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Abstract
The anti-resonance phenomenon analogous to the Fano

resonance in the classical system of two oscillators with
nonlinearity is observed. The focus of the work is on the
effects of nonlinearity in the system. The explicit form
of the solution for the full nonlinear problem is obtained
for the arbitrary type of the nonlinearity and in a wide
range of the parameters. The results of the analytical
study show very good agreement with the data of the
direct numerical simulations. The peculiarities resulted
from the multiplicity of the solutions are discussed. The
paper was presented at PhysCon2024

Key words
Anti-resonance, Fano resonance, nonlinear oscillators,

destructive interference, stability of oscillation, complex
envelope variable approximation

1 Introduction
The vibrations appear in a wide range of natural

phenomena and technical processes. In the major-
ity of the processes they are the basis of the ob-
ject’s functionality. Therefore the interest to the study
of the vibrations does not decrease during decades.
Interaction of some object with periodic or aperi-
odic external field was the basis of the consider-
ation for many models and real systems[Neishtadt1
et al.(2013)Neishtadt1, Vasiliev and Artemyev]. Many
different approaches were developed for the anal-
ysis: concept of non-linear normal modes[Albu-
Schäffer and Della Santina(2020)], resonant manifold
approach[Perchikov and Gendelman(2024)], limiting

phase trajectory concept [Manevitch(2007); Manevitch
and Smirnov(2010); Kovaleva et al.(2019)Kovaleva,
Manevitch and Romeo] and the feedback control
algorithm based on speed-gradient approach[Usik
et al.(2024)Usik, Amelina and Fradkov]. As it is known,
the main characteristics of the vibrations are the ampli-
tude and the phase. The phase plays a crucial role in
the processes of the interactions of the vibrations. It
provides the existence of the interference phenomenon,
which can be a constructive process as well as a de-
structive one. The latter may lead to the quenching of
the oscillations. One of most famous effect, which re-
sults from the destructive interference in the quantum-
mechanical systems, is Fano resonance, which is specific
for the asymmetrical profile of the resonant amplitude-
frequency response. The problem of the asymmetric res-
onant profile appeared for the first time in the study on
the adsorption in the noble gases at the short wavelength
(ultraviolet) edge of the spectrum [Beutler(1935)]. Ugo
Fano, who was the postgraduate student by E.Fermi, ex-
plained this phenomenon by the resonant interaction of
the discrete state with the wide non-resonant spectrum
[Fano(1935)]. Later this problem was studied in the con-
text of the electron scattering on the He atoms. The orig-
inal work by U.Fano [Fano(1961)] became one of most
cited papers in Physics during the following decades.
The mechanism of the formation of the asymmetric res-
onant amplitude profile results from the destructive in-
terference of the wave functions coupled with the con-
tinuum with the wave function of the discrete leaky state
with a limited life-time. The processes of the destruc-
tive interference are of a very general character and have
been intensively used in the contemporary spectroscopic
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Figure 1. The system of two coupled particles in the potential wells
V1 and V2, the coupling is shown as the spring U . The external field
F acts on the left particle only.

investigations in the area of solid state physics and quan-
tum electronics [Kosevich(2008); Kim et al.(2005)Kim,
Lee, Kim and Ihm; M.F. et al.(2017)M.F., Rybin, Pod-
dubny and Kivshar; Wang et al.(2016)Wang, Huang, Yao
and Xu; Xu et al.(2018)Xu, Zhao, Chen and et al; Savin
and Kivshar(2017)].

This type of resonance can be observed in the pho-
tonic structures of the microresonators associated with
the waveguide. The system can be illustrated by the pho-
tonic crystals with partially reflective elements(defects).
In the processes of collision and scattering of two parti-
cles, it is also possible to observe Fano resonances aris-
ing from the interference of unbounded states of par-
ticles (continuum) and quasi-bounded states. The re-
view of the problems and the advances in the field may
be found in the papers by Miroshnichenko and Kivshar
[Miroshnichenko et al.(2010)Miroshnichenko, Flach and
Kivshar; Kivshar(2018)].

