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Abstract: Recursive non-linear Bayesian estimation is addressed using equivalence
approach as motivating framework. Its specific form – tailored to a model class
covering non-normal ARX (auto-regression with exogenous variables) models,
models with discrete outputs and continuous-valued regression vectors and their
dynamic mixtures – is presented. The resulting algorithms provide efficient
solutions of difficult and practically important estimation problems.
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1. INTRODUCTION

Data processing has many aims ranging from noise
suppression (Anderson and Moore 1979) up to
design of models (Kashyap and Rao 1976), serv-
ing to a subsequent decision making. Predomi-
nantly, their efficient reaching depends on esti-
mation (Ljung 1987) of explicitly or implicitly
specified models parameterized by an unknown
finite-dimensional parameter Θ ∈ Θ∗. Adopted
Bayesian paradigm (Bernardo and Smith 1997)
treats unknown parameters as random. It mod-
ifies the prior probability density function (pdf)
f (Θ), expressing prior knowledge about Θ, to
the posterior pdf f (Θ|D) by the observed data
D. The modification is determined by the Bayes
rule f (Θ|D) ∝ f (D|Θ) f (Θ). The proportional-
ity symbol ∝ means that right-hand side of this
expression has to be normalized to unit integral
in order to get equality. The pdf f (D|Θ) of data
D, viewed as a function of Θ in its condition, is
known as likelihood function if the measured data
D are inserted in it. The symbol f refers to pdfs
distinguished by arguments’ identifiers.

As a rule, complexity of the likelihood function
increases with the extent of data D. Consequently,
the pdf f (Θ|D) can be treated neither analyt-
ically nor numerically. Restriction to parametric
models admitting the finite-dimensional sufficient
statistic V = V(D) (Koopman 1936) is the com-
mon remedy used. For such models, f (Θ|D) =
f (Θ|V(D)) , ∀Θ ∈ Θ∗. The statistic V(D) be-
longs to a set V∗ whose dimension is constant and
finite even when the extent of data grows without
limits. Under rather general conditions, the class
of models with finite-dimensional sufficient statis-
tic coincides with the exponential family (EF),
(Barndorff-Nielsen 1978),

f (D|Θ) = exp 〈V(D), C(Θ)〉 . (1)

The sufficient statistic V(D) is related to the
unknown quantity Θ through the scalar product
〈·, ·〉 with a fixed function C(Θ) of a compatible
dimension. In the addressed recursive processing,
the data D consist of a sequence dt ≡ (d1, . . . , dt)
of data records dt obtained at discrete time in-
stances labelled by t ∈ t∗ ≡ {1, 2, . . .}. In recursive
setting, evaluation of the statistic V must not
require re-processing of whole data sequence. This



restricts the EF further on. With Vt = V(dt), the
chain rule for pdfs (Peterka 1981) gives

exp 〈Vt, C(Θ)〉= f
(
dt

∣∣dt−1,Θ
)
f

(
dt−1

∣∣Θ)
(2)

= f
(
dt

∣∣dt−1,Θ
)
exp 〈Vt−1, C(Θ)〉 .

Identity (2) implies that recursive evaluation of
the likelihood is only possible if Vt − Vt−1 =
B(Ψt), where B(·) is a function of a fixed di-
mensional data vector Ψt that can be updated
recursively using a known function Ψ̃(·)

Ψt = Ψ̃(Ψt−1, dt). (3)

The parametric models

f
(
dt

∣∣dt−1,Θ
)

= exp 〈B(Ψt), C(Θ)〉 (4)

together with the function Ψ̃(·) define the dy-
namic exponential family whose only non-trivial
members are generalized (Peterka 1981) normal
autoregressive models with exogenous variables
(ARX) and controlled Markov chains. Narrowness
of this class calls for an approximate recursive
estimation applicable to more general parametric
models f

(
dt

∣∣dt−1, Θ
) ≡ M(Ψt, Θ) with a known

updating (3) of Ψt but with the model M(Ψt,Θ)
out of the EF. Naturally, a range of attempts has
been made in this respect. In our opinion, the
equivalence approach (Kulhavý 1996) is still the
most advanced one and motivated this paper.

