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Abstract

This paper considers the general synchronization dynamics of coupled Van der Pol–Duffing oscillators. The linear

and nonlinear stability analysis on the synchronization process is derived through the Whittaker method and the

Floquet theory in addition to the multiple time scales method. A stability map displaying different dynamical states of the

system is performed. Numerical simulation is carried out to support and to complement the accuracy of the analytical

treatment.
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1. Introduction

Synchronization is one of the fundamental phenomena in nature and it can be set up through nonlinear
oscillators, both in their regular and chaotic states. Pecora and Carroll were the first to shed light on
synchronization of chaotic oscillators by linking them with common signals [1]. Using the continuous
feedback scheme of Pyragas [2], Kapitaniak also shows that it is possible to synchronize two chaotic oscillators
[3]. Potential applications of synchronization in communication engineering (using chaos to mask the
information bearing signals) [1,4–6], in physics (Josephson junctions arrays) [7], chemistry (discrete
reaction–diffusion) [8] and in biology (circadian rhythms, heartbeat generation) [9] explain the great interest
devoted to such topic by the scientific community.

In view of studying the phase synchronization of nonlinear oscillator in 1998, Leung in Ref. [10] considered
the synchronization of two classical Van der Pol oscillators with various types of couplings including the
continuous feedback difference coupling of Pyragas [2]. In particular, he showed that synchronization is
possible for some appropriate ranges of the coupling strength and that the synchronization time has a critical
e front matter r 2006 Elsevier B.V. All rights reserved.

ysa.2006.03.013

ing author. Tel.: +237 932 93 76; fax: +237 340 75 69.

esses: henjieu@yahoo.com (H.G. Enjieu Kadji), ryamapi@yahoo.fr (R. Yamapi).

www.elsevier.com/locate/physa
dx.doi.org/10.1016/j.physa.2006.03.013
mailto:henjieu@yahoo.com
mailto:ryamapi@yahoo.fr


ARTICLE IN PRESS
H.G. Enjieu Kadji, R. Yamapi / Physica A 370 (2006) 316–328 317
slowing down character near the boundaries of the synchronization domain. Woafo and Kraenkel considered
recently in Ref. [11] the problem of stability and duration time of the synchronization process between two
classical Van der Pol oscillators. They showed that the critical slowing down behavior of the synchronization
time and the boundaries of the synchronization domain can be estimated, at least approximately by analytical
investigations. They also extended the study of the synchronization process when the oscillators were in the
chaotic states.

This paper extends the calculations of Ref. [11] by considering the problem of general synchroniza
tion dynamics of two Van der Pol–Duffing (VdPD) oscillators coupled through the continuous feedback
scheme of Pyragas [2]. The Whittaker method [12], the Floquet theory [12,13] and the multiple time scales
method [13] are used to derive the stability condition and the optimal coupling strength of the synchronization
process.

The paper is organized as follows. In the next section, after the presentation of the model, we derive the limit
cycle solutions and deals with the problem statement. The establishment of the variational equations is derived
in Section 3. Linear stability analysis and the nonlinearity effects on the stability boundaries are also
considered in Section 4. We presented in Section 5 analytical and numerical results. The last section is devoted
to the conclusion.

2. The Van der Pol–Duffing oscillator

2.1. Dynamics of the Van der Pol– Duffing oscillator

The classical VdPD oscillator which appears in many physical problems is governed by the following
nonlinear equation:

€x� mð1� x2Þ _xþ xþ ax3 ¼ 0, (1)

where the overdot represents the derivative with respect to time, m and a are two positive coefficients. It
describes electrical circuits and has many applications in science, engineering and also displays a rich variety of
nonlinear dynamical behaviors [14,15]. It generates the limit cycle which can be evaluated through the
Lindsted’s perturbation method [12,16]. It can be noticed that, the limit cycle is known to be a fairly strong
attractor since it attracts all trajectories except the one initiated from the trivial fixed point ðx0; _x0Þ ¼ ð0; 0Þ.
For this purpose, to permit the amplitude and the frequency to interact, it is interesting to set t ¼ ot, where o
is an unknown frequency. We assume that the periodic solution of (1) can be performed by the following
approximation:

xðtÞ ¼ x0ðtÞ þ mx1ðtÞ þ m2x2ðtÞ þ � � � , (2)

where xiðtÞ ði ¼ 0; 1; 2; . . .Þ are periodic functions of t of period 2p. Moreover, the frequency o can be
represented by an expansion having the form

o ¼ o0 þ mo1 þ m2o2 þ � � � , (3)

where oi ði ¼ 0; 1; 2; 3; . . .Þ are unknown constant at this level. Assuming that a ¼ ma0 before substituting both
expressions (3) and (2) in Eq. (1) and equating the coefficients of m0, m1 and m2 to zero, we obtain the following
equations at different orders of m:

order m0:

o2
0 €x0 þ x0 ¼ 0, (4)

order m1:

o2
0 €x1 þ x1 ¼ �2o0o1 €x0 þ o0ð1� x2

0Þ _x0 � a0x3
0, (5)

order m2:

o2
0 €x2 þ x2 ¼ � 2o0o1 €x1 � ðo2

1 þ 2o0o2Þ €x0 þ o0ð1� x2
0Þ _x1

þ o1ð1� x2
0Þ _x0 � 2o0x0 _x0x1 � 3a0x2

0x1. ð6Þ
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Making use of xiðtþ 2pÞ ¼ xiðtÞ and _xið0Þ ¼ 0 to determine the unknown quantities, we obtain after the
resolution of Eq. (4) that

x0 ¼ A0 cos t; o0 ¼ 1, (7)

where A0 is the limit cycle amplitude at this order. Considering the expressions given through Eq. (7), Eq. (5)
leads to

€x1 þ x1 ¼ 2o1A0 �
3

4
a0A3

0

� �
cos tþ

A3
0

4
� A0

� �
sin tþ

A3
0

4
sin 3t�

A3
0

4
a0 cos 3t. (8)

The solvability condition of Eq. (8) gives rise to the following relations:

A0 ¼ 2; o1 ¼
3
2
a0. (9)

With the initial condition _x1ð0Þ ¼ 0, the general expression for a periodic solution of Eq. (8) is given by

x1 ¼ A1 cos tþ
3

4
sin tþ

a0
4
cos 3t�

1

4
sin 3t. (10)

One should note that the value of A1 will be determined through the resolution of Eq. (6) which takes the
following form when considering the solution x1:

€x2 þ x2 ¼ 4o2 þ ð2o1 � 9a0ÞA1 þ 2o2
1 þ

1� 3a20
4

� �
cos tþ 2A1 þ

3

2
o1 �

5

4
a0

� �
sin t

þ
9

2
o1a0 �

3

2
�

3

2
a20 � 3a0A1

� �
cos 3t

þ 3A1 �
5

2
o1

� �
sin 3tþ

7� 3a20
4

� �
cos 5tþ 2a0 sin 5t. ð11Þ

Thus, the condition of secularity for the solution x2ðtÞ yields to the following expressions:

A1 ¼ �
1
2
a0; o2 ¼ �

27
16
a20 �

1
16
. (12)

Therefore, the solution of Eq. (1) is approximated by

xðtÞ ¼ A cosotþ
a
4
cos 3otþ m

3

4
sinot�

1

4
sin 3ot

� �
þOðm2Þ, (13)

with

A ¼ 2� 1
2
a; o ¼ 1þ 3

2
a� 27

16
a2 � 1

16
m2 þOðm3Þ. (14)

2.2. Statement of the problem

The final state of the VdPD oscillator is a sinusoidal limit cycle for small values of the coefficient m,
developing into relaxation oscillations when m becomes large. One particular characteristics in the VdPD
model is that its phase depends on initial conditions. Therefore, if two VdPD oscillators are launched with
different initial conditions, their trajectory will finally circulate on the same limit cycle, but with different
phases j1 and j2. The objective of the synchronization in this case is to phase-lock the oscillators (phase
synchronization) so that j1 � j2 ¼ 0.