The process of the destructive interference in the clas-
sic systems is called the anti-resonance. There is a num-
ber of papers, where the analogy between the quantum-
mechanics and classical problems is discussed [Joe
et al.(2006)Joe, Satanin and Kim; Riffe(2011); Lebe-
dev and Misochko(2022)]. It was shown that a simplest
classical model that demonstrates the asymmetric reso-
nant profile is the system of two coupled oscillators with
close eigenfrequencies, one of them subject to external
harmonic forcing. In spite of the fact that the analogy
is not complete, the main peculiarities are very close.
The main differences between the quantum-mechanical
and classical systems has been discussed by Lebedev and
Misochko [Lebedev and Misochko(2022)]. The authors
pointed out the non-conservative character of the classi-
cal systems and the principal linearity in the quantum-
mechanical formulation of the problem. Indeed, the res-
onance phenomenon is specified by a significant growth
of the amplitude of oscillations in the vicinity of the
some specific frequency of the external forcing. This fact
can lead to a significant rise of the role of non-linear ef-
fects. In such a case one should consider the amplitude-
dependent eigenfrequency of the oscillator for the accu-
rate description of the resonance.

The effect of the nonlinearity on the Fano resonance
has been considered in [Kroner et al.(2008)Kroner, Gov-
orov, Remi and et al.; Miroshnichenko(2009)], while
the destructive interference of the wave in the one-

dimensional chain with the nonlinear defect has been
studied by Koroleva and Kosevich [Koroleva(Kikot) and
Kosevich(2023)]. However, the closed equation for non-
linear system with a general type of the nonlinearity was
not obtained yet. In our previous work the nonlinear sys-
tem similar to the one considered in paper by Joe [Joe
et al.(2006)Joe, Satanin and Kim], but comprising one
nonlinear oscillator has been considered. The approx-
imation used in the work allowed to obtain the tran-
scendental equation for the amplitudes and phases of
oscillator. The good agreement between the analytical
results ans numerical simulation data has been demon-
strated. It was shown that even the presence of a weak
nonlinearity of one oscillator changes the behaviour of
the system significantly. The algorithm for the estima-
tion of the amplitude change when the jump between the
different branches of the nonlinear amplitude-frequency
characteristic occurs was been developed. Moreover, it
was shown that there are some areas on the frequency-
amplitude plane,where the motion of the oscillator be-
comes unstable and the evolution is analogous to a beat-
ing process.

The present paper presents the development of the pre-
vious work [Smirnov(2022)]. It contains the study of
the system with non-linear coupling between oscillators
and the systems with two nonlinear oscillators of a gen-
eral type of nonlinearity. It turns out that in the con-
trast with the previous considerations the nonlinear cou-
pling affects the high-frequency resonant response only,
while the low-frequency response looks like the linear
analogue. The frequency when the switch between dif-
ferent branches of the amplitude-frequency curves oc-
curs can be determined in the framework of the Limit-
ing Phase Trajectory concept [Manevitch(2007)]. The
system with double nonlinearity (for the forced and the
driven oscillators) is considered for soft as well as hard
types of nonlinearity. We show that the most interest-
ing situation arises when the types of the nonlinearity
for two oscillators are different. In such a case we can
observe the double jumps between different branches of
two different solutions for the amplitudes of oscillators.
The paper is organized as follows. Section 2 presents the
model under consideration. Section 3 contains the anal-
ysis of the resonance of two linear oscillators with the
nonlinear coupling. Section 4 is devoted to the study of
the double nonlinear system, i.e. the system of two non-
linear oscillators with linear coupling. We discuss the
results and the possible developments of the problem in
Conclusions section.

