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Abstract
This paper is devoted to the study of Lyapunov type

functions relative to an impulsive control system with
trajectories of bounded variation and impulsive con-
trols (regular vector measures). We focus on the def-
initions and infinitesimal properties of strongly and
weakly monotone Lyapunov type functions. As an ap-
plication of the Lyapunov type functions, we consider
estimates for integral funnels of trajectories of impul-
sive systems.
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1 Introduction
Strongly and weakly monotone Lyapunov type func-

tions play an important role in the study of vari-
ous qualitative properties of control dynamical sys-
tems such as stability, stabilization, invariance, at-
tainability, and optimality (see, e.g., [Aubin and Cel-
lina, 1984; Aubin and Frankowska, 1990; Bardi and
Capuzzo-Dolcetta, 1997; Bacciotti and Rosier, 2005;
Clarke, Ledyaev, Stern, and Wolenski, 1998; Gu-
seinov and Ushakov, 1990; Krotov, 1996; Milyutin and
Osmolovskii, 1998; Subbotin, 1994; Vinter, 2000]).
Roughly speaking, the property of strong monotonicity
is the property of being monotone along all solutions
(trajectories) of the control system whereas the prop-
erty of weak monotonicity means this along at least
one trajectory of the system that starts from an arbi-
trary initial position. Such Lyapunov type functions are
smooth or generalized solutions of the corresponding
Hamilton–Jacobi inequalities.
As for optimal control theory, a more important role

is played by strongly monotone Lyapunov type func-
tions, which allow one to estimate from below the
lower bound of the cost functional. The approaches

of Caratheodory and Krotov [Krotov, 1996; Clarke,
Ledyaev, Stern, and Wolenski, 1998; Vinter, 2000] as
well as their modern modifications [Milyutin and Os-
molovskii, 1998; Dykhta, 2004] are close to this direc-
tion, in which one can also include Bellman’s dynamic
programming method.
The applications of the weakly monotone functions

are much less known in optimal control. Under a cer-
tain choice of the boundary conditions, these functions
allow one to obtain a quasioptimal control synthesis,
upper estimates for the lower bound of the cost func-
tional, methods for improving nonoptimal control, and
necessary optimality conditions (see, e.g., [Subbotin,
1994; Clarke, Ledyaev, Stern, and Wolenski, 1998;
Bardi and Capuzzo-Dolcetta, 1997]).
The majority of the above-mentioned results deal with

ordinary differential control systems with a compact
control value set or compact-valued differential in-
clusions. The extension of these results to systems
with unbounded velocity sets faces some serious dif-
ficulties, which generally require modifications of the
Hamilton–Jacobi differential operators. A typical ex-
ample of such systems is given by systems linear in
control with a convex closed cone as the Pontryagin
set. These systems often arise in applications to laser
physics, robotics, economics, ecology etc. A natural re-
laxation extension of the relevant optimal control prob-
lems leads to problems of optimizing impulsive pro-
cesses with trajectories of bounded variation [Dykhta
and Samsonyuk, 2003; Miller and Rubinovich, 2003;
Motta and Rampazzo, 1995; Sesekin, 1997]. The dy-
namics of such systems can be formally described by
the measure driven equation

dx(t) = f
(
t, x(t), u(t)

)
dt+G

(
t, x(t)

)
µ(dt),

u(t) ∈ U a.e. on T, µ(B) ∈ K ∀ B ∈ BT .

}
(1)

Here, T = [a, b] is a fixed time interval, U is a compact
set in Rl, K is a convex closed cone in Rm, x(·) is a



function of bounded variation, u(·) is an L-measurable
function, µ is a K-valued bounded Borel measure on
T , BT is the algebra of Borel subsets of the interval T,
and “a.e.” signifies “almost everywhere with respect to
the Lebesgue measure, L, on R”.

This paper deals with the impulsive control system
(1). Since we do not assume any commutativity prop-
erty of the vector fields generated by the columns ofG,
system (1) may have a nonunique solution even when
u, µ, and an initial condition x0 are fixed. The solution
concept we adopt with some modifications was intro-
duced in the papers [Miller, 1982; Miller, 1996], and
[Miller and Rubinovich, 2003]. This concept is pre-
sented in detail in the next section.

