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Abstract
The main idea in dimension reduction is the separa-

tion of the variables into essential or active modes and
into ignorable or passive modes. However, it would
be a mistake to assume that the ignorable modes, can
be completely ignored in the derivation of the reduced
system. Due to nonlinear coupling the elimination of
these passive modes is a delicate matter. If these modes
are completely ignored in the calculation of the reduced
system the so-called standard (linear or flat) Galerkin
method, mostly used in engineering, is obtained. How-
ever, this approach sometimes gives qualitatively incor-
rect results and hence better strategies must be looked
for. Hence the representation of the passive modes by
means of the active modes is the essential step in ap-
plying more sophisticated dimension reduction meth-
ods. This is done in almost all different approaches by
invariant manifolds.

1 Introduction
Usually, for realistically modeled problems in engi-

neering one is confronted in the description of the dy-
namics of a system with a representation space which
is of large, perhaps even of infinite dimension. How-
ever, for some classes of systems it is well known, both
from numerical simulations and also from experiments,
that an accurate description still should be possible by
introducing a space of much smaller dimension. This
reasoning is also supported by the fact that if, for exam-
ple, a system possesses limit cycle behaviour, even if
this occurs in a high dimensional space (for example, in
the description of the motion of a railway car modeled
by a system with many degrees of freedom), it should
be possible to represent the dynamics of the full high
dimensional system by the dynamics in a two dimen-
sional phase space, because all different components of
the car oscillate with the same limit cycle frequency but
with different amplitudes, as it is known from a Hopf
bifurcation analysis via Center Manifold theory. In
other words, if the investigated phenomenon is first pre-

sented in some arbitrary way, then, if the motion shows
limit cycle behaviour, all dependent variables are rep-
resented as functions of just two distiguished variables.
Such a behaviour can be well studied by the methods
of Local Bifurcation theory and can be applied to the
analysis of the nonlinear motion, setting in after loss
of stability of an equilibrium. Center Manifold theory,
which is mathematically well founded, supplies a pos-
sible method of dimension reduction.
Locally in the vicinity of a bifurcation point, where a

considered state, be it an equilibrium or a periodic so-
lution, looses stability, the Center Manifold attracts all
solutions of the system and hence the nonlinear asymp-
totic dynamics of the full system is represented by the
dynamics on the possibly very low dimensional Cen-
ter Manifold. The main shortcoming of Center Mani-
fold theory is that it is only a local theory, which means
that, for example for the problem of loss of stability of
an equilibrium at a critical parameter value, only small
parameter variations about the critical parameter value
are allowed. However there exists a global equivalent
to the Center Manifold, namely the Inertial Manifold,
which is not restricted to the bifurcation szenario, just
described, but which contains the whole bifurcation be-
haviour.
Moreover it is also well known that in stiff systems of-

ten slow motions can be identified, which are dominant
and if proper coordinates are selected, can be separated
from fast motions, which hardly affect the slow mo-
tions. Hence these fast modes of motion can be elim-
inated resulting in a reduction of the dimension of the
original system.
Finally a surprising similarity is found in the concept

of Condensation which we also explain.

2 How to find a reduced order system?
The purpose of this paper is to show that almost all

methods of dimension-reduction are closely related to
the concept of invariant manifolds (an exception is the
Karhunen-Loeve method). These invariant manifolds



play an important role both for the behaviour of dissi-
pative and conservative systems by slaving fast modes
to slow modes as it is shown below, for example, in
(13).
Hence we consider the following methods and demon-

strate that in all cases the essential step is to find an
equation similar to (13).

1. Global theory:

(a) Theoretically important: Inertial manifold
theory

(b) Practically important: Galerkin methods
(Approximate inertial manifold theory)

2. Local theory:

(a) Dynamics: Center manifold theory
(b) Statics: Liapunov-Schmidt method

3. Slow-fast dynamics in Hamiltonian systems (Non-
linear Normal Modes).

4. Linear Static Problems: Condensation

3 Inertial manifold
In the global process of reducing an infinite dimen-

sional system to a finite dimensional one, four ques-
tions must be answered ([1]):

1. Existence and uniqueness of solutions with speci-
fied initial conditions. In engineering language this
more or less means that the long time behaviour
of the solutions must be characterised by a finite
dimensional absorbing subset of the phase space.
For engineering problems, which include damp-
ing, the existence of an absorbing set often can be
shown rigorously.