2 The Model
We consider the system of two coupled oscillators

shown in Fig. 1 . In the paper we will assume the differ-
ent types of the potential wells V1 and V2, and coupling
U . For the clarity Fig. 1 shows the potential well of the
soft type (V1) and the hard type (V2). We would like to
consider a general form of the potential well, however,
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for the numerical realization of nonlinear oscillators we
will use the potential V (z) ∼ 1− cos z for the soft type
of nonlinearity and V (z) ∼ cosh z − 1 for the hard one.
We assume that the oscillators have the unit masses and
potential functions Vj are characterized by parameters
Ωj , which are proportional to the linear rigidity. The
only requirement for our analysis is that the values Ω1

and Ω2 should be close enough and the coupling param-
eter β is essentially small. The external harmonic excita-
tion acts on the left particle only. A small damping with
intensity ν acts at least on the one of the oscillator.

The Hamiltonian of the system may be written in the
form

H =
∑
j=1,2

(
1

2
ż2j +Ω2

j Vj (zj) +
β

2
U (zj − z3−j)

)
,(1)

where zj is the displacement of the j-th particle from its
equilibrium position.

3 Two linear oscillators with nonlinear coupling
In this section we assume that the potentials Vj are of

the harmonic type:

Vj =
1

2
z2j , (2)

while the coupling is realized by a nonlinear spring.
In such a case the equations of motion for the forced

oscillations can be written as follows

z̈j +Ω2
jzj + β U ′(zj − z3−j) + νżj = F (t) δj,1;

F (t) = f cosωt; j = 1, 2. (3)

Here δj,i is the Kronecker delta, and ν is the coefficient
of the viscous damping. The dot over the symbol denotes
the derivative with respect to time t, while the prime in
the function U means the derivative with respect to the
argument.

Due to the linearity of the oscillators in the eq. (3)
we can make variables transformation, and consider the
evolution of the center of masses and the relative dis-
placements:

v =
1√
2
(z1 + z2) , w =

1√
2
(z1 − z2) . (4)

In the new variables the system (3) looks as follows

v̈ +Ω2
sv +Ω2

dw + νv̇ =
f cos(tω)√

2
; (5)

ẅ +Ω2
sw +Ω2

dv +
√
2βU ′

(√
2w
)
+ νẇ =

f cos(tω)√
2

,

where

Ω2
s =

1

2

(
Ω2

1 +Ω2
2

)
Ω2

d =
1

2

(
Ω2

1 − Ω2
2

)
. (6)

Equations (5) can be analysed in the frame-
work of the complex envelope variable approximation

(CEVA)[Smirnov and Manevitch(2020)]. We introduce
the complex variables:

Ψ =
1√
2

(√
ω v +

i√
ω
v̇

)
, (7)

Φ =
1√
2

(√
ω w +

i√
ω
ẇ

)
where ω is the frequency of the external force and i2 =
−1. Assuming Ψ = ψe−iωt and Φ = ϕe−iωt we
can perform the averaging of the equations (5) over the
the period 2π/ω (see Appendix A and [Smirnov and
Manevitch(2020)] for details). As the result we get the
stationary equations for the complex amplitudes ψ and
ϕ.

ω2 − Ω2
s

2ω
ψ − Ω2

d

2ω
ϕ+

iν

2
ψ = − f

4
√
ω

(8)

ω2 − Ω2
s − Ω̃2

c

2ω
ϕ− Ω2

d

2ω
ψ +

iν

2
ϕ = − f

4
√
ω
,

where

Ω̃2
c =

∞∑
k=0

ak

(
2

ω

)k

|ϕ|2k. (9)

The symbol ∼ shows that Ω̃c shifts with the increase of
amplitude value in contrast to frequencies Ωs and Ωd. It
is necessary to give some comments to the equation (9).
First of all, the sum on the right hand side of the equation
(9) appears from the expansion of function U ′ into Tay-
lor series on the powers of combination of ϕ + ϕ∗. The
coefficients ak depend on the exact form of function U
and the series may be calculated to any desired degree of
precision. One can see that the frequency Ω̃c depends on
the modulus of function ϕ and actual frequency ω. How-
ever, as it follows from definition (7), the next relation is
valid:

|ϕ| =
√
ω

2
A, (10)

where A is the amplitude of the relative motion. Con-
sequently, equation (9) represents the expansion of the
frequency Ω̃c into series on powers of amplitude A and
does not depend on the frequency ω. This circumstance
gives us a very powerful tool for the analysis of the non-
linear systems.

