin((1+ Q)T+, — @, +arctg(No/(1+Q)))) +
s(%(( No)” +(2Q)2) " /20 x

(12)
sin(2QT +2®, + arctg(No/(2Q))))

Here Q=M /(Nw). The solution (12) describes a

transfer to a non-resonance stationary solution having
frequencies Q and 2Q. Vibration amplitudes of this
non-resonance regime are not large. The numerical
checking calculation shows a very good exactness of
the transfer analytical presentation in a region of the
non-resonance stationary regime stability. But if this
stationary regime is unstable, on has a transfer to the
1:1 resonance stationary regime with large
amplitudes.

5 Conclusion

The obtained results show an affectivity of the
multiple-scale method to describe a transient in
different kinds of nonlinear systems, including
essentially nonlinear systems. It is important that an
exactness of the analytical presentation is good for
sufficiently large time interval.
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