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Abstract
This paper deals with using of optimal stopping times

in problems of optimal correction of the motion. The
theory of Markov optimal stopping times has been con-
sidered, for example, in [Shiryayev, 1978; Chow at al.,
1971]. On the other hand, a problem of motion correc-
tion for systems with incomplete information consists
in the accumulation of measured data and the subse-
quent choice of a new control for remaining time in-
terval. A determinate version of the problem of mo-
tion correction can be found in [Kurzhanski, 1977].
Here we consider multistage linear control systems
with Gaussian noises and additive uncertainties. Using
the results of convex analysis and the theory of Kalman
filtering, we obtain the optimal minimax stopping times
for the completion of observation and for the transition
to a new control action. A simple one-dimensional ex-
ample is examined for the purpose of an illustration.
An application to the alignment problem in the theory
of inertial navigation is also considered. In addition,
we show some simulation results.
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1 Introduction
Stopping times are widely used in applications of the

theory of random processes, in financial mathematics,
and in the control theory. Let us give a mathemat-
ical preliminaries. Given a probability space (Ω,F ,
Ft, P ) with increased family of σ-algebras Ft, t ∈
0 : N , F0 = {∅,Ω}, FN = F , consider the se-
quence of random Ft-measurable values ft,, E|ft| <
∞, where E is the expectation. The integer random
value τ ∈ {0, 1, . . . } is called the stopping time if
{τ = t} ∈ Ft. The set of all stopping times with
the property t ≤ τ ≤ N (P-a.s.) is denoted by MN

t .
If τ ∈ MN

0 we set fτ =
∑N

i=0 fiI{τ=i}, where IA
is the indicator function. Let x ∧ y = min{x, y}

and f̄ = ess supα fα, where {fα, α ∈ A} is any
family of F-measurable functions. By definition, put
f̄(ω) = ess supα fα(ω), if f̄(ω) ≥ fα(ω) (P-a.s.),
∀α, f̄(ω) is F-measurable, and if h(ω) is another func-
tion, satisfying the inequality, then f̄(ω) ≤ h(ω) (P-
a.s.). Such a function f̄(ω) there exists, [Shiryayev,
1978]. A notion of ess infα fα(ω) is defined simi-
larly. Let us define recursively the values bNN = fN ,
bNt = ft ∧ E(bNt+1|Ft) for t ∈ N − 1 : 0, and the stop-
ping time τNt = min{t ≤ i ≤ N : fi = bNi }. In this
paper, the following result is used.

Theorem ([Chow at al., 1971; Shiryayev, 1978]). Let
V N
t = inf{Efτ : τ ∈ MN

t } and E|ft| < ∞. Then the
following properties are hold:

(a) τNt ∈ MN
t ;

(b) E(fτN
t
|Ft) = bNt ;

(c) E(fτ |Ft) ≥ E(fτN
t
|Ft) = bNt , ∀τ ∈ MN

t ;
(d) bNt = ess inf{E(fτ |Ft) : τ ∈ MN

t }, in particu-
lar, bN0 = inf{Efτ : τ ∈ MN

0 } = EfτN
0

= V N
0 ;

(e) V N
t = EbNt , V N

N = EfN .

Thus, the value τN0 is the optimal stopping time on
the interval 0 : N . But, in many problems of stochastic
optimization, the probability measure P is not known.
Suppose that we have a family {Pα, α ∈ A} of proba-
bility measures. In this case, define the recursive values

bNN = fN , bNt = ft ∧ ess sup
α

Eα(b
N
t+1|Ft),

for t ∈ N − 1 : 0.
(1)

When ess supα Eα|ft| < ∞, we introduce the value

τNt = min{t ≤ i ≤ N : fi = bNi } (2)

that called the optimal minimax stopping time on the
interval t : N under the uncertain family of measures
{Pα, α ∈ A}.