Equations (8) have the evident solution

ψ = −
√
ω

2

(
f
(
Ω̃2

c − Ω2
d − iνω +Ω2

s − ω2
))

× (11)(
Ω4

d −
(
Ω2

s − ω(ω + iν)
) (

Ω̃2
c − iνω +Ω2

s − ω2
))−1

ϕ =

√
ω

2

(
f
(
Ω2

d + iνω − Ω2
s + ω2

))
×(

Ω4
d −

(
Ω2

s − ω(ω + iν)
) (

Ω̃2
c − iνω +Ω2

s − ω2
))−1

.
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(a)

(b)

Figure 2. Resonant amplitude-frequency response for the systems
with hard (a) and soft (b) nonlinear coupling. Solid lines show the
results of the analytical calculations and dots represent the numerical
simulation data. Linear system is depicted by dashed lines for refer-
ence. The amplitudes of the first particles (excited) are shown in blue,
while the red color depicts the amplitude of the second (driven) par-
ticle Parameters: Ω1 = 1.0,Ω2 = 1.01, β = 0.02, ν =
0.001, f = 0.003.

The modulus of the second of equations (11) gives us
the transcendental equation for the amplitude of the rel-
ative motion. On the other hand, we can reverse equa-
tions (4) and obtain the expression for the amplitudes of
the first and second particles. Let us now discuss the
numerical results for the different types of the nonlin-
earities. Only necessary comment for the understand-
ing of the future results is necessary. As it was shown
earlier [Manevitch et al.(2016)Manevitch, Smirnov and
Romeo], the eigenfrequency of the pendulum (V (z) ∼
1−cos z) may be obtained in the framework of the CEVA
in the closed form as follows (see Appendix A for de-
tails):

Ω(A) =

√
2

A
J1(A), (12)

where J1 is Bessel function of the first order. If we want

to use the hard nonlinear potential (V (z) ∼ cosh z), it
can be shown that the eigenfrequency is represented as
follows:

Ω(A) =

√
2

A
I1(A), (13)

where I1 is the modified Bessel function of the first or-
der. Further, we will use expressions (12) and (13) in the
analytical calculations.

The results of the analytical calculations in the compar-
ison with the data of the numerical simulations are rep-
resented in fig. 2(a) for the hard nonlinearity and in 2(b)
for the soft one. The resonance‘s profiles for the linear
system are shown for reference by the dashed lines. The
main peculiarity of resonant curves for the nonlinear sys-
tem consists in the fact that the low-frequency resonant
profile does not distinct from the linear one, while the
high-frequency peak depends on the nonlinearity essen-
tially. One should note that the presence of only one non-
linear oscillator change the resonant profiles both for the
low- and high-frequency peaks [Smirnov(2022)]. The
positions of the resonances are determined by the poles
of equations (11):

ω1 =

√
Ω2

1 +Ω2
2 +Ω2

c −
√
Ω4

c + (Ω2
1 − Ω2

2)
2

√
2

(14)

ω2 =

√
Ω2

1 +Ω2
2 +Ω2

c +
√
Ω4

c + (Ω2
1 − Ω2

2)
2

√
2

.

We underline that in the resonant curve of the excited
oscillator one of two resonances has the steep asymmet-
ric profile in the vicinity of frequency ω2 (see Fig. 2).
The first of equations (11) shows that some frequency ω0

with zero oscillation amplitude of the forced oscillator
exists, if the damping of the driven oscillator is absent.