Here, an approximate posterior pdf in the class
of pdfs conjugated to the EF is constructed. The
approximate pdf is designed so that it is asymp-
totically close to an equivalence class containing
the exact posterior pdf, see Section 2. The algo-
rithm is applicable to non-normal ARX models,
models relating discrete values to continuous ones
and mixtures with components whose factors and
dynamic weights belong to the EF, see Section 3.

2. RECURSIVELY FEASIBLE
REPRESENTATIONS AND EF

Always limited computer resources call for a re-
duced representation of the evolving posterior
pdfs. It is a peculiar task as the posterior pdfs
concentrate quickly on a small support at a pri-
ori unknown position in Θ∗. Thus, for instance,
interpolation on a fine grid that does not miss
the final position becomes soon computationally
prohibitive. Hence, more sophisticated approxi-
mations are needed. The approach proposed here
is motivated by Proposition 2.1 presented be-
low. It characterizes the recursively updated non-
sufficient statistics that are compatible with the
recursive evaluation of the posterior pdf.

Proposition 2.1. (Equivalence-preserving V). Let
the posterior pdf f

(
Θ

∣∣dt−1
) ∈ f∗

(
Θ

∣∣dt−1
) ≡ a

set of pdfs with a common, time, data and param-
eter invariant support – the set of arguments on
which f

(
Θ

∣∣dt−1
)

> 0. Let the mapping

Vt−1 : f∗(Θ|dt−1) → V∗t−1 (5)

assign to f(Θ|dt−1) a finite-dimensional statistic
Vt−1 ≡ V(dt−1), not necessarily sufficient. Then,
Vt−1 can be exactly recursively updated using the
value Vt−1 and model f

(
dt

∣∣dt−1,Θ
)

= M(Ψt, Θ),
with Ψt (3), iff Vt is time-invariant linear mapping
V ≡ Vt of logarithms of the posterior pdfs. V has
to map Θ-independent functions to zero.

Proof: Proof of necessity is in (Kulhavý 1990a,
Kulhavý 1990b). To prove sufficiency, it suffices to
apply V to the logarithmic version of the Bayes rule
and use both time-invariance and linearity of V. The
Θ-independent normalizing term ln

(
f

(
dt

∣∣dt−1
))

is
mapped to zero and Vt = V [ln (M(Ψt, Θ))]+Vt−1,

V0 = V(ln(f (Θ))) ≡ V(ln(prior pdf)).

Choice of the mappings Vt (5) that hopefully
converge to a mapping V from Proposition 2.1 is
addressed for a class of models enriching the EF

f
(
dt

∣∣dt−1,Θ
)≡M(Ψt, Θ)≡M (B(Ψt), C(Θ)) (6)

with M(B(Ψt), C(Θ)) being smooth in C(Θ).

Example 2.1. (Examples of models in (6)). In all
cases, except the last one, one-dimensional dt is
considered. It does not restrict generality of the
problem formulation as in the multivariate case
the chain rule for pdfs implies that f (dt| •) =∏d`

i=1 f
(
dt;i

∣∣dt;i+1, . . . , dt;d` , •). Hereafter, x` de-
notes below length of the vector x.

Normal regression model: It models
dt = θ′︸︷︷︸

regression
coefficients

× ψt︸︷︷︸
regression

vector

+ zero-mean noise︸ ︷︷ ︸
white normal

with variance r

with ′ being transposition. ln (M(B(Ψt), C(Θ)))
= −0.5

[
ln(2πr) + tr

(
ΨtΨ′t

[−1,θ′][−1,θ′]′

r

)]
. It be-

longs to the dynamic EF (4) and thus to the
class (6). It is given by Θ = (θ, r), Ψ′t = [dt, ψ

′
t],

C(Θ) = −0.5
[
ln(2πr), vec

(
[−1,θ′][−1,θ′]′

r

)]
and

B(Ψt) = [1, vec[ΨtΨ′t]] . (7)

The operation vec maps the symmetric matrix on
a vector so that 〈a, b〉 ≡ vec(a)′vec(b).