The Theorem and formulas (1), (2) are used in search-
ing of the instant for the transition from observation to
control in the problem of motion correction for multi-
stage system

xi = Aixi−1 +Biui + Civi + ξi,

yi = Gixi−1 + wi + ηi,
(3)

where xi ∈ Rn is the unknown state vector; yi ∈ Rm

is the observable vector; Ai, Bi Ci, Gi are matrices
of appropriate dimensions. The initial Gaussian vec-
tor x0 ∼ N (x1

0, γ0) has uncertain mean value x1
0

and does not depend on sequences ξi ∼ N (0,Ξi),
ηi ∼ N (0,Γi). Suppose that cov(ξi, ηi) = Qi, and
cov(ξi, ηj) = 0, cov(ξi, ξj) = 0, cov(ηi, ηj) = 0 un-
der i ̸= j. The uncertain parameters x1

0, vi, wi, which
can be considered as the parameter α in (1), (2), are
limited by either the geometric constraints

x1
0 ∈ X0, vi ∈ Vi, wi ∈ Wi, (4)

where X0, Vi, Wi are convex and compact sets, or, the
joint quadratic constraints

∥x1
0∥2P0

+

N∑
i=1

(
∥vi∥2Fi

+ ∥wi∥2Ri

)
≤ µ2. (5)

We suppose ∥x∥2P = x′Px. The symbol ′ means the
transposition. Matrices P0, Fi, Ri are symmetric and
positive. The controls ui will be formed depending
on the set of vectors yi = {y1, . . . , yi} under the rule
given below. The estimation problems for the systems
like (3) with mixed (determinate and random) distur-
bances was considered by the author in [Ananiev, 2007;
Ananiev, 2010].

2 Problem of Motion Correction
Let the control ui belong to Ui ⊂ Rp, where Ui is

a convex compact set. The set of admissible controls
{ut, . . . , uN} is denoted by u(t : N). If t = 1, then
instead of u(1 : N) we write the symbol uN . The anal-
ogous designations are used for vi, wi. The whole set
of uncertain parameters in system (3) will be denoted
by zN = {x1

0, v
N , wN}.

2.1 Correction without parametric uncertainty
Suppose at first that constraints (4), (5) give a single

valued set zN (constraints (4) are one-valued, and in (5)
we have µ = 0). We also suppose that the set of open-
loop controls uN is given. Let t ∈ 1 : N be the defined
instant and Ft = σ(y1, . . . , yt) be the σ-algebra gen-
erated by measurements. We can set a problem on mo-
tion correction of system (3), which consists in of the
replacement of old controls with new Ft-measurable

controls u(t+ 1 : N) ∈ Ut+1 × · · · × UN for the pur-
pose of minimization of terminal functional. Namely,
we solve the following problem

E∥DxN∥2 → min
u(t+1:N)

, (6)

where ∥ · ∥ is the Euclidean norm, D is a matrix.
Consider the solution of problem (6) in detail. We
have E∥DxN∥2 = EE(∥DxN∥2|Ft) = trDPN,tD

′ +
E∥Dx̂N,t∥2, where tr is the trace of matrix, PN,t is a
solution of the matrix system

Pi,t = AiPi−1,tA
′
i + Ξi, Pt,t = γt,

i ∈ t+ 1 : N,
(7)

x̂N,t is a solution of the forecast system

x̂i,t = Aix̂i−1,t +Biui + Civi, x̂t,t = x̂t,

i ∈ t+ 1 : N.
(8)

The initial states γt, x̂t of systems (7), (8) are defined
by Kalman filter equations, [Liptser and Shiryayev,
2000]:

x̂i = Aix̂i−1 +Biui + Civi +Ki(yi −Gix̂i−1

−wi), x̂0 = x1
0, i ∈ 1 : t, Ki = (Aiγi−1G

′
i

+Qi)∆
−
i , ∆i = Γi +Giγi−1G

′
i,

γi = Aiγi−1A
′
i + Ξi −Ki∆iK

′
i.

(9)

Here ∆− is the pseudoinverse matrix for ∆. For the
solution of problem (6) one have to find min ∥Dx̂N,t∥2
over the all controls u(t + 1 : N) in system (8) with
given initial condition x̂t. We have

min
u(t+1:N)

∥Dx̂N,t∥2 =
(
max
∥l∥≤1

{
l′DAN

t x̂t+

N∑
i=t+1

(
l′DAN

i Civi − ρ(−l|AN
i BiUi)

)})2

,
(10)

where AN
t = AN · · ·At+1, At

t = id, ρ(l|U) =
maxu∈U l′u is the support function of the set U , [Rock-
afellar, 1970]. If l0 is a maximizer in problem (10),
then the optimal controls u0(t+1 : N) satisfy the con-
dition of minimum minu∈Ui l

′
0u = l′0u

0
i .