It is well known that, by using a time transforma-
tion, the impulsive control system can be converted
into an auxiliary conventional control system [Bres-
san and Rampazzo, 1988; Motta and Rampazzo, 1995;
Miller, 1996; Miller and Rubinovich, 2003; Sesekin,
1997; Pereira and Silva, 2000; Silva and Vinter, 1996;
Wolenski and Zabic, 2007]. Thus the definitions and
monotonicity conditions for Lyapunov type functions
can be obtained through the corresponding auxiliary
control systems. Let us refer to the paper [Pereira and
Silva, 2002], in which this way was realized for au-
tonomous measure-driven differential inclusions; see
also [Pereira, Silva, and Oliveira, 2008] and [Code and
Silva, 2010], where such way was applied to the invari-
ance and stabilization problems for impulsive control
systems, respectively. However, the impulsive dynam-
ics exists in both a slow time, t, and a fast time, denoted
as V below, in which jumps of trajectories are realized
(namely, the sum t + V is considered as a time for the
auxiliary control system). Let us stress that the nonlin-
ear impulsive control systems, except special cases, for
example, when K ⊆ Rm

+ or the matrix G satisfies the
so-called well-posedness condition of Frobenius type
etc, are nonautonomous (in a certain sense) with re-
spect to the fast time. Thus it can be taken into account
for the definitions of monotonicity relative to impulsive
systems.

In this paper we formulate some definitions of
strongly and weakly monotone Lyapunov type func-
tions as well as their proximal characterization and give
their applications to estimates of the reachable sets and
integral funnels of trajectories of impulsive systems.

This paper is organized as follows. The precise state-
ment of the impulsive control system and the concept
of its solutions are given in Section 2. In Section 3,
the definitions of strongly and weakly monotone Lya-
punov type functions are introduced and infinitesimal
conditions in a form of proximal inequalities are ob-
tained. Section 4 is devoted to an application of certain
families of Lyapunov type functions to inner and outer
estimates of the reachable sets and integral funnels of
trajectories.

2 Statement of the impulsive control system
Let K1 be the set {v ∈ K | ||v|| = 1}, where || · || is

the norm ||v|| =
m∑

j=1

|vj |.

Suppose that the following assumptions hold.
(H1) The functions f(t, x, u), G(t, x) are continuous;

for any compact set Q ⊂ Rn there exist constants L1,
L2 > 0 such that

|f(t, x1, u)− f(t, x2, u)| ≤ L1|x1 − x2|,
|G(t, x1)−G(t, x2)| ≤ L2|x1 − x2|

whenever (t, x1, u), (t, x2, u) ∈ T ×Q×U ; moreover,
there exist constants c1, c2 > 0 such that

|f(t, x, u)| ≤ c1(1 + |x|), |G(t, x)| ≤ c2(1 + |x|)

whenever (t, x, u) ∈ T × Rn × U. Here, | · | denotes a
vector or consistent matrix norm.
(H2) The set f(t, x, U) is a convex set ∀ (t, x) ∈ T ×

Rn.
In what follows BV +

(
T,Rk

)
means the Banach

space of Rk-valued functions on T of bounded varia-
tion and which are right continuous on (a, b]; U(T,U)
is the set of L-measurable functions from T into Rl

with values in U.
Let µ be a K-valued bounded Borel measure on T.

Given µ, let Sd(µ) be the set {s ∈ T | µ({s}) 6= 0}
and µc be the continuous component in the Lebesgue
decomposition of µ. Let γ(µ) denote any family
{ds, ωs(·)}s∈S whose components satisfy the follow-
ing conditions:

(a) S ⊂ T is a set which is at most denumerable and
such that Sd(µ) ⊆ S;

(b) for each s ∈ S, the constant ds ∈ R+ and L-
measurable function ωs : [0, ds] → co K1 satisfy
the conditions

ds ≥ ||µ
(
{s}

)
||,

∫ ds

0

ωs(τ)dτ = µ
(
{s}

)
;

(c)
∑
s∈S

ds <∞.