Cauchy regression model: It is given by

M(B(Ψt), C(Θ)) ∝ 1

r + (dt−θ′ψt)2

r

=
1

B′(Ψt)C(Θ)

Θ = (θ, r), scaling factor r > 0, for B(Ψt) see (7),

C(Θ) =
[
r, vec

(
[−1, θ′][−1, θ′]′

r

)]
. (8)

Regression with discrete outputs: It predicts
discrete data dt ∈ d∗ ≡ {

1, . . . , d`
}
. Their proba-



bilities are high if Gaussian-like regression, given
by the regression vector ψt, predicts well the value
dt ∈ d∗, i.e., M(B(Ψt), C(Θ))

=
r−0.5
dt

exp
{−0.5([−1, θ′dt

]Ψt;dt)
2/rdt

}
∑

d∈d∗ r−0.5
d exp {−0.5([−1, θ′d]Ψt;d)2/rd}

Θ ≡ [Θ1, . . . , Θd` ], Θ′d ≡ [rd, θ
′
d], Ψ′t;d ≡ [d, ψ′t],

B(Ψt;d)≡ [B1(Ψt;d), . . . , Bd`(Ψt;d)]

Bk(Ψt;d)≡ δkd

[
1, vec[Ψt;dΨ′t;d]

]
(9)

δkd =
{

1 if k = d
0 if k 6= d

, C(Θ) has entries

Cd(Θd)≡−0.5 [ln(rd), vec ([−1, θ′d]
′[−1, θ′d]/rd)] .

Fully dynamic mixture with factorized com-
ponents in the EF: It is parametric model
M(Ψt, Θ)

=
∑

c∈c∗
∏Ψ`

i=1 exp 〈Bic(Ψt;i), Cic(Θic)〉∑
c∈c∗

∏Ψ`

i=d`+1 exp 〈Bic(Ψt;i), Cic(Θic)〉
Ψt;i = [scalar, Ψt;i+1], Ψt;0 ≡ Ψt ≡ data vector

(Θ, B(Ψt), C(Θ)) ≡ {Θic, Bic(Ψt;i), Cic(Θic)}
i ∈ i∗ ≡ {1, . . . , Ψ`}, c ∈ c∗ ≡ a finite set. (10)

For the class (6) and the prior pdfs conjugated
to the EF, the posterior pdfs have the form
f (Θ|dt) = g (dt, C(Θ)). This leads to the choice
of approximate posterior pdfs conjugated to (1).

Let us consider models (6) and, for a reference
point 0Θ from Θ∗, define the mapping (5)

0ΘV [g(·, ·)] ≡ ∂ ln
(
g

(
dt, C

(
0Θ

)))

∂C( 0Θ)
≡ 0Vt. (11)

Proposition 2.2. (Mapping
0ΘV). Let us consider

the class (6) of models and conjugated pdfs
f (Θ|V) ∝ exp 〈V, C(Θ)〉 with almost surely lin-
early independent entries of C(Θ). The mapping
(11) acting on the posterior pdfs meets conditions
of Proposition 2.1 and defines equivalence classes
g∗0Vt

≡
{

g (dt, C (Θ)) :
0ΘV [g] = 0Vt

}
. Any class

contains at most one member conjugated to (1).

Proof: Meeting of conditions of Proposition 2.1 is
obvious. An application of

0ΘV to ln (exp 〈Vt, C (Θ)〉)
shows that only this conjugated pdf belongs to the
equivalence class g∗0Vt

. It is well defined pdf iff∫
exp 〈V, C (Θ)〉 dΘ < ∞.