ω0 =
√

Ω2
2 +Ω2

c/2 (15)

The reason of the profile’s asymmetry is that, due
to changing the phase difference of the oscillators, the
driven oscillator effectively quenches the motion of the
forced one.

The phase shift between excited and driven oscillators
is determined as follows:

δθ = tan−1

(
ω ν

ω2 − Ω2
2 − Ω2

c/2

)
. (16)

Looking the at ’nonlinear’ part of the resonant curves
we can see the the data of the numerical simulations have
some discontinues, which correspond to the transitions
between stable branches of the solution (11). The fre-
quency of the transition depends on the nonlinearity and
the external force amplitude. In order to find the jump‘s
frequency we should return to equations (8). Due to the



CYBERNETICS AND PHYSICS, VOL. 13, NO. 3, 2024 215

(a)

(b)

(c)

Figure 3. The phase portraits of the equation (18) at the different
frequency of the external force. (a) ω = 1.025, (b) ω = 1.026,
(c)ω = 1.027.Parameters areΩ1 = 1,Ω2 = 1.005,β = 0.02,
f = 0.003.

linearity of the first one, we can exclude the variable ψ
and write the second equation in the form:(

− Ω̃2
c

2ω
+

((
ω2 − Ω2

s

)
2 − Ω4

d

)
2 (ω3 − ωΩ2

s)

)
ϕ (17)

+
f
(
Ω2

d +Ω2
s − ω2

)
4
√
ω (ω2 − Ω2

s)
= 0

This equation is associated with the ’slow’ (averaged)
energy (see Appendix B for detail)

E =
(ϕ∗ + ϕ)

(
f
(
Ω2

d +Ω2
s − ω2

))
4
√
ω (ω2 − Ω2

s)
+ (18)((

ω2 − Ω2
s

)
2 − Ω4

d

)
2 (ω3 − ωΩ2

s)
|ϕ|2 − βŨ (|ϕ|)

2ω

The fixed points of the energy (18) correspond to the
statonary oscillations of the system. Let us define ϕ =
aeiθ. Considering the phase portrait of the energy (18)
on the plane {θ, a} at various frequencies ω, we can con-
trol the transition between different types of the oscilla-
tions.

Let us discuss the phase portraits of the system (18)
for the different frequency values of the external forcing.
They are 2π periodic as they depend on the phase shift
θ. For the lower values of frequency ω there are two sta-
tionary points with phases π and −π (see Fig. 3(a)). The
limiting phase trajectory (the LPT is the trajectory corre-
sponding to maximum energy exchange with the forcing
from zero initial conditions) demonstrated by red line,
increases with the frequency growth. The new unsta-
ble stationary point, which is crossed by the separatrix,
appears at some frequency ω∗. While the frequency in-
creases the separatrix’s loop grows and it reaches the axis
a = 0. At the moment the separatrix coincides with the
LPT, and the new branch of LPT solution appears (Fig.
3(b)). The separatrix undergoes the transformation be-
tween homoclinic and heteroclinic forms. The ampli-
tudes of the oscillations jump from the high value to the
lower one. The LPT, which starts from zero initial con-
ditions, sustains the bifurcation between large and small
forms. It corresponds to the low amplitude response of
the system (Fig. 3(c)).

4 Double nonlinear system
The system comprising one nonlinear oscillator has

been considered in [Smirnov(2022)] with detailed anal-
ysis of the resonant behaviour and its stability. In the
section, we study two nonlinear oscillators that are cou-
pled by the linear spring. For convenience, we write the
hamiltonian (1) in the form:

H =
∑
j=1,2

(
1

2
ż2j +Ω2

j Vj (zj) +
β

2
zjz3−j

)
, (19)

Introducing the complex variables Ψ1 and Ψ2 and fol-
lowing the complexification procedure discussed above
(see Appendix A for detail), we get the stationary equa-
tions for the complex amplitudes ψ1 and ψ2:
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ω

2
ψj −

Ω̃2
j

2ω
ψj −

β

2ω
ψ3−j + (20)

1

2
iνψj = − f

2
√
2ω
δj,1,

where values Ω̃j are associated with the respective oscil-
lator and they depend on the oscillation amplitude simi-
larly equation (9).