Here, coA is the convex hull of a set A. It is clear
that there exists a nonunique family γ(µ) correspond-
ing to µ. We denote by π(µ) any pair

(
µ, γ(µ)

)
in

which µ is a K-valued bounded Borel measure on
T and γ(µ) is some corresponding family described
above. Let W(T,K) be the set of all such π(µ). Now
for each π(µ) ∈ W(T,K) we define the function
V (·) = Vπ(µ)(·) ∈ BV + (T,R) by the rule: V (a) = 0,

V (t) = |µc|
(
[a, t]

)
+

∑
s≤t, s∈S

ds, t ∈ (a, b], (2)



where |µc| is a total variation of the measure µc.
Consider an impulsive control system of the form

dx(t) = f
(
t, x(t), u(t)

)
dt+G

(
t, x(t)

)
π(µ),

u(·) ∈ U(T,U), π(µ) ∈ W(T,K),
(D),

where elements of the sets U(T,U) and W(T,K) are
ordinary and impulsive controls, respectively. The so-
lutions of (D) are understood in the sense of the fol-
lowing definition.
Definition 1. A function x(·) ∈ BV + (T,Rn) is

said to be the solution of (D) corresponding to a pair(
u(·), π(µ)

)
∈ U(T,U)×W(T,K) if the equality

x(t) = x(a) +
∑

s≤t, s∈S

(
zs

(
ds;x(s−)

)
− x(s−)

)
+

∫ t

a

f
(
t, x(t), u(t)

)
dt+

∫ t

a

G
(
t, x(t)

)
µc(dt)

(3)
is fulfilled for all t ∈ (a, b], where, for each s ∈ S, the
function zs(·;x) is an absolutely continuous function
satisfying the system of differential equations

dzs(τ)
dτ

= G
(
s, zs(τ)

)
ωs(τ), zs(0) = x, τ ∈ [0, ds].

Let us briefly comment on system (D). This system is
a certain extension of a conventional kind system gov-
erned by the standard control dynamics

ẋ(t) = f
(
t, x(t), u(t)

)
+G

(
t, x(t)

)
v(t),

u(t) ∈ U, v(t) ∈ K a.e. t ∈ T,

}
(4)

where x(·) is an absolutely continuous function, u(·)
and v(·) are L-measurable bounded functions. Indeed,
the set of (D)’s solutions is obtained by closing the set
of trajectories of (4) in the weak∗ topology in the space
of functions of bounded variation.
A triple

(
x(·), u(·), π(µ)

)
consisting of ordinary and

impulsive controls together with the corresponding tra-
jectory is called an impulsive process and denoted by
σ. The function Vπ(µ)(·) corresponding to σ and given
by (2) will be also denoted as Vσ(·) or even V (·) if σ is
easy for the context. We shall use the similar notation
for σ’s trajectory, that is, xσ(·) or x(·). Since, for given
σ, the function V (·) has jumps only at points of the set
S and ds = [V (s)] := V (s)− V (s−) ∀ s ∈ S, we can
identify the set S with Sd(V ) := {s ∈ T | [V (s)] > 0}.
Let us note that the variable V, which appears in

the impulsive system via (2) and (3), may be also in-
terpreted as an energy variable. Indeed, for given σ
there exists a sequence {xk(·), uk(·), vk(·)} satisfy-
ing (4) such that the sequence

{
xk(·), Vk(·)

}
, where

t → Vk(t) :=
∫ t

a

||vk(τ)||dτ, tends to
{
xσ(·), Vσ(·)

}

as k → ∞ in the sense of weak∗ convergence in
the space of functions of bounded variation (then(
xk(t), Vk(t)

)
→

(
xσ(t), Vσ(t)

)
at all the points of

continuity
(
xσ(·), Vσ(·)

)
and at the points a, b).