Proposition 2.2 implies that
0ΘV determines

at most a single member in the EF whose
statistics 0Vt can be recursively updated while
preserving equivalence

0ΘV (exp 〈Vt, C(Θ)〉) =
0ΘV [f (Θ|dt)] on the class (6). The choice of the
reference point 0Θ determining

0ΘV (11) decides
whether the pdf exp

〈
0Vt, C(Θ)

〉
in the EF and

equivalent to the correct posterior pdf f (Θ|dt) is
close to f (Θ|dt) or not. The following proposition,
proved in (Kárný et al. 2005), guides its choice.
Within it, the support Θ∗ of the prior pdf f (Θ)
is assumed closed set.

Proposition 2.3. (Asymptotic of posterior pdfs).
(1) The correct posterior pdfs f (Θ|dt) converges
almost surely for any point Θ ∈ Θ∗ for which
f (Θ|dt) stay bounded while t →∞.
(2) Let pdfs f

(
dτ

∣∣dτ−1
)

be derived from the
joint pdf describing correctly the data generator.
For any fixed Θ ∈ Θ∗, let exist the finite con-

ditional expectations E

[
ln

(
f(dτ |dτ−1)
M(Ψτ ,Θ)

) ∣∣∣∣dτ−1

]

defined by f
(
dτ

∣∣dτ−1
)
. Then, the zero mean,

mutually uncorrelated, innovations ε(dτ−1, Θ) ≡
ln

(
f(dτ |dτ−1)
M(Ψτ ,Θ)

)
− E

[
ln

(
f(dτ |dτ−1)
M(Ψτ ,Θ)

) ∣∣∣∣dτ−1

]
are

well defined. If, for all Θ ∈ Θ∗ and all τ ∈ t∗,
these innovations have finite variances then, the
support of the posterior pdf f (Θ|dt) concentrates
(almost surely) on minimizers ∞Θ ∈ ∞Θ∗ of the
entropy rate H(d∞, Θ)

∞Θ∗ ≡ lim
t→∞

Arg inf
Θ∈Θ∗

H(dt−1, Θ) ≡ lim
t→∞

Arg inf
Θ∈Θ∗

1
t

t∑
τ=1

E

[
ln

(
f

(
dτ

∣∣dτ−1
)

M(Ψτ , Θ)

) ∣∣∣∣∣d
τ−1

]
.

Proposition 2.3 also implies that the posterior pdf
concentrates on a “small” set ∞Θ∗ of extreme
points ∞Θ ∈ ∞Θ∗. The points Θ for which
f (Θ|dt) are unbounded as t → ∞ belong to this

set. Thus,
∂ ln(f(∞Θ|dt))

∂Θ is expected to converge
to zero. This indicates the expected behavior of
the mapping

∞ΘV (11)

∂ ln (g (dt, C (∞Θ)))
∂C (∞Θ)︸ ︷︷ ︸

Vt

∂C (∞Θ)
∂Θ

→ 0. (12)

The property (12) applies only to the narrow set
∞Θ∗ enriched by (often empty) set of asymptotic
local extremes. Knowing the set ∞Θ∗ the pdf
in the EF equivalent to the correct posterior
pdf f (Θ|dt) could be constructed, whose support
contains the same asymptotic stationary points
as f (Θ|dt). This is a strong property, as – for
non-over-parametric models and sufficiently rich
σ algebra generated by data d∞ the set ∞Θ∗ is
singleton and no other stationary point exists.

Practically, reference points Θt ∈ Θ∗ approaching
∞Θ∗ have to be constructed. Let us denote Θt

maximizer of the approximate pdf exp 〈Vt, C(Θ)〉,
Vt ≈ ΘtV (ln (f (Θ|dt))). Ideally, Θt and Θt

should (almost) coincide. During recursive esti-
mation, they differ and Θt is a candidate for the
definition of the considered equivalence class. It



should be better than Θt, i.e., closer to ∞Θ∗. At
the same time, swapping from Θt to Θt gives up
the accumulated information and introduces an
error into learning. The error gradually diminishes
if the points Θt, Θt ≡ Θt−1 at which derivatives

∂
∂C(Θ) are taken converge to a constant parameter.
At present, this property has to be checked in each
particular case. The above exposition motivated:

Algorithm 1. (Nonlinear recursive estimation).
Initial phase
• Select the learnt model M(B(Ψt), C(Θ)).
• Set the learning time t = 0.
• Select the statistics Vt determining the prior

pdf exp 〈Vt, C(Θ)〉 in the EF for t = 0.
• Select Θt ∈ Arg maxΘ∈Θ∗ exp 〈Vt, C(Θ)〉, de-

termining ΘtV (signs ¯ are dropped).
Recursive phase
• Increase time t = t + 1 and collect Ψt.
• Evaluate the trial update of the statistics

Vt = Vt−1 +
∂M(B(Ψt), C(Θt−1))

∂C(Θt−1)
.

• Find the new Θt ∈ Arg maxΘ∈Θ∗ 〈Vt, C(Θ)〉
and go to the beginning of Recursive phase
if the statistics Vt is well defined, i.e.,∫

exp 〈Vt, C(Θ)〉 dΘ < ∞. Otherwise, correct
the trial statistics to get the finite normaliz-
ing integral and repeat this item.

Algorithm is close to a recursive version of
expectation-maximization algorithm but it does
not try to find a point estimate of Θ only. The
corrective actions, needed when Vt is not well de-
fined, is its critical step. Design of these corrective
actions is specific for each type of the model.

3. APPLICATIONS

Cauchy regression model has the form (8).
The function C(Θ) has the entries r, [−1,θ′][−1,θ′]′

r .
It is useful to decompose the stored statistics Vt

into the scalar νt and the symmetric positive semi-
definite matrix Vt, so that 〈Vt, C(Θ)〉 = νtr +〈
Vt,

[−1,θ′][−1,θ′]′

r

〉
. For a fixed Θt−1 ≡ Θt−1 ∈

Θ∗, the statistics, determining approximately the
equivalence class, evolve

νt = νt−1 + wt, Vt = Vt−1 + wtΨtΨ′t (13)

wt ≡
(

rt−1 +
([−1, θ′t−1]Ψt)2

rt−1

)−1

.

The posterior pdf in the EF, approximately equiv-
alent to the correct posterior pdf, is

f (Θ|Vt, νt)∝ exp
{
−1

2

[
νtr +

[−1, θ′]Vt[−1, θ′]′

r

]}
.

(14)
Due to the non-negativity of the weights wt, the
statistics νt > 0, Vt > 0 (positive definite) for

all t ∈ t∗ whenever these inequalities hold for
the prior statistics. Thus, no corrective actions
are needed. Maximizer of the pdf (14) on Θ∗ can
be found explicitly. It has the form well-known
from least squares (LS) (Kárný et al. 2005). The
split factorization V = L′DL, with unitary lower
triangular L and positive diagonal D,

L =
[

1 0
dψL ψL

]
, D =

[
dD 0
0 ψD

]
, dD is scalar ,

gives Θ̂ ≡
(
θ̂, r̂

)
≡

(
ψL−1 dψL,

√
dD

ν

)
. (15)

Algorithm ldupdt (Nedoma et al. 2005) updates
efficiently factors L,D by the dyad wtΨtΨ′t (13).

Example 3.1. (Cauchy regression model). Data dt

= (yt, ut) ≡(scalar system output,scalar system
input) were simulated and recorded. The output
yt dependent on the input ut and past data was
generated by the Cauchy system (8). The scal-
ing factor r = 0.27 and the regression vector
ψt = [ut, yt−1, ut−1, yt−2]′ were used. The input ut

was white normal noise with zero mean and unit-
variance. The chosen θ = [0.2, 0.8, 0.07,−0.07]′

describes the second-order auto-regression with
poles 0.7, 0.1. The coefficients at inputs and scal-
ing factor are chosen so that their respective static
gain equals to 1. The output and weigh realiza-
tions (13) are shown in Fig. 1.
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Fig. 1. Simulated outputs (left) and weights (13).