For the definition of Markov stopping time of transi-
tion to a new control, we introduce the designation

gt(x̂t) = min
u(t+1:N)

∥Dx̂N,t∥2 + trDPN,tD
′. (11)

Using linearity of the equations, we can write the
equalities yi = y0i + yui + y1i , x̂i = x̂0

i + xu
i + x1

i ,



where vectors are formed by the systems

x̂0
i = Aix̂

0
i−1 +Kiζi, y0i = Gix̂

0
i−1 + ζi,

x̂0
0 = 0; xu

i = Aix
u
i−1 +Biui, yui = Gix

u
i−1,

xu
0 = 0; x1

i = Aix
1
i−1 + Civi,

y1i = Gix
1
i−1 + wi.

(12)

Here ζi ∼ N (0,∆i) is the innovation sequence of in-
dependent Gaussian values. Using Markov property of
systems (9), (12), we recursively form the functions

sN (x) = gN (x), st−1(x) = gt−1(x) ∧ Est(Atx

+Ktζt +Btut + Ctvt), t ∈ N : 1,
(13)

where the expectation is applied to the value ζt.
By means of the Theorem from Introduction we come

to the conclusion.

Theorem 1. Let the parameters zN in (3)–(5) be fixed
and the stopping time be of the form τNt = min{t ≤
i ≤ N : gi(x̂i) = si(x̂i)}. Then under ft =
gt(x̂t), b

N
t = st(x̂t) the properties (a) – (e) of the the-

orem from Introduction hold.

Remark 1. Suppose that the open-loop control uN is
a minimizer of problem (6) (when t = 0) and the
control is not recalculated. Then the value ft =
E(∥DxN∥2|Ft) is a martingale and, therefore, Efτ ≡
Ef1 for any stopping time τ ∈ MN

0 , [Liptser and
Shiryayev, 2000]. The value gt(x̂t) is not a martin-
gale. Consequently the problem about a finding of the
optimal stopping time for system (3) makes sense.

2.2 Correction under parametric uncertainty
Suppose that the uncertain parameters zN in (3) are

restricted by constraints (4) or (5). Now under given
set uN of open-loop controls, the value E∥DxN∥2 =
trDPN,tD

′ + E∥Dx̂N,t∥2 in problem (6) is uncertain.
There are several approaches to the possible solution.
The most simple approach consists in the decision of a
minimax problem

max
zN

∥Dx̂N,t∥2 → min
u(t+1:N)

. (14)

The minimum in (14) will majorize expression (10) for
any parameters zN and it can be used as approximation
from above. Let us calculate the minimum under con-
straints (4). We use the methods of the convex analysis
[Rockafellar, 1970]. Denote the matrix Ai −KiGi by
Ai and the product AN · · ·Ai+1 by AN

i ; Ai
i = id.

Using equations (8), (9), we can solve problem (14)
and obtain the minimum in the form

rt(x̂
∗
t ) =

(
max
∥l∥≤1

{
l′DAN

t x̂∗
t + dt(l)

−
N∑

i=t+1

ρ(−l|DAN
i BiUi)

})2

,
(15)

where x̂∗
t is a solution of the system

x̂∗
i = Aix̂

∗
i−1 +Biui +Kiyi, x̂∗

0 = 0, (16)

and the value dt(l) is defined by the formula

dt(l) = conc
(
ρ(l|DAN

t At
0X0)

+
t∑

i=1

(
ρ(l|DAN

t At
iCiVi) + ρ(−l|DAN

t At
iKiWi)

)
+

N∑
i=t+1

ρ(l|DAN
i CiVi)

)
.