Finally we note that any pair
(
x(·), V (·)

)
correspond-

ing to an impulsive process σ is a generalized solution
of (4) in the sense of [Miller, 1996; Miller and Rubi-
novich, 2003], moreover, it is a V -solution of (4) in the
sense of [Sesekin, 1997].
For given σ and ∆ = [t0, t1] ⊆ T, we denote

by κσ∆ the set
(
x(·), V (·), {zs(·)}s∈S∩∆

)
, where, for

s ∈ S ∩∆, zs(·) := zs(·;x(s−)) corresponds to π(µ),
the functions x(·) and V (·) are the restrictions of xσ(·)
and Vσ(·) to (t0, t1], moreover, x(t0) = x(t0−) =
xσ(t0−), V (t0) = V (t0−) = Vσ(t0−). We shall say
that κσ∆ is an extended trajectory of (D) defined on
∆.
The following notation is used:

Σ is the set of all impulsive processes of (D);

T E+(tα, xα, Vα) =

κσ∆

∣∣∣σ ∈ Σ, ∆ = [tα, b],
x(tα−) = xα,
V (tα−) = Vα

 ;

T E−(tα, xα, Vα) =

κσ∆

∣∣∣σ ∈ Σ, ∆ = [a, tα],
x(tα) = xα,
V (tα) = Vα

 .

3 Strongly and weakly monotone Lyapunov type
functions

In this section we define some monotonicity proper-
ties of a continuous function ϕ(t, x, V ) with respect
to system (D). Note that the set of conventional vari-
ables t and x of Lyapunov type functions is now sup-
plemented with the variable V, which is responsible for
the impulsive dynamics of the system and combines the
properties of both the time variable and the state vari-
able.
Definition 2. A function ϕ is strongly increas-

ing if, for any (tα, xα, Vα) ∈ T × Rn × R+,
for any

(
x(·), V (·), {zs(·)}

)
from T E+(tα, xα, Vα),

the functions t → ϕ
(
t, x(t), V (t)

)
and τ →

ϕ
(
s, zs(τ), V (s−)+τ

)
, s ∈ Sd(V )∩ [tα, b] do not de-

crease on the intervals [tα, b],
[
0, [V (s)]

]
, s ∈ Sd(V )∩

[tα, b], respectively.
Definition 3. A function ϕ is weakly prede-

creasing if, for any (tα, xα, Vα) ∈ T × Rn × R+,
there exists an extended trajectory

(
x(·), V (·), {zs(·)}

)
from T E−(tα, xα, Vα) such that the functions t →
ϕ
(
t, x(t), V (t)

)
and τ → ϕ

(
s, zs(τ), V (s−) + τ

)
,

s ∈ Sd(V ) ∩ [a, tα] do not increase on the intervals
[a, tα],

[
0, [V (s)]

]
, s ∈ Sd(V ) ∩ [a, tα], respectively.

Strongly decreasing and weakly preincreasing func-
tions ϕ are defined in the similar manner.
Now we define some property of ϕ that, in a certain

sense, is wider than the weakly predecreasing property.
Denote by Qϕ the set {(t, x, V ) ∈ T × Rn ×

R+ | ϕ(t, x, V ) ≥ 0}.
Definition 4. A function ϕ is weakly preinvari-

ant if the set Qϕ is a weakly preinvariant set relative



to (D); i.e., for any (tα, xα, Vα) ∈ Qϕ, there ex-
ists an extended trajectory

(
x(·), V (·), {zs(·)}

)
from

T E−(tα, xα, Vα) such that the following inclusions
hold

(
t, x(t), V (t)

)
∈ Qϕ ∀t ∈ [a, tα],(

s, zs(τ), V (s−) + τ
)
∈ Qϕ

∀ τ ∈
[
0, [V (s)]

]
, ∀ s ∈ Sd(V ) ∩ [a, tα].

We shall say that the above-defined functions are Lya-
punov type functions of the impulsive control system
(D).We denote by Φs,Φ−

w , and Φ−
wi the sets of all con-

tinuous strongly increasing, weakly predecreasing, and
weakly preinvariant Lyapunov type functions of (D),
respectively.
Now we formulate infinitesimal conditions of strong

and weak monotonicity of Lyapunov type functions.
Let us define the functions h0, h1,H0, and H1 to be

h0(t, x, ψ) = min
u∈U

〈ψ, f(t, x, u)〉,

h1(t, x, ψ) = min
ω∈K1

〈ψ,G(t, x)ω〉,

H0(t, x, ψ) = max
u∈U

〈ψ, f(t, x, u)〉,

H1(t, x, ψ) = max
ω∈K1

〈ψ,G(t, x)ω〉.