2. Compactness of the universal attractor. If the
phase space of the dynamical system is a Hilbert
space and solutions are expanded in an orthogonal
basis of this Hilbert space, one would like to show
that the higher modes in this basis decay strongly.

3. Estimating Hausdorff or fractal dimension of the
universal attractor. Quantitative estimates are
based upon linearizing the system along its tra-
jectories and computing a Lyapunov spectrum. A
rough estimate of part of the Lyapunov spectrum
can be obtained from looking at the growth rates
of n-dimensional volumes in the linearized flow. If
there is some n, for which all n-dimensional vol-
umes decrease along the flow, then n is an upper
bound for the dimension of the universal attractor.

4. One can hope that not only the attractors of an in-
finite dimensional system will be finite, but that
there will be a smooth finite dimensional subset
that is invariant under the flow and contains the
universal attractor. Such a subset is called an Iner-
tial Manifold. The existence of inertial manifolds
is a more delicate matter than the existence of uni-
versal attractors.
The question that one asks is when a smooth in-
variant submanifold in a dynamical system will

persist under perturbation. The attracting invariant
manifold persistent under perturbations must have
more extreme Lyapunov exponents in its normal
directions than in its tangential directions.
If the partial differential equations being studied
have large gaps in their spectra, then these can be
used to look for invariant manifolds that lie close
to the linear space spanned by the modes whose
eigenvalues lie to the right of a gap in the complex
plane. There are many examples for which such
spectral gaps exist. For example for a reaction-
diffusion equation in one dimension, the eigenval-
ues of the Laplacian decay in magnitude like −n2

and this leads to the existence of the appropriate
gap conditions.

To be more specific, let us consider a dissipative evo-
lutionary equation of the form ([2])

u̇ = Lu+F(u), (1)

where L is a self-adjoint negative operator with com-
pact resolvent, defined on a Hilbert space H and F(u)
is the nonlinear part defined on the domain of L. Let
u(t) = S(t)u0 denote the solution to (1) at time t satisfy-
ing the initial condition u(t0) = u0. L is usually a (dissi-
pative) spatial differential operator (like the Laplacian,
or the biharmonic operator), making (1) a partial differ-
ential equation. The operator L has a complete orthogo-
nal set of eigenfunctions w1,w2, . . . , with the real parts
of the corresponding eigenvalues 0 > λ1 ≥ λ2 ≥ ·· · .
Define P to be the spectral projection onto the span of
the first n eigenfunctions and Q := I−P be that onto
the remaining ones, i.e.,

Pu = p :=
n

∑
j=1

α j(t)w j :=
n

∑
j=1

(u,w j)
(w j,w j)

w j (2)

and

Qu = q :=
∞

∑
j=n+1

α j(t)w j :=
∞

∑
j=n+1

(u,w j)
(w j,w j)

w j (3)

where (·, ·) denotes the scalar product in H.

Definition: A subset M ⊂ H is said to be an Inertial
Manifold for equation (1) if M satisfies the follow-
ing conditions:

M is a finite-dimensional Lipschitz manifold
in H (it can often be shown that M is a C1

manifold).
M is positively invariant, i.e., if u0 ∈M then
S(t)u0 ∈M for all t > 0.
M is exponentially attracting, i.e., there
is a µ > 0 such that for every u0 ∈ H
there is a constant K = K(u0) such that
dist(S(t)u0,M)≤ Ke−µt , t ≥ 0.



The existence of an inertial manifold is very important
since it implies that the long term dynamics of the orig-
inal equation (1) is completely described by a finite di-
mensional ordinary differential equation, without error.
Assuming that the real parts of the eigenvalues of L

decay sufficiently fast to satisfy a gap condition, it is
possible to obtain an upper bound on n such that M is
the graph of a smooth function

Φ : PH→ QH. (4)

Under the above assumptions the graph of the function
Φ is an n-dimensional manifold in H. For u ∈H we set
p = Pu, q = Qu, and using the commutativity relations
PL = LP and QL = LQ we can write the partial differ-
ential equation (1) equivalently as the following system
of ordinary differential equations

ṗ = Lp+PF(p+q), (5)
q̇ = Lq+QF(p+q). (6)