As we have quoted in the introduction, one aim of this survey is to study the stability and derive the
characteristics of the synchronization of two VdPD oscillators. The master system is described by the
component x while the slave system has the corresponding component y. The enslavement is carried out by
coupling the slave to the master through the following scheme:

€x� mð1� x2Þ _xþ xþ ax3 ¼ 0,

€y� mð1� y2Þ _yþ yþ ay3 ¼ �Kðy� xÞHðt� T0Þ, ð15Þ
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where K is the feedback coupling coefficient, t the time, T0 the onset time of the synchronization process and
HðzÞ is the Heaviside function defined as

HðzÞ ¼
0 for zo0;

1 for zX0:

(

Practically, this type of unidirectional coupling between the master system and the slave system can be done
through a linear resistor Rc and a buffer. The buffer acts as a signal-driving element that isolates the master
system variable from the slave system variable, thereby providing a one-way coupling. In the absence of the
buffer the system represents two identical VdPD oscillators coupled by a common resistor Rc, when both the
master and slave systems will mutually affect each other.

3. Nonlinear variational equation

When the synchronization process is launched, the slave system changes its configuration. We must assume
that the process is stable to avoid irreversible damages to the system. It is then particularly important to
develop criteria that guarantee the asymptotic stability of the process. To measure the closeness between the
master and the slave at each time, let us introduce a new variable

�ðtÞ ¼ yðtÞ � xðtÞ. (16)

The stability of the process is thus examined by the boundedness of �ðtÞ which obeys to the following equation:

€�� mð1� x2Þ_�þ ð2mx _xþ 3ax2 þ 1þ KÞ�þ 2mx�_�þ m�2_�þ ðm _xþ 3axÞ�2 þ a�3 ¼ 0. (17)

Saying that the process is stable here means that the synchronization is really effective. To achieve the
synchronization process, we have to be sure that � goes to zero as t increases or is less than a given precision.
The behavior of � depends on K and on the form of the master x. For small values of m, the master time
evolution is described by Eq. (13). Thus, the above variational Eq. (17) takes the form

€�þ ½2lþ F ðtÞ�_�þ GðtÞ�þQðtÞ�2 þ RðtÞ�_�þ a2_��
2 þ a3�

3 ¼ 0, (18)

where

t ¼ ot; l ¼
m
2o

A2

2
� 1þ

m2

4
þ

a2

32

� �
; a2 ¼

m
o2
; a3 ¼

a
o2

,

while the following quantities F ðtÞ, GðtÞ, QðtÞ, RðtÞ, g0, f is, f ic and gis and gic (i ¼ 1; 2; 3) are given in Appendix A.1.
From the expression of GðtÞ, we find that if

KoKbðaÞ ¼ �
3a
2

A2 þ
m2

2
þ

a2

16

� �
� 1, (19)

�ðtÞ will grow indefinitely leading the slave to continuously drift away from its original limit cycle. In this case,
the feedback coupling is dangerous since it continuously adds energy to the slave system. We show respectively
in Figs. 1 and 2 the phase portraits of the master and the slave when a ¼ 0:01 and a ¼ 0:05 for several different
values of the feedback coupling coefficient K chosen in the domain KoKbðaÞ. It is found that there is no
synchronization between the master and the slave when K decreases from Kb to infinity since the deviation
between the slave and the master becomes large or increases indefinitely. Since the analytical investigation of
the variational equation (17) is very difficult due to its nature, we first consider the linear stability analysis
before taking into account the nonlinearities effects in the analysis of the variational equation.