Moreover, we define the functions h0, h1, H0, and H1

as follows:

hi(t, x, ψ1, ψ2) = ψ1 + hi(t, x, ψ2), i = 0, 1,

Hi(t, x, ψ1, ψ2) = ψ1 +Hi(t, x, ψ2), i = 0, 1.

We denote by ∂Pϕ(t, x, V ) and ∂Pϕ(t, x, V ) the
proximal subdifferential and superdifferential of the
function ϕ at the point (t, x, V ). Let us recall [Clarke,
Ledyaev, Stern, and Wolenski, 1998; Vinter, 2000] that
a vector p is called a proximal subgradient of y → ϕ(y)
at a point y if there exist a neighborhood Ω of the point
y and a constant c > 0 such that

ϕ(z) ≥ ϕ(y) + 〈p, z − y〉 − c|z − y|2 ∀ z ∈ Ω.

This inequality implies that locally (in a neighbor-
hood of y) ϕ has a quadratic lower support function
at the point y with gradient p at this point. The prox-
imal subdifferential ∂Pϕ(y) consists of all such sub-
gradients. It may be an empty set; in this case, the
respective proximal inequalities given below are as-
sumed to hold automatically at the point y. Note that
∂Pϕ(y) ⊂ {∇ϕ(y)} for a differentiable ϕ; moreover,
if ϕ is twice continuously differentiable at the point y,

then this inclusion turns into an equality. The prox-
imal superdifferential ∂Pϕ is introduced in an anti-
symmetric way and is formally defined by the equality
∂Pϕ(y) = −∂P

(
− ϕ(y)

)
.

Denote by NP
Q (y) the proximal normal cone to Q at

y. Recall that a vector p ∈ Rk is a proximal normal
vector to a closed set Q ⊂ Rk at y ∈ Q iff there exists
α > 0 such that dQ(y + αp) = α||p||, where dQ(·) is
the distance function defined by dQ(z) = inf

y∈Q
||z−y||.

The proximal normal cone to Q at y is the set of all
proximal normal vectors to Q at y.
We shall use the following notation: ϕt(·, ·) =
ϕ(t, ·, ·), ϕV0(·, ·) = ϕ(·, ·, 0),

Q(a,b) = Q ∩
(
(a, b)× Rn × (0,+∞)

)
,

Qt = {(x, V ) ∈ Rn × (0,+∞) | (t, x, V ) ∈ Q},
QV0 = {(t, x) ∈ (a, b)× Rn | (t, x, 0) ∈ Q}

whenever Q is a closed set in T × Rn × R+; more-
over, denote by Q(a,b), Qt, and QV0

the closures of the
corresponding sets.
Let us consider the following conditions in the form of

systems of proximal Hamilton–Jacobi inequalities with
respect to continuous functions ϕ : T×Rn×R+ → R.
Condition (A):

h0(t, x, pt, px) ≥ 0, h1(t, x, pV , px) ≥ 0
∀ (pt, px, pV ) ∈ ∂Pϕ(t, x, V ),
∀ (t, x, V ) ∈ (a, b)× Rn × (0,+∞);

h1(s, x, pV , px) ≥ 0 ∀ (px, pV ) ∈ ∂Pϕ
t(x, V ),

∀ (t, x, V ) ∈ {a; b} × Rn × (0,+∞).

Condition (B):

min
ω0,ω1≥0
ω0+ω1=1

{h0(t, x, pt, px)ω0 + h1(t, x, pV , px)ω1} ≤ 0

∀ (pt, px, pV ) ∈ ∂Pϕ(t, x, V ),
∀ (t, x, V ) ∈ (a, b)× Rn × (0,+∞);

h0(t, x, pt, px) ≤ 0 ∀ (pt, px) ∈ ∂PϕV0(t, x),
∀ (t, x) ∈ (a, b)× Rn;

h1(t, x, pV , px) ≤ 0 ∀ (px, pV ) ∈ ∂Pϕt(x, V ),
∀ (t, x, V ) ∈ {a; b} × Rn × (0,+∞).