We have obtained the equations for the non-linear sys-
tem in the form, that formally coincides with the equa-
tions for the linear one. Therefore, we can write the so-
lution for equations (20) immediately:

ψ1 =

√
ω

2

(
Ω̃2

2 − ω (ω + iν)
)
f

D
(21)

ψ2 = −
√
ω

2

βf

D
,

D =
((
iνω + ω2 − Ω̃2

1

)(
iνω + ω2 − Ω̃2

2

)
− β2

)
.

Formally, the solution obtained coincides with its linear
analogue. Therefore, the main peculiarities of the reso-
nant curves in the nonlinear system look alike the linear
ones. Zero-amplitude frequency in the absence of the
damping is

ω0 = Ω̃2,

the oscillators phase difference can written as follows

θ = tan−1

(
ν ω

ω2 − Ω̃2
2

)
,

and it undergoes the discontinuity with the value jump
of magnitude π just as it appears in the linear analogue
(16). One should note that the amplitude of the driven
oscillator at the zero-amplitude frequency can be deter-
mined as

A2 =

√
2

ω

f

β
.

Therefore, we can write

ω0 = Ω̃2

(
f

β

)
Equations (21) are transcendental and they should be
solved with use of a numerical procedure. Generally
speaking, finding solution for such a system is not a sim-
ple task, particularly, taking into account the existence
of the multiple branches of the nonlinear frequencies Ω̃j .
Nevertheless, due to the relative simplicity of equations
(21), they may be reduced to one equation with respect
to amplitude of the first oscillator only. In such a case the

respective numerical procedure is facilitated essentially
(see Appendix C).

Fig. 4 shows the amplitude-frequency relations for
the system, with two nonlinear oscillators, both of the
’soft’ type (V (z) ∼ 1 − cos z). The amplitudes of the
excited and driven oscillators are depicted in blue and
red, respectively. The influence of the nonlinearity is
significant for both resonant peaks. Therefore, the ef-
fect of the bistability [Kivshar(2018); Miroshnichenko
et al.(2010)Miroshnichenko, Flach and Kivshar] appears
in ’low-’ as well as in the ’high’-frequency domains. The
bistability is caused by the presence of several branches
of the solution for equation (21). In practice, if the nu-
merical simulation starts with zero initial conditions, the
system chooses only one of three possible stationary am-
plitudes. It is seen that the numerical solution demon-
strates sudden hopping from one stable branch of the so-
lution to another when the frequency grows.

Fig. 5 shows the resonant curves for the the system
with the nonlinearity of the hard type: V (z) ∼ cosh z.
There are two pairs of the solutions of the amplitude-
frequency response. The figure demonstrates the fact,
that there are two resonant manifolds; each of them gives
a stationary solution for the forced system. However, the
solutions are quite close and can be barely resolved in the
analysis of the numerical solutions. Only for the high-
frequency response the solution with lower amplitude is
realized numerically. We see the significant effect of the
nonlinearity on the amplitude of the forced oscillator.

In the Fig. 6 we present the amplitude-frequency re-
sponse for the case when one of the oscillators is of the
’soft’ type while the second one is of the ’hard’ type.
We again demonstrate the solutions belonging to two
different resonant manifolds, which correspond to the
two pairs of the solutions. The main intriguing feature
of the solutions is that during the numerical verification
of the results we observe not only hopping between the
branches of the same bistable solutions. We can also
see the switch between the solutions belonging to differ-
ent resonant manifolds. This fact makes almost impossi-
ble to represent the evolution of the system on the phase
plane representing the resonant manifold, as it was done
in the previous section. However, the form of the numer-
ical solutions response and a very good agreement with
the results of the asymptotic analysis shows that the two
pairs of the solutions are not the artefact of the analysis
procedure, rather then new phenomenon observed in the
phase space.