(17)
In formula (17) the symbol concf(l) means the least
concave function majorizing the f(l) over the unite
ball. For constraints (5) instead of formula (17) we get

dt(l) = µ · conc
(
l′DAN

t

(
At

0P
−1
0 At′

0

+

t∑
i=1

(
At

iCiF
−1
i C ′

iA
t′

i

+At
iKiR

−1
i K ′

iA
t′

i

))
AN ′

t D′l

+

N∑
i=t+1

l′DAN
i CiF

−1
i C ′

iA
N ′

i D′l
)1/2

.

(18)

Note that conc(l′Al)1/2 = (m(A)(1− l′l)+ l′A′l)1/2,
where m(A) = max∥l∥≤1 l

′A′l for matrices A′ = A ≥
0. In this connection the concave hull in the formula
(18) can be calculated explicitly. The same as in sub-
section 2.1, if l0 is a maximizer in problem (15) with
function (17) or (18), the optimal controls u0(t+1 : N)
satisfy the condition of minimum minu∈Ui l

′
0u = l′0u

0
i .

The same as in subsection 2.1, for the definition of the
Markov stopping time of the transition to a new control,
we introduce the designation

gt(x̂
∗
t ) = rt(x̂

∗
t ) + trDPN,tD

′. (19)

The main difficulty of using of function (19) consists
in the fact that the forecast of the signal yt under the
observable data yt−1 contains uncertain parameters. In
this connection we will consider the random attainabil-
ity domain of the system

x̂∗
i = Aix̂

∗
i−1 +Biui +Ki(ζi + wi +Gix̃i−1),

x̃i = Aix̃i−1 + Civi −Kiwi, x̃0 ∈ X0,
(20)

which is equivalent to (16).
We define the functions

sN (x) = gN (x), st−1(x) = gt−1(x)

∧max
zt

Est(Atx+Btut +Kt(ζt + wt

+Gtx̃t−1)), t ∈ N : 1,

(21)



where the E is applied to ζt, in order to receive the fol-
lowing result.

Theorem 2. In the parametric uncertain case, let the
stopping time be of the form τNt = min{t ≤ i ≤
N : gi(x̂

∗
i ) = si(x̂

∗
i )}. Then without uncertainties

this stopping time coincides with one in the theorem
1. For ft = gt(x̂

∗
t ), b

N
t = st(x̂

∗
t ), the value τNt is

the optimal minimax stopping time in the sense of for-
mulas (1), (2). For any set zN of parameters, the esti-
mation Eminu(τN

0 +1:N) E(∥DxN∥2|yτN
0 ) ≤ Eg(x̂∗

τN
0
)

from above is valid.

Remark 2. After the reaching of the instant τN0 when
the control is changed, it is possible to continue obser-
vation and again to trace the stoping time. In that case
we receive the process of multiple correction.

2.3 Example
Let us consider a simple one-dimensional example for

the purpose of an illustration. Let the equations look
like

xi = xi−1 + ui + vi, yi = xi−1 + wi + ηi,

|ui| ≤ α, |vi| ≤ β, |wi| ≤ δ,

where the random values ηi ∼ N (0,Γ) and x0 ∼
N (0, γ0) are present. For given example we have

γi = γ0Γ/(Γ + iγ0), Ki = γi−1/(Γ + γi−1)

= γi/Γ, PN,t = γt, x̂t = γt

t∑
i=1

(yi − wi)/Γ.

If β = δ = 0, the function (11) is of the form

gt(x) = γt +

{
0, |x| ≤ α(N − t);(
|x| − α(N − t)

)2
, |x| > α(N − t).

After the calculation of functions (13) and the reaching
of the instant τN0 , the control is found by the formula

u0
i =

{
−α · sign(x̂τN

0
), |x̂τN

0
| > α(N − t),

−x̂τN
0
/(N − t), |x̂τN

0
| ≤ α(N − t).

Let N = 50, α = γ0 = 1, Γ = 0.5. Here the functions
gN−1(x) and sN−1(x) coincide. Therefore the instant
i = N−1 is always the stopping time, but in some ran-
dom realizations the stopping time can happen earlier.
The structure of functions sN−4(x) and gN−4(x) are
shown on Fig.1. The solution in the parametric case
is provided analogously according to formulas (15) –
(21).