Condition (C):

max
ω0,ω1≥0
ω0+ω1=1

{H0(t, x, pt, px)ω0 +H1(t, x, pV , px)ω1} ≥ 0

∀ (pt, px, pV ) ∈ NP
Q(a,b]

(t, x, V ), ∀ (t, x, V ) ∈ Q(a,b];

H0(t, x, pt, px) ≥ 0

∀ (pt, px) ∈ NP
QV0

(t, x), ∀ (t, x) ∈ QV0 ;

H1(t, x, pV , px) ≥ 0

∀ (px, pV ) ∈ NP
Qt

(x, V ), ∀ (x, V ) ∈ Qt, t = a.



Theorem 1.

(a) ϕ ∈ Φs iff (A) holds.
(b) Suppose (B) holds. Then ϕ ∈ Φ−

w .
(c) Suppose (C) holds for Q = Qϕ. Then ϕ ∈ Φ−

wi.

The proof is based on the description of system (D)
via an auxiliary control system obtained by a cer-
tain discontinuous time transformation (namely, the so-
called space-time systems in the terminology of [Motta
and Rampazzo, 1995]). This auxiliary control system
has the following form (see [Dykhta and Samsonyuk,
2011])

t′(τ) = ω0(τ), t(0) = a, t(τ1) = b,

x′(τ) = f
(
t(τ), x(τ),u(τ)

)
ω0(τ) +G

(
t(τ), x(τ)

)
ω(τ),

V′(τ) = 1− ω0(τ), V(0) = 0,

u(τ) ∈ U, (ω0(τ), ω(τ)) ∈ co K̃1 a.e. τ ∈ [0, τ1].

Here, t(·), x(·),V(·) are absolutely continuous func-
tions, u(·), ω0(·), ω(·) are L-measurable functions,

K̃1 = {(ω0, ω) | ω0 ≥ 0, ω ∈ K, ω0 + ||ω|| = 1} ,

τ1 is a nonfixed terminal instant of time, and the prime
denotes differentiation with respect to τ. By using
some results of the papers [Clarke, Ledyaev, Stern, and
Wolenski, 1998; Vinter, 2000] the statement of Theo-
rem 1 is obtained.

4 Estimates for the integral funnel of trajectories
In this subsection we dwell on an application of the

Lyapunov type functions to inner and outer estimates
of the integral funnel of trajectories and reachable set
of (D).
LetX be a compact set in Rn. Let T E[a,t](a,X) con-

sist of all pairs
(
x(·), V (·)

)
given on the interval [a, t]

in which x(·) is a solution of (D) such that x(a) ∈ X
and V (·) is a corresponding function (2). Denote by
RE(a,X) the set

{(
t, x(t), V (t)

) ∣∣∣ t ≥ a,(
x(·), V (·)

)
∈ T E[a,t](a,X)

}
.

The set RE(a,X) is called the integral funnel of tra-
jectories of (D) emanating from X. Let us note that
RE(a,X) should be called an extended integral fun-
nel, because there are the both x(·) and any correspond-
ing function V (·); but we prefer the shorter name. Then
the cross-section at a fixed time t > a is the reachable
set at t for system (D) emanating from (a,X) (or, more
precisely, the extended reachable set).
Let us begin with inner estimates of RE(a,X).
Let Φ∗ be a subset of either Φ−

wi or Φ−
w such that

⋃
ϕ∈Φ∗

{x | ϕ(a, x, 0) ≥ 0} ⊆ X. (5)

We suppose also that the left-hand part of (5) is a
nonempty set. Let us introduce the set

AE[Φ∗](a,X) =
⋃

ϕ∈Φ∗

Qϕ.

Theorem 2. The following inclusion holds

AE[Φ∗](a,X) ⊆ RE(a,X).