By expressing the q variables in terms of the p variables
through the relation

q = Φ(p) (7)

we obtain the following reduced system of ordinary dif-
ferential equations

ṗ = Lp+PF(p+Φ(p)) (8)

which can now be used to determine the long-term dy-
namics of the original equation without error. System
(8) is called an inertial form of (1). Numerical methods
([2]) for solving (1), which in effect compute solutions
of (8) with Φ replaced by Φ = 0, are called standard
(linear, flat) Galerkin methods. Those, which use non-
trivial approximations to the mapping Φ in (8), are re-
ferred to as nonlinear Galerkin methods. Further note
that the way P and Q are defined in (2) and (3), P is
an orthogonal projection on H with finite dimensional
range, while Q has infinite dimensional range.
The main problem in the application of Inertial Man-

ifold theory, provided an inertial manifold exists at all,
is that usually the estimate of its dimension n is very
high [3].
Hence, the dimension obtained in [3] is not useful

for practical applications and consequently, various ap-
proximative methods called Approximate Inertial Man-
ifold theories or Nonlinear Galerkin methods are used.
These basically proceed in the following way, that the
infinite dimensional projection Q is approximated by
truncating the series (3) by retaining only m modes and
therefore equation (3) is replaced by

Qu = q :=
m

∑
j=n+1

α j(t)w j =
m

∑
j=n+1

(u,w j)
(w j,w j)

w j. (9)

Because of this truncation, the relation between p and q
is replaced by an approximation, say q = Φa(p), which
now maps PH into the finite-dimensional space QH,
and the corresponding graph Ma is now an approxi-
mate inertial manifold of (1), where in addition also
n is chosen to be a small number. In [4] these approx-
imate inertial manifold calculations are applied to the
Kuramoto-Shivashinski equation.

4 Center manifold
One of the main problems occuring in the approximate

inertial manifold calculation, namely the determination
of the dimension n, does not occur for the application
of Center Manifold theory as we now shortly indicate.
We assume that L = L(λ ) in (1) depends on a param-
eter λ and consider the loss of stability of the trival
solution u = 0 of (1) under quasistatic variation of λ .
For parameter values below λ = λc the solution u = 0
is supposed to be asymptotically stable.
Under certain mild requirements ([5]), where the most

important one is that at the critical parameter value
λ = λc the eigenvalue with largest real part, crossing
the imaginary axis, has finite multiplicity (n), Center
Manifold theory is applicable. Then the field variable
u(x, t) is decomposed in the form

u(x, t) = uc(x, t)+us(x, t)

=
n

∑
i=1

qi(t)wi(x)+U(qi(t),x), (10)

where the wi(x) are the active spatial modes, obtained
from the solution of the eigenvalue problem related to
the linear system

u̇ = L(λc)u. (11)

The qi(t) are their time dependent amplitudes and
us(x, t) could be given by an infinite sum. The decom-
position is completely analogous to (2) and (3). The
key point in Center manifold theory is that the influ-
ence of the infinite number of higher modes contained
in us(x, t) can be expressed in terms of the lower order
modes by the function U(qi(t),x).
We assume that the spectrum of L(λ ) is discrete and

that for λ = λc a finite number (n) of eigenvalues
crosses the imaginary axis at the same time. All other
eigenvalues have a negative real part. Defining the pro-
jections as before, we obtain equations

u̇c = Luc +PF(uc +us),
u̇s = Lus +QF(uc +us),

(12)

formally completely analogous to (5) and (6). If

us = Φ(uc) (13)



M c

Figure 1. Three-dimensional flow approching the two-dimensional
Center Manifold on which a limit cycle represents the asymptotic
behaviour after a Hopf bifurcation

is a smooth invariant manifold we call Φ a center man-
ifold if Φ(0) = Φ′(0) = 0. Note that if in (12) PF =
QF = 0, all solutions tend exponentially fast to solu-
tions of u̇c = PLuc. That is, the linear n-dimensional
equation on the (flat) center manifold determines the
asymptotic behaviour of the entire infinite-dimensional
linear system, up to exponentially decaying terms. The
center manifold theorem ([5]) enables us to extend this
argument to the nonlinear case, when PF and QF are
different from zero and to replace (12), if |uc| is suffi-
ciently small, by

u̇c = PLuc +PF(uc +Φ(uc)). (14)

The zero solution of (12) has exactly the same stability
properties as the zero solution of (14). Further for the
determination of Φ(uc) the (partial) differential equa-
tion