−4 −3 −2 −1 0 1 2 3 4

0.0102

0.0103

0.0104

0.0105

0.0106

0.0107

0.0108

0.0109

0.011

x

s

Figure 1. Structure of functions.

3 Application
We apply our consideration to the alignment problem

from inertial navigation. Consider a transport ship-
airplane system. The base coordinate system (b.c.s.)
of the ship is correct. The axis 1 is directed along the
parallel to the West. The axis 2 is the local vertical.
The axis 3 is directed along the meridian to the North.
The airplane dependent coordinate system (d.c.s.) with
respect to b.c.s. is estimated by the Krylov (or Euler)
angles. The sequence of clockwise rotations: θ1, θ3,

1
1

3
1

2
1

2

1

3

ω1
ω2

ω3

θ3

θ3

θ1

θ1

θ2

θ2

Figure 2. Alignment by rotation.

θ2. Kinematic equations are of the form

θ̇1 = ω1 − θ̇2 sin θ3, θ̇2 = (ω2 cos θ1

−ω3 sin θ1)/ cos θ3, θ̇3 = ω2 sin θ1 + ω3 cos θ1,

where ωi are projections of relative angular velocity.
Under small angles (several degrees) these equations
are well linearized. In the simplest case, the movement
occurs on the Equator and θ1 = θ2 ≡ 0. Then only
one angle θ ≡ θ3 gives a deviation. The aim of the



alignment is to match systems using the output of ac-
celerometer’s integrator along axis 2. When θ is small
we obtain θ̇ = Ω − Ω1 + β, β̇ = v, ẏ = gθ + w + η̇,
where Ω is absolute angular velocity of d.c.s., β is a
slowly changed zero offset, w and η are determinate
and random disturbances, g is the acceleration of grav-
ity. The constraints are of the form

∫ T

0

v(t)2dt/T ≤ α2,

∫ T

0

w(t)2dt/T ≤ δ2.

Let h = T/N be a time step. For discrete type of mea-
surements we get the system

θt = θt−1 + ut + hβt−1 + v1t, βt = βt−1

+v2t, yt = hgθt−1 + wt + ηt.

For vectors vt = [v1t; v2t] and numbers wt we obtain
the constraints

N∑
i=1

∥vi∥2F ≤ α2h2N,

N∑
i=1

w2
i ≤ δ2h2N, (22)

where F−1 = [h2/3, h/2;h/2, 1]. Let the controls

ui =
ti∫

ti−1

(Ω − Ω1)dt be also restricted by the con-

straint analogous to (22) for w with δ = δu. Here
we have used standard Matlab designations for vectors
and matrices. Let (Eθ20)

1/2 = 1 grad, (Eβ2
0)

1/2 =
12 grad/hour. Other numerical data: T = 300 sec,
N = 300, δ = 0.009m/sec2, α = 36 grad/hour2,
(Eη2t )

1/2 = 1/600m/sec, g = 9.81m/sec2, δu =
10−3 rad/sec. The signal yt is realized under wt ≡
−hδ, vt ≡ [h/2; 1]hα. The alteration of the cost
r =

√
gt(x̂∗

t ) is shown on Fig. 3. The control is on
Fig. 4. For given random event ω, the change of con-
trol happens at t = 292, t = 299.

4 Continuous case
The same approach with the help of [Oksendal, 2000]

can be applied to the system of the form

dxt = (A(t)xt +B(t)u+ C(t)v)dt+ σ1(t)dB
1
t ,

dyt = (G(t)xt +D(t)w)dt+ σ2(t)dB
2
t .

(23)
For system (23) we write the Kalman-Busy filter

dx̂t = (A(t)x̂t +B(t)u+ C(t)v)dt

+P (t)G′(t)(σ2σ
′
2)

−1/2dŷt,

dyt = (G(t)x̂t +D(t)w)dt+ (σ2σ
′
2)

1/2dŷt,

(24)
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Figure 3. Alteration of the cost.
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Figure 4. Control actions.

where ŷt is the innovation Brownian process. To solve
the problem like (6) introduce the generating operator