3.1. Linear stability analysis

We first suppose that the measure of the nearness � of the slave to the master is very small, so that one can
neglect both quadratic and cubic terms. Then in the linear regime, Eq. (17) is reduced to

€�þ ½2lþ F ðtÞ�_�þ GðtÞ� ¼ 0. (20)



ARTICLE IN PRESS

Fig. 1. Phase portrait of the master and the slave for several values of the coupling parameter K when a ¼ 0:01: (a) K ¼ �1:059; (b)
K ¼ �1:10; (c) K ¼ �1:25; (d) K ¼ �2:00.
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To examine the stability analysis of the synchronization process, let us transform Eq. (20) into the standard
one by introducing a new variable Z as follows

� ¼ Z expð�ltÞ exp �
1

2

Z t

0

F ðt0Þdt0
� �

. (21)

This yields the following Hill equation:

€Zþ ða0 þ 2a1c cos 2tþ 2a1s sin 2tþ 2a2c cos 4t

þ 2a2s sin 4tþ 2a3c cos 6tþ 2a3s sin 6tþ 2a4c cos 8tþ 2a4s sin 8t

þ 2a5c cos 10tþ 2a5s sin 10tþ 2a6c cos 12tþ 2a6s sin 12tÞZ ¼ 0, ð22Þ

whose coefficients are given in Appendix A.2. Following the Floquet theory [12,13], the solution of Eq. (22)
may be either stable or unstable and the stability boundaries of the synchronization process are to be found
around the six main parametric resonances defined at a0 ¼ n2 (with n ¼ 1; 2; 3; 4; 5; 6). Therefore, using the
Whittaker method [12], the solution of Eq. (22) in the nth unstable region may be assumed in the following
form:

Z ¼ egt sinðnt� BÞ, (23)

where g is the characteristic exponent and B a parameter. Substituting Eq. (23) into Eq. (22) and equating
the coefficients of cos nt and sin nt separately to zero, we obtain the following expression of the
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Fig. 2. Phase portrait of the master and the slave for several values of the coupling parameter K when a ¼ 0:05: (a) K ¼ �1:29; (b)
K ¼ �1:50; (c) K ¼ �2:00; (d) K ¼ �3:00.
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characteristic exponent:

g2 ¼ �ða0 þ n2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2a0 þ a2

n

q
, (24)

with a2
n ¼ a2

nc þ a2
ns.

The synchronization process is achieved when � goes to zero with increasing time, so that the real parts of
�l� g should be negative. Consequently, the synchronization process is stable under the condition

Hn ¼ ða0 � n2Þ
2
þ 2ða0 þ n2Þl2 þ l4 � a2

n40; n ¼ 1; 2; 3; 4; 5; 6. (25)

The above inequality will allow us to seek analytically the range of the coupling coefficient K where the process
of synchronization is stable in the linear regime.

3.2. Effects of nonlinearities

After the stability of the synchronization process has been analyzed through the linear variational
Eq. (20) in the previous section, we are going to tackle the variational equation in the general expression
which contains cubic and quadratic nonlinearities. We aim to show the influence of nonlinearities on the
stability domains obtain via the linear analysis. Thus, to search both effects of nonlinearities and
parametric excitations, we use the method of multiple time scales [13]. Then, the solution of Eq. (18) can be
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taken as follows

�ðt;kÞ ¼ �0ðT0;T1Þ þ k�1ðT0;T1Þ þ � � � , (26)

where T0 ¼ t, T1 ¼ kt and k a small dimensionless parameter. Therefore, the variational Eq. (18) can be
rewritten as

