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Abstract
The article is devoted to the formalization of concept

of impulse-sliding regimes generated by positional im-
pulse control. We have defined the notion of impulse-
sliding trajectory as a limit of network element Euler
polygons generated by a discrete approximation of the
impulse position control. The equations describing the
trajectory of impulse-sliding regime are received.
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1 Introduction
Usually, the positional control algorithms are intro-

duced as a result of change in program control initial
time and initial position to an arbitrary point of time
and an arbitrary position. Such change may lead to the
fact that it will take to realize impulse action at every
instant. This give rise to some sliding impulse. Such
phenomenon from the point of view of the theory of
differential equation needs formalization. Furthermore,
such motion type in the space position originates the
motion sliding on the functional diversity. An impulse-
sliding regimes in systems without delay were consid-
ered in [Zavalishchin and Sesekin, 1983; Finogenko
and Ponomarev, 2013]. An impulse-sliding regimes for
a linear systems with delay were considered in [An-
dreeva and Sesekin, 1997]. The reaction of nonlinear
systems with delay to impulse action is understood in
the sense of paper [Fetisova and Sesekin, 2005]. The
definition of the solution for nonlinear systems with de-
lay from [Fetisova and Sesekin, 2005] is the generaliza-
tion for the notion of solution for the systems without
delay from [Zavalishchin and Sesekin, 1997; Sesekin,
2000].

2 Formalizing impulse-sliding regime
Consider a dynamic system with impulse control

ẋ(t) = f(t, x(t), x(t− τ)) +B(t, x(t))u, t ∈ [t0, ϑ],
(1)

with the initial condition

x(t) = φ(t), t ∈ [t0 − τ, t0]. (2)

where f(·, ·, ·) is the function with value in Rn, B(·, ·)
matrix functions of the dimension m× n. Elements of
f and B are continuous functions and are satisfy to the
conditions, which cover the existence and uniqueness
of solution for any summable u(t), xt(·) — function-
prehistory xt(·) = {x(t + s); −τ ≤ s < 0}. The
function φ(t) is a function of bounded variation at t ∈
[t0 − τ, t0].
We will assume that, the function B(t, x) satisfies

Frobenius condition

n∑
ν=1

∂bij(t, x)

∂xν
bνl(t, x) =

n∑
ν=1

∂bil(t, x)

∂xν
bνj(t, x).

(3)
This condition, according to [Fetisova and Sesekin,

2005; Zavalishchin and Sesekin, 1997] , ensures
uniqueness the solution of the system (1) at the gen-
eral control u(t) (the generalized derivative of bounded
variation function). We note that, there are various
ways of defining a solution for equation (1), which,
broadly speaking, shows that trajectories [Zavalishchin
and Sesekin, 1997] to have different execute. We will
use the definition that is based on the closure of the
set of smooth trajectories in the space of functions of
bounded variation [Zavalishchin and Sesekin, 1997].
Such definition is more natural from control theory
standpoint. This is because the impulse control are of-
ten the some control idealizations operating on a short
period of time and with greater intensity.



By an impulse positional control we shall mean op-
erator t, xt(·) −→ U(t, x(t)), mapping the extended
phase space t, x(t) into the space of m-vector-valued
distributions

U(t, x(t)) = r(t, x(t)) δt. (4)

In this work it is assumed that the delay has only in
f(t, x(t), x(t−τ)), and control action of the delay does
not contain. Here r(t, x(t)) m-dimensional vector-
functional, δt - is the Dirac impulse function concen-
trated at the point t. The reaction of the system to the
impulse position control U(t, x(t)) (which we call an
impulse-sliding regime) is defined to be the set of Euler
polygons xh(·), h = max(tk+1 − tk) corresponding to
the set of decompositions t0 < t1 < ... < tp = ϑ. The
Euler polygons xh(·) is constructed as left-continuous
function of bounded variation such that this solutions
satisfies to the equation

ẋh(t) = f(t, xh(t), xh(t− τ))+

+

p∑
i=1

B(t, xh(t))r(ti, x(ti))δti (5)

with the initial condition x(t) = φ(t), t ∈ [t0−τ, t0].
The Euler polygons will satisfy the equation

xh(t) = φ(t0) +

∫ t

t0

f(ξ, xh(ξ), xh(ξ − τ)) dξ+

+
∑
ti<t

S(ti, x
h(ti), r(ti, x(ti))) (6)

and the jump functions are defined by the equations:

S(ti, x
h(ti), r(ti, x

h(ti))) = z(1)− z(0), (7)

ż(ξ) = B(t, z(ξ))r(ti, x
h(ti))), z(0) = xh(ti). (8)

The jump function S(t, x, µ) is the solution of the
equation

∂y

∂µ
= B(t, y). (9)

Assuming that equality

r(t, x(t) + S(t, x(t), r(t, x(t)))) = 0. (10)

is correct
This equality means, after the action of an impulse at

the system at time t, the phase t, x(t) representation is
on the manifold r(t, x(t)) = 0.