Point estimates of the regression coefficients θ are
in Fig. 2 together with their estimates obtained by
recursive least squares (LS). Similar comparison of
the scaling- factor estimates is in Fig. 3.
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Fig. 2. Estimates of θ = [0.2, 0.8, 0.07,−0.07] (left)
and their LS counterpart.

The results confirm positive effects of the weighted
recursive LS updating (13) with the weights tai-
lored to the assumed distribution of innovations.
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Fig. 3. Estimates of r = 0.27 (left) and its LS
counterpart.

The estimation is more robust to outlying inno-
vations and enables good estimation of all param-
eters, including the scaling one. It is in a strong
contrast with non-weighted LS.

Regression with discrete outputs is described
by (9). The derivatives needed in Algorithm 1, are

∂ ln (M(B(Ψt), C(Θt−1)))
∂[−0.5 ln(rt−1;d)]

≡ wt;d = δddt

−
r−0.5
t−1;d exp

{
− ([−1,θ′t−1;d]Ψt;d)2

2rt−1;d

}

∑d`

d=1 r−0.5
t−1;d exp

{
− ([−1,θ′

t−1;d]Ψt;d)2

2rt−1;d

}

∂ ln (M(B(Ψt), C(Θt−1)))

∂

[
− [−1,θ′

t−1;d]
′[−1,θ′

t−1;d]
2rt−1;d

] = wt;dΨt;dΨ′t;d

f(Θ|Vt) ≡
∏d`

d=1 GiWθd,rd
(Vt;d, νt;d) with Gauss-

inverse-Wishart factors (Kárný et al. 2005)

GiWθ,r(V, ν) ∝
exp

{
− [−1,θ′]V [−1,θ′]′

2r

}

r
ν+θ`+2

2

with

νt;d = νt−1;d + wt;d, Vt;d = Vt−1;d + wt;dΨt;dΨ′t;d.

The normalization is finite iff νt;d > 0, Vt;d > 0 for
d ∈ d∗, t ∈ t∗. The found weights do not guarantee
this. For dth, for which the normalization is finite
(surely, for d = dt), the updating needs no cor-
rections. Maximizing θ is computed according to
formula (15), using the same L′DL decomposition
of Vd statistics. The estimate of r is here square
of the estimate in (15). For some d’s corrective
actions may be needed. Even if they correspond
to a change of the reference point, it is sufficient
to change the weight wt;d and compute directly
a new reference point. It is reasonable to require
νt;d ≥ ν0;d and Vt;d > 0 . Thus, the corrected
wt;d should νt−1;d + wt;d ≥ ν0;d > 0, Vt−1;d +
wt;dΨt;dΨ′t;d > 0. A sufficient condition for this
reads Vt−1;d + wt;dΨt;dΨ′t;d ≥ ωVt−1;d with op-
tional ω ∈ (0, 1), i.e., − 1−ω

ζt;d
≡ − 1−ω

Ψ′
t;dV −1

t−1;dΨt;d
≤

wt;d. The scalar ζt;d is by-product of updating the
factorized Vt−1;d, which motivated this condition.

Example 3.2. (Regression with discrete outputs).
The regression model with the output yt ∈ y∗ ≡
{1, 2, 3} and white normal input ut with mean 0

and variance 1 was simulated with the options:
2nd order ARX for y = 1
[r0.5

1 ; θ′1] = [0.03; 1.3, 0.15,−0.36,−0.05]
Ψt;1 = [1, ut, yt−1, ut−1, yt−2, ut−2]′

2nd order auto-regression for y = 2
[r0.5

2 ; θ′3] = [0.08; 1, 0.15], Ψt;2 = [2, yt−1, yt−2]′

Regression with memory 1 for y = 3
[r0.5

3 ; θ′3] = [0.1; 0.3, 2], Ψt;3 = [3, ut, ut−1]′.