5 Conclusion
In this work we continued the consideration of the clas-

sical and very simple analogues to the Fano resonance on
the example of two coupled oscillators with the nonlin-
earity of the ’soft’ as well as ’hard’ types. The oscilla-
tor excited by the external forcing can be interpreted as
associated with the continuum state of the quantum me-
chanical system, while the driven oscillator can play the
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Figure 6. The same as in Fig.4 for the system with the hard and soft
nonlinearity (V1(z) ∼ cosh z;V2(z) ∼ 1 − cos z). Insert
shows the jumps between branches of different roots (left arrow) and
the same ones (right arrow). See text for explanation. Parameters:
Ω1 = 1.0, Ω2 = 1.0247, β = 0.05, ν1 = 0.001, ν2 =
0.001, f = 0.005.

Figure 4. Anti-resonance in the system with the soft nonlinearity of
the oscillators (V (z) ∼ 1− cos z). The amplitudes of the excited
and driven oscillators calculated from the equation (21) are depicted
in blue and red, respectively. The blue and red circles show the data
of the direct numerical simulations for the excited and driven oscilla-
tors, respectively. Dot-dashed lines show the reference linear system.
Parameters: Ω1 = 1.0, Ω2 = 1.0247, β = 0.05, ν1 =
0.001, ν2 = 0.001, f = 0.01.

Figure 5. The same as in Fig.4 for the system with the hard non-
linearity (V (z) ∼ cosh z). Parameters: Ω1 = 1.0, Ω2 =
1.0247, β = 0.05, ν1 = 0.001, ν2 = 0.001, f = 0.005.

role of the leaky discrete state. With help of the well de-
veloped procedure of the complex envelope variable ap-
proximation we obtain the closed expressions for the os-
cillators’ amplitudes without any additional limitations
on the value of the nonlinearity. The representation of
the solutions is not explicit as the equations themselves
are the transcendental equations for the amplitudes with
the nonlinearity, which represents the natural oscillation
frequency of oscillators. It is convenient that the form
of the equations is the same for the linear and nonlinear
systems. This finding has the intimate physical meaning:
the resonant curve has a universal shape, if the resonant
frequency is considered as the frequency of natural os-
cillations of a given amplitude.

The system of two linear oscillators with nonlin-
ear coupling demonstrates several branches of the
amplitude-frequency relation, which results in the tran-
sition between different stationary solutions at some val-
ues of the frequency of the external force. We reveal that
the mentioned above transitions can be associated with
the bifurcations of the separatrix passing through the un-
stable stationary state. The separatrix transforms from
homoclinic to heteroclinic forms. Simultaneously the
limiting phase trajectory, which starts from zero initial
conditions, sustains the bifurcation between large and
small forms. In the numerical solutions of the system
of two linear oscillators we observe two resonant peaks
with switching between the different branches of the res-
onant response. The bistability of the stationary states
exists in the vicinity of the resonant frequencies even for
the systems, where only one of the oscillators is nonlin-
ear [Smirnov(2022)]. However, in our work we demon-
strate the hopping between the different branches of the
solution in the case of the linear oscillators and nonlinear
coupling.

The case when both of the oscillators are nonlinear
while the coupling is linear, yields even more interesting
phenomenon. In the numerical analysis we see again the
two resonant frequency areas. However, there are two
resonant manifolds each of them having stationary solu-
tion for the amplitude-frequency response. The numer-
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ical modelling of the initial system demonstrates jumps
between the branches of the same bistable solution as
well as switches between the different solutions belong-
ing to different resonant manifolds. Our analysis re-
veals the transitions explaining the unusual form of the
amplitude-frequency curves.