€�þ g0� ¼ � ½2lþ f 1c cos 2tþ f 1s sin 2tþ f 2c cos 4tþ f 2s sin 4t�_�

� ½g1c cos 2tþ g1s sin 2tþ g2c cos 4tþ g2s sin 4tþ g3c cos 6tþ g3s sin 6t��

� 2½q1c cos tþ q1s sin tþ q3c cos 3tþ q3s sin 3t��
2

� 2½r1c cos tþ r1s sin tþ r3c cos 3tþ r3s sin 3t��_�� a2�
2_�� a3�

3. ð27Þ

Here, we just analyze the combined effects of the parametric excitation and the cubic nonlinearity. Then, we
assume that

l ¼ kl; f ic ¼ kf ic; f is ¼ kf is; gic ¼ kgic; gis ¼ kgis; a2 ¼ ka2,

a3 ¼ ka3; qic ¼ k2qic; qis ¼ k2qis; ric ¼ k2ric; ris ¼ k2ris,

so that the effects of nonlinearities and the parametric excitation appear in the same order. Substituting Eq.
(26) into Eq. (27) and equating the coefficients of k0 and k1 in both sides enable us to obtain

D2
0�0 þ O2

0�0 ¼ 0, (28)

D2
0�1 þ O2

0�1 ¼ � 2D0D1�0 � ½2lþ f 1c cos 2tþ f 1s sin 2tþ f 2c cos 4t

þ f 2s sin 4t�D0�0 � ½g1c cos 2tþ g1s sin 2tþ g2c cos 4t

þ g2s sin 4tþ g3c cos 6tþ g3s sin 6t��0 � a2�
2
0D0�0 � a3�

3
0, ð29Þ

where O ¼
ffiffiffi
g
p

0
, D0 ¼ q=qT0 and D1 ¼ q=qT1. The solution of Eq. (28) can be expressed as

�0ðT0;T1Þ ¼ AðT1Þ expðjOT0Þ þ ĀðT1Þ expð�jOT0Þ, (30)

where j2 ¼ �1. Taking into account the solution �0, Eq. (29) now becomes

D2
0�1 þ O2�1 ¼ f�2jOA0 � 2jOlA� 3a3A2Ā� jOa2A2Āg expðjOT0Þ

þ
1

2
jOf 1c þ

1

2
Of 1s �

1

2
Og1c þ

1

2
jOg1s

� �
Ā exp½�jðO� 2ÞT0�

þ
1

2
jOf 2c þ

1

2
Of 2s �

1

2
g2c þ

1

2
jOg2s

� �
Ā exp½�jðO� 4ÞT0�

þ
1

2
jg3s �

1

2
g3c

� �
Ā exp½�jðO� 4ÞT0�

þ �
1

2
jOf 1c �

1

2
Of 1s �

1

2
g1c þ

1

2
jg1s

� �
A exp½jðOþ 2ÞT0�

þ �
1

2
jOf 2c �

1

2
Of 2s �

1

2
g2c þ

1

2
jg2s

� �
A exp½jðOþ 4ÞT0�

þ
1

2
jg3s �

1

2
g3c

� �
exp½jðOþ 6ÞT0� � fjOa2 � a3gA

3 expð3jOT0Þ þ CC, ð31Þ

where CC denotes the complex conjugate of the previous terms and the prime over AðT1Þ indicates a
differentiation with respect to T1. We restrict our analysis in the case of the first parametric resonance (i.e.,
g0 ’ 1) and then perform the first approximation only. To express the nearness of g0 to 1, let us introduce the
detuning parameter s which indicate the accuracy of the first parametric resonance as Oþ ks ¼ 1.
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Consequently, the solvability condition of Eq. (31) is defined as

� 2jOA0 � 2jOlA� jOa2A2Ā� 3a3A2Ā

þ
1

2
jOf 1c þ

1

2
jg1s þ

1

2
Of 1s �

1

2
g1c

� �
Ā expð2isT1Þ ¼ 0. ð32Þ

Taking AðT1Þ ¼
1
2
aðT1Þ exp½jbðT1Þ� in Eq. (32) where aðT1Þ and bðT1Þ are respectively, the amplitude and the

phase of the oscillations, we obtain the following set of first order differential equations after separating real
and imaginary parts:

a0 ¼ �la�
a2

8
a3 þ

1

4O
ðOf 1c þ g1sÞa cosCþ

1

4O
ðOf 1s � g1cÞa sinC,

1

2
C0 ¼ s�

3a3

8O
a2 þ

1

4O
ðOf 1s � g1cÞ cosC�

1

4O
ðOf 1c þ g1sÞ sinC, (33)

where C ¼ 2sT1 � 2b. The steady motions appear when a0 ¼ C0 ¼ 0 and we obtain the following algebraic
equation:

ðy2 þ d2Þa4
s þ 2ðryþ zdÞa2

s þ r2 þ z2 � 1 ¼ 0, (34)

where

y ¼
Oa2ðOf 1s � g1cÞ � 3ðOf 1c þ g1sÞa3

2½ðOf 1s � g1cÞ
2
þ ðOf 1c þ g1sÞ

2
�

,

d ¼
2ðOf 1c þ g1sÞyþ 3a3

2ðOf 1s � g1cÞ
,

r ¼
4O½lðOf 1s � g1cÞ þ sðOf 1c þ g1sÞ�

ðOf 1s � g1cÞ
2
þ ðOf 1c þ g1sÞ

2
,

z ¼
ðOf 1c þ g1sÞr� 4Os

Of 1s � g1c

.

In the exact principal parametric resonance ðs ¼ 0Þ, it comes from Eq. (34) the solutions

a2
s� ¼
�ry� dz�

ffiffiffiffi
D
p

y2 þ d2
, (35)

with

D ¼ ðryþ dzÞ2 � ðy2 þ d2Þðr2 þ z2 � 1Þ.

Consequently, we find that at the first approximation, the solution can be written as

� ¼ as cosðt� 1
2
CÞ þOðkÞ. (36)

One should keep in mind that at the steady-state motion, the existence of amplitudes as depends
straightforwardly to the value of the coupling coefficient K. When K varies, the frequency O is modified and as

exist only if a2
s is positive. The stability of the steady-state motions of the solution �ðt;mÞ can be determined by

analyzing the nature of the steady-state solutions of Eqs. (33). That is why we let

a ¼ as þ a1,

C ¼ Cs þC1, (37)

where as and Cs are respectively the amplitude and the phase of the steady-state solutions. Keeping
expressions (37) into Eqs. (33), expanding for small a1, C1 and taking linear quantities to a1 and C1 lead us to

a01 ¼ Ga1 þ LC1,

C01 ¼ Xa1 þ UC1, (38)
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where

G ¼ �l�
3

8
a2a

2
s þ
ðOf 1s � g1cÞ

4O
sinCs þ

ðOf 1c þ g1sÞ

4O
cosCs,

L ¼
ðOf 1s � g1cÞ

4O
cosCsas �

ðOf 1c þ g1sÞ

4O
sinCsas,

X ¼ �
3a3

2O
as; U ¼ �

Of 1s � g1c

2O
sinCs �

Of 1c þ g1s

2O
cosCs,

sinCs ¼ rþ ya2
s ; cosCs ¼ zþ da2

s .

Thus, the stability of the process depends on the eigenvalues S of Eqs. (38) which are given through the
following equation:

S2 � ðGþ UÞS þ GU� LX ¼ 0. (39)

The steady-state motions are then stable under the following conditions:

H1
nl ¼ �ðGþ UÞ40,

H2
nl ¼ GU� LX40 (40)

and unstable otherwise. At the exact internal resonance, the conditions (40) correspond to the domain of the
coupling coefficient K in which �ðt;kÞ is stable when the time increases and therefore the stability condition for
the process of synchronization in the nonlinear limit is defined. Now, we are going to use the both criteria (25)
and (40) to seek respectively the range of the coupling parameter K where the process is linearly and
nonlinearly stable.