Proof. Let Φ∗ be a subset of Φ−
wi. Let us take

any (tα, xα, Vα) ∈ AE[Φ∗](a,X). Then there ex-
ists ϕ ∈ Φ∗ such that (tα, xα, Vα) ∈ Qϕ. Since ϕ
is a preinvariant Lyapunov type function, there exists
a pair

(
x(·), V (·)

)
∈ T E[a,tα] for which x(tα) =

xα, V (tα) = Vα, V (a) = V (a−) = 0, and
ϕ
(
t, x(t), V (t)

)
≥ 0 for all t ∈ [a, tα].Moreover, from

(5), it follows that x(a) ∈ X. Thus, (tα, xα, Vα) ∈
RE(a,X). The proof for Φ∗ ⊂ Φ−

w is in the same way.
The proof is completed.
Now we obtain outer estimates of RE(a,X). Let

Φ∗ be an arbitrary subset of Φs. We denote by
BE[Φ∗](a,X) the set

⋂
ϕ∈Φ∗

(t, x, V ) ∈ T × Rn × R+

∣∣∣ ∃xa ∈ X :
ϕ(t, x, V )
≥ ϕ(a, xa, 0)

 .

Then the following statement is rather evident.
Theorem 3. The following inclusion holds

RE(a,X) ⊆ BE[Φ∗](a,X).

The proof immediately follows from the strong in-
crease of Lyapunov type functions from Φ∗.
Thus the sets AE[Φ∗](a,X) and BE[Φ∗](a,X) give

inner and outer estimates of RE(a,X). The inner and
outer estimates of the extended reachable set at the
time t > a may be obtained as the cross-sections of
AE[Φ∗](a,X) and BE[Φ∗](a,X) at t, respectively.

5 Conclusion
In conclusion, let us note other applications of the

Lyapunov type functions for impulsive optimal con-
trol problems. In [Dykhta and Samsonyuk, 2011;
Dykhta, Samsonyuk, and Sorokin, 2010; Dykhta and
Samsonyuk, 2010; Samsonyuk, 2010] some families
of the strongly and weakly monotone Lyapunov type
functions are applied to necessary and sufficient global
optimality conditions corresponding to the approach of
the canonical optimality theory. The papers [Fraga and
Pereira, 2008; Pereira, Matos, and Silva, 2002; Motta
and Rampazzo, 1996] are devoted to the substantia-
tion of the dynamic programming principle for nonlin-
ear impulsive control problems whereas [Daryin and
Kurzhanski, 2008], for the linear ones.



Acknowledgements
The research is supported by SB–UrB RAS integra-

tion project 85.

References
Aubin, J.-P., Cellina, A. (1984). Differential Inclu-
sions. Springer-Verlag, Berlin.
Aubin, J.-P., Frankowska, H. (1990). Set-valued anal-
ysis. Boston-Basel-Berlin: Birkhauser.
Bardi, M., Capuzzo-Dolcetta, I. (1997). Optimal
Control and Viscosity Solutions of Hamilton–Jacobi–
Bellman Equations. Birkhauser, Boston.
Bacciotti, A., Rosier, L. (2005). Lyapunov func-
tions and stability in control theory. Springer-Verlage,
Berlin, Heidelberg.
Bressan, A., Rampazzo, F. (1988). On differential sys-
tems with vector-valued impulsive controls. Boll. Un.
Mat. Ital. B(7), 2, pp. 641–656.
Clarke, F., Ledyaev, Yu., Stern, R., and Wolenski,
P. (1998). Nonsmooth analysis and control theory. In
Graduate Texts in Mathematics, vol. 178. Springer-
Verlag, New York.
Code, W.J., Silva, G.N. (2010). Closed loop stability
of measure-driven impulsive control systems. J. Dyn.
Cont. Syst., 16, pp. 1–21.
Daryin, A.N., Kurzhanski, A.B. (2008). Dynamic pro-
gramming for impulse control. Ann. Reviews in Con-
trol, 32, pp. 213–227.
Dykhta, V.A. (2004). Lyapunov–Krotov inequality
and sufficient conditions in optimal control. J. Math.
Sci. 121, pp. 2156–2177.
Dykhta, V.A., Samsonyuk, O.N. (2003). Optimal Im-
pulsive Control with Applications. Fizmatlit, Moscow.
Dykhta, V.A., Samsonyuk, O.N. (2010). Hamilton–
Jacobi inequalities in control problems for impulsive
dynamical systems. In: Proceedings of the Steklov In-
stitute of Mathematics, 271, pp. 86–102.
Dykhta, V.A., Samsonyuk, O.N. (2011). Some appli-
cations of Hamilton-Jacobi inequalities for classical
and impulsive optimal control problems. European
Journal of Control, 17, pp. 1–15.
Dykhta, V.A., Samsonyuk, O.N., and Sorokin, S.P.
(2010). Weak invariance, estimates of integral fun-
nels, and necessary optimality conditions in dynam-
ical systems with unbounded and impulsive controls.
Vestnik of Buryat State University. Mathematics and
Informatics. (9), 35–47.
Fraga, S.L., Pereira, F.L. (2008). On the feedback
control of impulsive dynamic systems. In: Proc. 47th
IEEE Conf. on Decision and Control, 2008. pp. 2135–
2140.
Guseinov, Kh. G., Ushakov, V.N. (1990). Strongly
and weakly invariant sets with respect to a differen-
tial inclusion and their derivatives and applications in
control problems. Diff. Eqns., 26, pp. 1399–1405.
Krotov, V.F. (1996). Global Methods in Optimal Con-
trol Theory. Monographs and Textbooks in Pure and
Applied Mathematics, vol. 195. Marcel Dekker, New