Estimation results concern simulation run with
2000 samples characterized by the histogram of
outputs, Fig. 4. The estimates of respective scaling
factors r0.5

d in Fig. 4 give feeling about their
behavior. Estimates of respective parameters in
Fig. 5, Fig. 6 complement the picture. The most
interesting and informative is right-hand side of
Fig. 6 and Fig. 7 that show histograms of relative
errors κt;y, y = 1, 2, 3, κt;y ≡
f

(
yt = y

∣∣ut, d
t−1

)− f
(
yt = y

∣∣ut, d
t−1, true Θ

)

f
(
yt = y

∣∣ut, dt−1, true Θ
) .

(16)
Fig. 8 shows relative errors on realized outputs
only. Values out of the range [−3, 3] are aggre-
gated. Quality of these estimates seems to be
good, especially, taking into account that yt = 3
occurred 34 times only. The additional informa-
tion about the experiment is:

• The system and model structures coincided.
• Prior V0;d = 1e− 3× unit matrix were used.
• Guess 0.1 of r0.5

d and ν0;d = 1 were chosen.
• Prior guesses of regression coefficients were

θ̂0;1 = [0.5, 0, 0, 0], θ̂0;2 = [0.5, 0], θ̂0;3 = [0, 0];
• 40, 28, 114 weight corrections were needed for

y = 1, 2, 3.
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Fig. 4. Histogram of simulated outputs (left) and
estimates of scaling factors [r0.5

1 , r0.5
2 , r0.5

3 ] =
[0.03, 0.08, 0.1].
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Fig. 5. Estimates of θ′1 = [1.3, 0.15,−0.36,−0.05]
for y = 1 (left) and estimates of θ′2 = [1, 0.15]
for y = 2.

Fully dynamic mixture (10) is estimated via
Algorithm 1 by updating of statistics
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Fig. 6. Estimates of θ′3 = [−0.09,−1] for y = 3
(left) and relative errors κt;y (16) for y = 1.
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Fig. 7. Relative errors κt;y (16) for y = 2, 3.
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Fig. 8. Relative errors κt;yt (16) for realized yt.

Vt;ic = Vt−1;ic + wt;icBic(Ψt;i)

wt;ic =
∏Ψ`

i=1 exp 〈Bic(Ψt;i), Cic (Θt−1;ic)〉∑
c∈c∗

∏Ψ`

i=1 exp 〈Bic(Ψt;i), Cic (Θt−1;ic)〉

−χ(i > d`)
∏Ψ`

i=d`+1 exp 〈Bic(Ψt;i), Cic (Θt−1;ic)〉∑
c∈c∗

∏Ψ`

i=d`+1 exp 〈Bic(Ψt;i), Cic (Θt−1;ic)〉
where χ(·) denotes indicator of the set in ar-
gument. The approximate posterior pdf has the
form of product of pdfs conjugated to respec-
tive factors

∏Ψ`

i=1

∏
c∈c∗ exp 〈Vt;ic, Cic(Θic)〉 . The

weights for i > d` can be negative. Thus, the
corrective actions, changing the weighting, have to
be applied. The way proposed in connection with
regression modelling discrete outputs is applica-
ble. Its detailed development and corresponding
experiments exceed the scope of this paper and
will be published independently.

4. CONCLUDING REMARK

The paper presents an open-ended attempt to
design good recursive estimators based on a com-
mon methodology. In this respect, it relies on a)
motivating equivalence approach; b) asymptotic
properties of the posterior pdfs and c) focus on a
rich model class extending the useful but narrow
dynamic exponential family. Our limited experi-
ence indicates that the attempt is promising but

a lot of work remains to be done. For instance,
i) relationships to expectation-maximization algo-
rithm and stochastic approximations should be es-
tablished; ii) rich experience of statistical research
with batch and asymptotic versions of the prob-
lem exploited; and iii) numerically safe algorithms
developed . . .
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REFERENCES

Anderson, B.D.O. and J.B. Moore (1979). Opti-
mal Filtering. Prentice Hall.

Barndorff-Nielsen, O. (1978). Information and ex-
ponential families in statistical theory. Wiley.
New York.

Bernardo, J.M. and A.F.M. Smith (1997).
Bayesian Theory. 2 ed.. John Wiley & Sons.
Chichester, New York, Brisbane, Toronto,
Singapore.
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