3 Properties impulse-sliding regime
Lemma 1. Let for all value ranges t1, t2, x1, x2, y1

and y2 inequalities be carried out

||f(t, x, y)|| ≤ C(1 + sup
[t0−τ ]

||x(·)||), (11)

||S(t1, x1, r(t1, x1))− S(t2, x2, r(t2, x2))||

≤ L(|t1 − t2|+ ||x1 − x2||). (12)

Then, for all decompositions h and all t ∈ [t0, ϑ] the
set of Euler polygons xh(·) is bounded, what means,
that there exist constant M , that

||xh(t)|| ≤ M. (13)

Proof. Under (6) and (11) the following inequality
holds

||xh(t)|| ≤ ||φ(t0)||+ C

∫ t

t0

(1 + sup
[t0−τ,ξ]

||xh(·)||)+

+
∑
ti<t

||S(ti, xh(ti), r(ti, x
h(ti))||. (14)

Due to the fact that

S(ti−1, x
h(ti−1 + 0), r(ti−1, x

h(ti−1 + 0)) = 0,

in view of (12), we have chain of inequalities

||S(ti, xh(ti), r(ti, x
h(ti))|| = ||S(ti, xh(ti), r(ti, x

h(ti))||−

−S(ti−1, x
h(ti−1 + 0), r(ti−1, x

h(ti−1 + 0)) ≤

≤ L(ti − ti−1 + ||xh(ti)− xh(ti−1 + 0)||) (15)



At the same time, in view of (11),

||xh(ti)− xh(ti−1 + 0)|| ≤

≤
∫ ti

ti−1

||f(ξ, xh(ξ), xh(ξ − τ))||dξ ≤

≤ C(ti−ti−1+L

∫ ti

ti−1

(1+ sup
[t0−τ,ξ]

||xh(·)||))dξ (16)

In consequence, from (14) in view of (15) and (16) the
following inequality holds

||xh(t)|| ≤ ||φ(t0)||+ (L+ C)(t− t0)+

+L(1 + C)

∫ t

t0

( sup
[t0−τ,ξ]

||xh(·)||))dξ. (17)

Similarly [Lukojanov, 2011], from the last inequality
we get

sup
[t0−τ,t]

||xh(·)|| ≤

≤ R+(L+C)(t−t0)+L(1+C)

∫ t

t0

sup
[t0−τ,ξ]

||xh(·)||)dξ

(18)
where

R = sup
[t0−τ,t0]

||φ(·)||.

Applying the estimation for the solution of inequality
from [Bellman and Cooke, 1963] for the inequality (18)
we can write

sup ||xh(·)|| ≤ (R+ (L+ C)(ϑ− t0))e
L(1+C)(ϑ−t0),

which completes the proof of lemma 1.
Note that the constants M can take the value

M = (R+ (L+ C)(ϑ− t0))e
L(1+C)(ϑ−t0),

Let D− bounded closed set which belong all items
xh(·). By continuity f(t, x, y), B(t, x) and r(t, x) are
bounded.

Let us introduce the following notation

M1 = max
[t0,ϑ]×D×D

||f(t, x, y)||,M2 = max
[t0,ϑ]×D

||B(t, x)||,

M3 = max
[t0,ϑ]×D

||r(t, x)||. (19)

Lemma 2. Under the assumptions made above, from
each confinal sequence of Euler polygons xh(·) we can
select a subsequence xhp(·), uniformly at (t0, ϑ] con-
verging to absolutely continuous function x(·). More-
over for all t ∈ (t0, ϑ], r(t, x(t)) = 0 (x(t) = φ(t) for
t ∈ [t0− τ, t0]), in other words, the limit element of the
impulse-sliding regime moves over the manifold which
is described by the equation r(t, x(t)) = 0.

Proof. The proof of convergence of the network xh(·)
will use generalization Arcels lemma from [Filippov,
1971]. Let xhi(·)− be a confinally sequence. Then,
according to the (6)

||xhi(t′′)−xhi(t′)|| ≤
∫ t′′

t′
||f(t, xh(t), xh(t−τ)||ds+

+

m(t′′)∑
k=m(t′)+1

||S(tk, xhi(tk), r(tk, x
hi(tk)))||, (20)

where m(t)− the nearest point at the left in partition
which is produces of polygons xhi(·). In accordance to
(6),

||S(tk, xhi(tk), r(tk, x
h(tk)))|| =

||S(tk, xh(tk), r(tk, x
h(tk)))||−

||S(tk−1, x
hi(tk−1 + 0), r(tk−1, x

hi(tk−1 + 0)))||

Considering (12), we get

||S(tk, xhi(tk), r(tk, x
h(tk)))|| ≤

L(tk − tk−1 + ||xhi(tk)− xhi(tk−1 + 0)||)

At the same time

xhi(tk)− xhi(tk−1 + 0) =

∫ tk

tk−1

f(ξ, xh(ξ))dξ.