4. Analytical and numerical results

The conditions (25) and (40) have been called to seek the range of the coupling parameter where the
synchronization process is stable. It is important to note that for n ¼ 2; 3; 4; 5; 6, the conditions (25) are
satisfied for any value of K, and we only use this condition around the first main parametric resonance ðn ¼ 1Þ.
To identify different dynamical states which appears in the coupled VdPD oscillators, we varied the coefficient
K to see if the conditions (25) and (40) are simultaneously verified or not. We find from these two conditions
(25) and (40), that depending for the coupling coefficient K, there are some domains where the synchronization
process could be stable or not. We fix m ¼ 0:1 and used two values of a. For instance when a ¼ 0:01, the
synchronization is unstable for K 2� �1;�1:0597� [ ½�0:3130; 0½[�0; 0:260� while for a ¼ 0:05, the process is
not achieved for K 2� �1;�1:2929� [ ½�0:4550; 0½[�0; 0:1690�. Saying here that the synchronization is
unstable means that �ðtÞ never goes to zero as the time is increased but has a bounded oscillatory behavior or
goes to infinity. Three ranges of the coupling parameter are found. The first region is K 2� �1;�1:0597� for
a ¼ 0:01 and K 2� �1;�1:2928� for a ¼ 0:05 where the synchronization process is unstable linearly and
nonlinearly, called global unstable domain of the synchronization process. Generally in that first region, the
amplitude of oscillations becomes very large and tend to infinity for certain values of the coupling parameter K

(see Fig. 3a with a ¼ 0:01 and K ¼ �30). Nevertheless according to a, the deviation x� y between the master
and the slave can be bounded by high-amplitude oscillations as shown in Fig. 3b for a ¼ 0:05 and K ¼ �30.
Such a behavior is the characteristic of global unstable phenomena of the synchronization process analyzed. In
the second region, K 2 ½�0:3130; 0½[�0; 0:260� for a ¼ 0:01 and K 2� � 0:4551; 0½[�0; 0:1690� for a ¼ 0:05, the
synchronization is not achieved as we mentioned before since the deviation x� y is bounded (see Fig. 4). Here,
the amplitude of oscillations are very small compared to those observed in the global unstable. At the last
region, K 2� � 1:0597;�0:3131�[�0:260;þ1½ for a ¼ 0:01 and K 2� � 1:2929;�0:4550½[�0:1690;þ1½ for a ¼
0:05; the synchronization process is stable and defined what is called the global stability area. This means that
the deviation between the master and the slave goes to zero as the time increases as we show in Fig. 5(a) for
a ¼ 0:01 and in Fig. 5(b) for a ¼ 0:05.
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Fig. 3. Time history of the deviation �ðtÞ displaying both linear and nonlinear unstable phenomena of the synchronization process: (a)

a ¼ 0:01, K ¼ �30; (b) a ¼ 0:05, K ¼ �30.
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Fig. 4. Time history of the deviation �ðtÞ displaying bounded oscillations in the process of synchronization: (a) a ¼ 0:01, K ¼ �0:04; (b)
a ¼ 0:05, K ¼ �0:35.
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Fig. 5. Time history of the deviation �ðtÞ displaying the stability of the synchronization process: (a) a ¼ 0:01, K ¼ �0:50; (b) a ¼ 0:05,
K ¼ 0:70.
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Numerical simulations have been used via the fourth-order Runge–Kutta algorithm with the time step
Dt ¼ 10�2 in order to check the accuracy of our analytical investigation. Thus, both numerical and analytical
results have led us to derive a stability chart in the plane ðK ; aÞ. Our results are reported in Fig. 6 and the
coming results are observed.
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Five different domains D1;D2;D3;D4;D5 are distinguished. The first one (D1) corresponds to the numerical
and analytical (linear and nonlinear) stability domain, while D2 is the region where the synchronization is
stable numerically but analytically stable nonlinearly and unstable linearly. The closeness �ðtÞ between the
master and the slave in D1 and D2 tends to zero as it appears in Fig. 5, we remind that the configuration point
ðK ; aÞ is in the global stable area. In the region D3, coexist analytically the linear instability, the nonlinear
stability and the numerical instability. The deviation x� y has a bounded oscillatory behavior as it appears in
Fig. 4. We find that the region D4 displays analytically both linear and nonlinear stabilities in addition to the
numerical instability of the synchronization process. The last domain D5 is both unstable analytically (linearly
and nonlinearly) and numerically (global unstable area). It should be quoted that for some values of K 2