Φ
′(uc)u̇c = LΦ(uc)+QF(uc +Φ(uc)) (15)

is obtained, from which a power series approximation
of Φ can be calculated.
Basically, the loss of stability is described in terms

of the temporal evolution of the amplitudes of certain
(active) modes, the determination of which is clear for
Center Manifold theory. These modes are those that
are either mildly unstable or only slightly damped in
linear theory. Their determination requires the solution
of the linear eigenvalue problem (11). If the number of
these critical modes is finite, a set of ordinary differ-
ential equations the amplitude equations of the critical
modes can be constructed, which govern the long term
behaviour of the original system, since the other (pos-
sibly infinitely many) modes decay exponentially.
This dimension reduction scenario can be given a ge-

ometric interpretation in phase space (Figure 1). The
evolution of the flow can be split into two components:
The dynamics of the active modes, which dominate the

long term behaviour, is governed by the nonlinear sys-
tem (14), which also takes into account the rapidly de-
caying terms by the argument Φ(uc). If a solution of
the full system starts on the invariant manifold, the
passive modes are found directly from the equation
us = Φ(uc). For general initial values the solution con-
verges quickly to the invariant manifold.

5 Nonlinear normal modes
The elimination process of the fast (inessential, pas-

sive) modes is more generally called slaving of the fast
modes to the slow modes. This procedure can also be
applied for conservative systems. Here in analogy to
the dissipative case the situation is often found that mo-
tions in a system are evolving on different time scales.
Typically this occurs in stiff systems where one has a
slowly evolving time scale describing the salient fea-
tures of the system and a fast time scale, which is
transient, if the system is dissipative and oscillatory if
the system is conservative. Simplification of the sys-
tem dynamics concerning its dimension often can be
achieved by elimination of the fast scales.
The equations of such stiff systems can be given a sin-

gular perturbation form. For example for the planar
motion of a spring pendulum consisting of a mass m
and a very stiff spring (constant c, unstrained length l0)
we obtain

Ṫ = Aµ(R)T +Fµ(R,T ) (16)
µṘ = BR+Gµ(R,T ) (17)

where

T = (ϕ, ϕ̇), R = (∆l, ∆̇l). (18)

Here ϕ designates the angle and ∆l the elongation of
the spring. The small parameter

µ =
ωp

ωs
=
√

mg
l0c

(19)

is the ratio of the small pendular frequency to the large
extensional frequency. Hence T is the slow variable
and R the fast variable.
Now slaving the fast modes by the slow modes simi-

larly as it is done in Center Manifold theory by

R = Φµ(T ) (20)

results in an equation of the form of (15)

BΦµ +Gµ(Φµ ,T ) = µΦ
′
µ · [Aµ(Φµ)T +Fµ(Φµ ,T )]

(21)
from which an approximation of the slow manifold can
be calculated, as long as the freqencies are not in reso-
nance.



This has been done in [6] for a spring pendulum. On
the resulting invariant manifold a two-dimensional mo-
tion in the four dimensional space is obtained. If the
motion is exactly represented by the motion on the
manifold, this motion is called in [8] a Nonlinear Nor-
mal Mode. Generalizing this concept we can say that
a 2n-dimensional system (n-degrees of freedom), the
motion of which takes place on a two-dimensional in-
variant manifold, possesses a Nonlinear Normal Mode
of motion. Hence the Nonlinear Normal Modes of a
conservative system of the form (1) are synchronous
oscillations of all components ([9]) taking place on a
two dimensional invariant manifold.

6 Condensation
An interesting analogy is given by the concept of Con-

densation presented in [7]. We consider linear prob-
lems in structural mechanics, which are often given by
an equation of the form (x ∈ Rn)

F = Kx

which we arrange, after partitioning, in the form

(
F1
F2

)
=
(

A B
B′ C

)(
x1
x2

)

the forces F2 are to be zero. From the second equation
B′x1 +Cx2 = 0 follows

x2 =−C−1B′x1 (22)

Hence the variables x2 ∈ Rm at which no forces are ap-
plied can be eliminated witout any approximation to
result in the reduced system

F1 = K1x1 = (A−BC−1B′)x1

where x1 ∈ Rn−m with the reduced stiffness matrix

K1 = A−BC−1B′.

Condensation is used to reduce the dimension in FE
calculations.

7 Conclusions
In all different cases of reduction of the system di-

mension the elimination of the passive variables is per-
formed by expressing the passive variables by the ac-
tive variables in an equation of similar form. These
relations are given by (7), (13), (22), (20) and (22).
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