L =
n∑

i=1

(A(t)x+B(t)u+ C(t)v)i∂/∂xi

+∂/∂t+
m∑
i=1

(G(t)x+D(t)w)i∂/∂yi

+1/2
m∑

i,j=1

(σ2σ
′
2)i,j∂

2/∂yi∂yj

+
1

2

n∑
i,j=1

(PG′(σ2σ
′
2)

−1GP )i,j
∂2

∂xi∂xj

+

m∑
j=1

n∑
i=1

(GP )j,i
∂2

∂xi∂yj
,

(25)

and the functional Jτ (s, x, y) = Es,x,y∥x̂τ∥2, where τ
is a continuous stopping time. Let V = {(s, x, y) : s >
0, x ∈ Rn, y ∈ Rm} be a basic domain. The follow-
ing conditions are sufficient for finding of the optimal



stopping time. If there exists a function ϕ(s, x, y) such
that:

(i) ϕ ∈ C1(V ) ∩ C(V );
(ii) ϕ ≤ ∥x∥2 and ϕ(0, x, y) = ∥x∥2 if (s, x, y) ∈ V ;

(iii) If D = {(s, x, y) : ϕ(s, x, y) < ∥x∥2}, then
Es,x,y

∫ T

0
χ∂D(t, x̂t, yt)dt = 0, ∀(s, x, y) ∈ V ;

(iv) ∂D is a Lipshitz surface, and ϕ ∈ C2(V \ ∂D);
(v) Lϕ ≤ 0 if (s, x, y) ∈ V \ D, and Lϕ = 0 if

(s, x, y) ∈ D;
(vi) τD = inf{t > 0 : (t, x̂t, yt) ̸∈ D} < ∞

a.s.,∀(s, x, y) ∈ V ,

then

ϕ(s, x, y) = inf
τ≤T

Es,x,y∥x̂τ∥2 = JτD (s, x, y), (26)

and τ∗ = τD is an optimal stopping time. In (25) we
substitute the optimal open-loop control u(t, y(·)) that
can be found as above. If the functions v(·), w(·) in
equations (23) are unknown, the above item (v) should
be replaced by the following
(v’) L̃ϕ ≤ 0 if (s, x, y) ∈ V \ D, and L̃ϕ = 0 if
(s, x, y) ∈ D; where

L̃ϕ = max
v,w

{ n∑
i=1

(A(s)x+B(s)u(s, y(·))

+C(s)v)i
∂ϕ

∂xi
+

m∑
i=1

(G(s)x+D(s)w)i
∂ϕ

∂yi

}
+
∂ϕ

∂s
+

1

2

m∑
i,j=1

(σ2σ
′
2)i,j

∂2ϕ

∂yi∂yj

+
1

2

n∑
i,j=1

(PG′(σ2σ
′
2)

−1GP )i,j
∂2ϕ

∂xi∂xj

+

m∑
j=1

n∑
i=1

(GP )j,i
∂2ϕ

∂xi∂yj
.

(27)

5 Conclusion
We have considered the using of the Markov stopping

times in problems of motion correction under mixed
disturbances. It was supposed that the phase vector
of the linear multistage system is non-observable, but
we can observe a vector signal with noise at discrete
instants. The expectation of the noise was uncertain
and bounded by set-valued constraints. Here we have
examined only multistage linear control systems with
Gaussian noises and additive uncertainties. However,
the same arguments can be applied to continuous con-
trol systems exited by Wiener processes. Using the
results of convex analysis and the theory of Kalman
filtering, we have obtained the optimal minimax stop-
ping times for the completion of observation and for
the transition to a new control action. The new control
was obtained from minimax auxiliary open-loop con-
trol problem. The process of correction may be mul-
tiple. Thus, we have suggested the motion correction

algorithm that consists in finding instants of correction
when the old control is replaced with new one on the
remaining time interval. A simple one-dimensional ex-
ample was examined for the purpose of an illustration.
An application to the alignment problem in the theory
of inertial navigation was also considered. We also
considered briefly the generalization of the theory to
the continuous case.
Some problems need to be solved:

What is better: to solve numerically the free
boundary problem with partial derivatives or to use
discretization?
Nonlinear cases: needs one to use nonlinear filter-
ing theory or something else? How to take into
account uncertainties for the mixed disturbances
case?
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