½�0:3130; 0½[�0; 0:260� (for instance, K ¼ �0:30;�0:20; 0:15) when a ¼ 0:01, the synchronization process is
numerically achieved while not predicted by the analytical investigations. But for a ¼ 0:05, there is a quite
good agreement between both analytical and numerical results for all values of K. Therefore, it should be
stressed that as the nonlinearity coefficient a increases, there is a good convergence between analytical and
numerical results.
5. Conclusion

In this paper, we have investigated the general synchronization of two coupled VdPD oscillators. The
analytical investigation of both linear and nonlinear stabilities is based on the Whittaker method and the
Floquet theory, and also on the multiple time scales method. We have found that the amplitude of the
oscillatory states is related to the coefficient of nonlinearity. The effects of such a coefficient on the stability
boundaries of the synchronization process have also been found.
Appendix A

A.1. Appendix

The functions F ðtÞ, GðtÞ, RðtÞ and RðtÞ are defined as

F ðtÞ ¼ f 1c cos 2tþ f 1s sin 2tþ f 2c cos 4tþ f 2s sin 4tþ f 3c cos 6tþ f 3s sin 6t,

GðtÞ ¼ g0 þ g1c cos 2tþ g1s sin 2tþ g2c cos 4tþ g2s sin 4tþ g3c cos 6tþ g3s sin 6t,



ARTICLE IN PRESS
H.G. Enjieu Kadji, R. Yamapi / Physica A 370 (2006) 316–328 327
QðtÞ ¼ 2q1c cos tþ 2q1s sin tþ 2q3c cos 3tþ 2q3s sin 3t,

RðtÞ ¼ 2r1c cos tþ 2r1s sin tþ 2r3c cos 3tþ 2r3s sin 3t,

with
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A.2. Appendix

The quantities a0, ans and anc are defined as

a0 ¼ g0 � l2 � 1
8
ðf 2

1c þ f 2
1s þ f 2

2c þ f 2
2s þ f 2

3c þ f 2
3sÞ,

a1c ¼
1
2g1c þ

1
2f 1s �

1
8ð4lf 1c þ f 1cf 2c þ f 1sf 2s þ f 2cf 3c þ f 2sf 3sÞ,

a1s ¼
1
2
g1s �

1
2
f 1c �

1
8
ð4lf 1s þ f 1cf 2s þ f 2cf 3s � f 2sf 3cÞ,

a2c ¼
1
2
g2c þ f 2s �

1
8
ð1
2
f 2
1c �

1
2
f 1s þ 4lf 2c þ f 1cf 3c þ f 1sf 3sÞ,

a2s ¼
1
2
g2s � f 2c �

1
8
ð4lf 2s þ f 1cf 1s þ f 1cf 3s � f 1sf 3cÞ,

a3c ¼
1
2g3c þ

3
2f 3s �

1
8ð4lf 3c þ f 1cf 2c � f 1sf 2sÞ,

a3s ¼
1
2
g3s �

3
2
f 3c �

1
8
ð4lf 3s þ f 1cf 2s � f 1sf 2cÞ,

a4c ¼ �
1
8
ð1
2
f 2
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1
2
f 2
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a4s ¼ �
1
8
ðf 1cf 3s � f 1sf 2c þ f 1sf 3c þ f 2sf 2cÞ,

a5c ¼ �
1
8
ðf 2cf 3c � f 2sf 3sÞ; a5s ¼ �

1
8
ðf 2cf 3s þ f 2sf 3cÞ,

a6c ¼
f 2
3s � f 2
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16
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1

8
f 3cf 3s.
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