We have not discussed the stability problem because
the procedure does not differ from that discussed in the
previous work and it may be performed necessarily.

Appendix
A. Complexification of the equations of motion

The equations of motions for the system with hamil-
toian (19) are read

z̈j +Ω2
jV

′
j (zj) + βz3−j + νżj = f cosωt δj,1

Introducing the complex variables Ψj (see equations
(7)), we can write

i
dΨj

dt
− ω

2

(
Ψj −Ψ∗

j

)
−

Ω2
j√
2ω
V ′
(

1√
2ω

(
Ψj +Ψ∗

j

))
+i
ν

2

(
Ψj −Ψ∗

j

)
− β

(
Ψ3−j +Ψ∗

3−j

)
=
f
(
e−iωt + eiωt

)
2
√
2ω

δj,1

We assume V ′(z) = sin z and expand it into series on
the order of the argument:

V ′
j =

∞∑
k=0

2k+1∑
n=0

(−1)k

(2k + 1− n)!n!

(
1√
2ω

)2k+1

Ψ2k+1−nΨ∗n

Choosing Ψj = ψje
−ωt, where ψj does not depend on

time t, we can multiply the equation on factor eiωt and
perform the averaging over the period T = 2π/ω. After
the averaging we get

V ′ =

∞∑
k=0

(−1)k

(k + 1)!k!

(
1√
2ω

)2k+1

ψk+1ψ∗k =

J1

(
2

ω
|ψj |

)
ψj

|ψj |

where J1 is the Bessel function of the first order. Taking
into account relation (17) and choosing

Ω̃2
j = Ω2

j

2

A
J1(A)

we obtaine equations (20).

B. Average slow time hamiltonian
In order to analys the phase portrait of the nonlinear

system, it is convenient to formulate the energy function

in terms of complex envelopes ψj . Let us to define the
complex variables and substitute them into hamiltonian
(19). Expanding the different terms into series, we ob-
taine

H =
∑
j=1,2

(−ω
2

(
Ψj −Ψ∗

j

)2
+
β

4ω

(
Ψj +Ψ∗

j

) (
Ψ3−j +Ψ∗

3−j

)
+

Ω2
j

∞∑
k=0

a
(j)
k

(
1√
2ω

)k k∑
n=0

Ck
nΨ

k−n
j Ψ∗n

j )

where a(j)k are the expansion‘s coefficients for function
Vj and Ck

n are the polinomial coefficients. In the case of
the forced oscillations we need in the work of the exter-
nal force:

W = f cosωtz1 = f

(
e−iωt + eiωt

)
2
√
2ω

(Ψ1 +Ψ∗
1)

Averaging the hamiltonian over the period T =
2π/ω and substracting the energy of the carrier
ω
(
|ψ1|2 + |ψ2|2

)
, we get the ”slow” hamiltonian in

the terms of the complex envelopes [Smirnov and
Manevitch(2020)].

C. Reduction of the system transcendental equations
To reduce the complexity of equations (21) for the nu-

merical search of roots, one needs to consider the os-
cillations’ amplitudes using relation (10). Calculating
the module of equations (21), we get two real equations,
which can be solved with respect to amplitude A2 and
nonlinear frequency Ω̃2.

A2 = A2

(
A1, Ω̃1(A1)

)
Ω̃2 = Ω̃2

(
A1, Ω̃1(A1)

)
It is important that the solution obtained has two roots.
Next step is to exclude the amplitude A2 from the equa-
tion for the amplitudeA1. Using the explicit form of fre-
quency Ω̃2 in the expression for amplitudeA1, we should
substitute amplitude A2

(
A1, Ω̃1(A1)

)
into it. Thus we

obtain the closed expression, which contains the ampli-
tude A1 only. The results of such numerical solutions
are represented in Figs 4 - 6.
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