York.
Milyutin, A.A., Osmolovskii, N.P. (1998). Calculus
of Variations and Optimal Control. American Mathe-
matical Society, Providence, Rhode Island.
Pereira, F.L., Matos, A.C., and Silva, G.N. (2002).
Hamilton-Jacobi conditions for an impulsive control
problem. In: Nonlinear Control Systems, Fevereiro,
pp. 1297–1302.
Miller, B.M. (1982). The optimality condition in the
control problem for a system described by a measure
differential equation. Automat. Remote Control, (6),
pp. 60–72.
Miller, B.M. (1996). The generalized solutions of
nonlinear optimization problems with impulse con-
trol. SIAM J. Control Optim., 34, pp. 1420–1440.
Miller, B.M., Rubinovich, E.Ya. (2003). Impulsive
controls in continuous and discrete-continuous sys-
tems. Kluwer Academic Publishers, New York.
Motta, M., Rampazzo, F. (1995). Space-time trajec-
tories of nonlinear systems driven by ordinary and
impulsive controls. Differential Integral Equations, 8,
pp. 269–288.
Motta, M., Rampazzo, F. (1996). Dynamic pro-
gramming for nonlinear systems driven by ordinary
and impulsive control. SIAM J. Control Optim., 34,
pp. 199–225.
Pereira, F.L., Silva, G.N. (2000). Necessary condi-
tions of optimality for vector-valued impulsive control
problems. Systems and Control Letters, 40, pp. 205–
215.
Pereira, F.L., Silva, G.N. (2002). Stability for im-
pulsive control systems. Dynamical Systems, 17,
pp. 421–434.
Pereira, F.L., Silva, G.N., and Oliveira, V. (2008). In-
variance for impulsive control systems. Automat. Re-
mote Control, 69, pp. 788–800.
Samsonyuk, O.N. (2010). Compound Lyapunov type
functions in control problems of impulsive dynamical
systems. In: Trudy Inst. Mat. Mekh. UrO RAN, Eka-
terinburg, 16, pp. 170–178.
Sesekin, A.N., Zavalishchin, S.T. (1997). Dynamic
Impulse Systems: Theory and Applications. Kluwer
Academic Publishers, Dordrecht.
Silva, G.N., Vinter, R.B. (1996). Measure differential
inclusions. J. of Mathematical Analysis and Applica-
tions, 202, pp. 727–746.
Subbotin, A.I. (1994) Generalized Solutions of First-
Order PDEs: The Dynamical Optimization Perspec-
tive. Birkhauser. Basel.
Vinter, R.B. (2000). Optimal Control. Birkhauser,
Boston-Basel-Berlin.
Wolenski, P.R., Zabic, S. (2007). A Sampling Method
and Approximation Results for Impulsive Systems.
SIAM J. Control Optim., 46, pp. 983–998.