By taking into account (18), we obtain

||S(tk, xhi(tk), r(tk, x
h(tk)))|| ≤ L(tk − tk−1+

+M1(tk − tk−1)) = L(1 +M1)(tk − tk−1) (21)

From (20) and (21) it follows that

||xhi(t′′)− xhi(t′)|| ≤ (M1 + L(1 +M1))(t
′′ − t′)+

+L(2 +M)(t′ − ttihi) (22)

where ttihi− the nearest point at the left in partition
hi to the point t′. The last inequality allows to apply
generalization Arcels lemma from [Filippov, 1971] and
ensures the existence of a subsequence xhi(·) which
uniformly converges to the function x(·).
Now, we pass to the limit in the inequality (22) at i →
∞. As a result we have ||x(t′′)−x(t′)|| ≤ (M1+L(1+
M1))(t

′′ − t′).
This means that x(t) is an absolutely continuous func-

tion at (t0, ϑ].
Now show that the limit network element xh(·) be-

longs to manifold r(t, x) = 0. Let tmthi− be the near-
est point at the left in partition hi by the time t. The
following inequality holds

||r(t, x(t)|| ≤ ||r(t, x(t))−r(t, xhi(t))+r(t, hi(t))|| ≤

≤ ||r(t, x(t))−r(t, xhi(t))||+||r(tmthix
hi(tmthi+0))−

−r(t, xhi(t))|| ≤ L[||x(t)− xhi(t)||+ (t− tmthi)+

+||xhi(tmthi + 0)− xhi(t)||] ≤

≤ L[||x(t)− xhi(t)||+ (L+M)(t− tmihi)]

By the uniform convergence of a sequence xhi(·) the
first term at right part at the last inequality tends to zero.
The second tends to zero because of i → ∞ hi → 0.
This completes the proof of properties r(t, x(t)) ≡ 0
when t ∈ (t0, ϑ].
Lemma 3. Let r(t, x) be continuously differentiable

vector function on all variables. Then, the following
equality holds

S(tk, x
h(tk), r(tk, x

h(tk)))− S(tk−1, x
h(tk−1 + 0),

r(tk−1, x
h(tk−1+0))) =

∫ tk

tk−1

[
∂S(ξ, xh(ξ), r(t, xh(ξ)))

∂ξ

+
∂S(ξ, xh(ξ), r(ξ, xh(ξ)))

∂x
f(ξ, xh(ξ), xh(ξ − τ))+

+
∂S(ξ, xh(ξ), r(ξ, xh(ξ)))

∂r

(
∂r(ξ, xh(ξ))

∂ξ
+

+
∂r(ξ, xh(ξ))

∂x
ḟ(ξ, xh(ξ), xh(ξ − τ))

)]
dξ. (23)

The validity of the lemma follows from the differenti-
ation formulas of composite function.
Theorem 1. Let all the conditions given above hold.

Then, an impulse-sliding regime on the set (t0, ϑ] is de-
scribed by the equation

ẋ(t) =
∂S(t, x(t), r(t, x(t))))

∂t
+

+
∂S(t, x(t), r(t, x(t)))

∂r

∂r(t, x(t))

∂t
+ [E+

+
∂S(t, x(t), r(t, x(t)))

∂x
+

∂S(t, x(t), r(t, x(t)))

∂r
×

×∂r(t, x(t)))

∂x
]f(t, x(t), x(t− τ)), (24)

x(t0 + 0) = x(t0) + S(t0, x(t0), r(t0, x(t0))).

Proof. According to (6) and Lemma 3, xh(t) satisfies
equation

xhi(t) = φ(t0) +

∫ t

t0

f(ξ, xhi(ξ), xhi(ξ − τ))dξ+



+

∫ tmhi

t0

[
∂S(ξ, xhi(ξ), r(t, xhi(ξ)))

∂ξ
+

+(
∂S(ξ, xhi(ξ), r(ξ, xhi(ξ)))

∂x
+

+
∂S(ξ, xhi(ξ), r(ξ, xhi(ξ)))

∂r
×

×∂r(ξ, xhi(ξ))

∂x
)f(ξ, xhi(ξ), xhi(ξ − τ))+

+
∂S(ξ, xhi(ξ), r(ξ, xhi(ξ)))

∂r
· ∂r(ξ, x

hi(ξ))

∂ξ

Passing to the limit at the last equation and bearing
in mind that x(t) is absolutely continuous function, we
can see that the theorem is true.

4 Conclusion
The formalization of the impulse-sliding regime for a

nonlinear system with time delay is made. The equa-
tion to describe the limiting element impulse-sliding
regime is obtained.
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