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Abstract
We study relative equilibria of a particle in vicinity

of a rigid body, assuming the body motion about mass
center is a regular precession. We model the body grav-
itation as gravitational field of two spheres with cen-
ters in the body axis of dynamical symmetry. We de-
duce the particle motion equations as two-parametrical
generalization of Restricted Circular Problem of Three
Bodies. We investigate stability of the particle equi-
libria called the Coplanar Libration Points in a plane
crossing the spheres centers and the precession axis if
the spheres have equal masses.
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1 Introduction
The Generalized Restricted Circular Problem of Three

bodies (GRCP3B) has been formulated in [Beletsky,
2007] as a model of the binary asteroids dynamics.
At the difference with other models of binaries dy-
namics (see, for example, [Kosenko, 1981; Kosenko,
1985; Scheeres and Ostro, 1996; Scheeres, et all, 1998;
Scheeres, Williams and Miller, 2000; Scheeres, 2002;
Beletsky, 2003; Koon et all, 2004; Vasilkova, 2005;
Cendra and Marsden, 2005; Scheeres and Bellerose,
2005; Gabern, Koon and Marsden, 2005;?; Fahne-
stock and Scheeres, 2009; Vasilkova, 2010], etc., etc)
in GRCP3B it is assumed that the smaller component
of the binary is a particle of infinitesimal mass, that in-
fluence of the Sun gravitation can be neglected and that
the bigger component is a dynamically symmetric rigid
body. From these assumptions it follows that the bigger
asteroid motion about mass center is a regular preces-
sion. Moreover, in GRCP3B the symmetric rigid body
representing the bigger component is replaced with a
dumbbell, i.e. with two homogeneous spheres jointed
by a weightless rod. It follows that gravitation field of
the bigger asteroid can be replaced with the two-centers

gravitational field. Evidently, the centers of gravitation
coincide with the spheres centers placed in the axis of
the bigger asteroid’s dynamical symmetry. Note that
the particle motion equation can be written in a form
generalizing equations of Restricted Circular Problem
of Three Bodies (RCP3B)(see [Szebehely, 1967; Mar-
keev, 1978], etc.) by adding two new parameters. It
explain the title ’GRCP3B’. New parameters are the
angle of nutation and some dimensionless ratio char-
acterising the angular velocity of precession.
There exists a number of the particle equilibria with

respect to the axis containing centers of spheres and
the axis of nutation. These equilibria can be divided
into two types.
Equilibria of the first type belong to the plane crossing

the dumbbell mass center perpendicularly to the pre-
cession axis. Distances from each equilibrium of this
type up to the centers of gravitation are equal. It was
a reason to call such equilibrium the Triangular Libra-
tion Point (TLP). (By analogy with Lagrangian Libra-
tion Points of RCP3B). Existence and stability of TLPs
have been studied in [Beletsky, 2007; Beletsky and
Rodnikov 2008a]. In particular, it have been proved
that the number of TLPs is 0, 1 or 2 and TLPs are sta-
ble for the first aproximation if the ratio of gravitating
masses is less than17 − 12

√
2 = 0.02944. (Note that

in the opposite case at the difference with the classical
problem both stsbility and instability are possible)
Equilibria of the second type belong to the plane com-

posed by the dumbbell axis and the axis of precession.
These equilibria are called Coplanar Libration Points
(TLP). TLPs have been partly investigated in [Beletsky
and Rodnikov 2008b]. It has been established that if
the dumbbell is symmetric, i.e. if the spheres forming
the dumbbell have equal masses, then the number of
CLPs varies from 3 up to 7.
In this paper we claim that the total number of CLPs is

from 3 up to 7 also for a dumbbell composed by spheres
of unequal masses. We deduce conditions of CLPs sta-
bility in the first approximation. Using these conditions
we build a diagram of CLPs stability for the symmet-
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Figure 1.

ric dumbbell in the plane of the problem parameters.
In particular, we prove that not more than two of CLPs
can be stable and that not more than one stable CLP
exists if total number of CLPs is equal to 3.

2 Parameters and designations

Assume the bigger asteroid in the binary can be re-
placed with a dumbbell consisting of two spheres with
centersM1 and M2. Suppose the dumbbell motion
with respect to mass centerC is a regular precession
with angular velocityω and with angle of nutationϑ.
(Without loss of generality,0 ≤ ϑ ≤ π/2). LetM0 be a
particle that does not influence the dumbbell motion but
is influenced by the dumbbell gravitational field (fig. 1).
Further, letCxyz be a Cartesian coordinates system ro-
tating aboutCz with angular velocityω. ( Cz ‖ ω, M1

andM2 belong toCxz ). Denote bym1 andm2 the
spheres masses. Letµ = m2/ (m1 + m2). Without
loss of generality,m2 ≤ m1 ⇔ 0 < µ ≤ 1/2. More-
over, letα = G (m1 + m2) /ω2l2, wherel = M1M2,
G is Gauss’ gravitational constant. Evidently,α > 0.
Note thatCM1 = µl andCM2 = (1 − µ)l. In partic-
ular, if µ = 1/2 thenCM1 = CM2 = l/2. It is clear
that if ϑ = π/2 andα = 1 then we have RCP3B.

3 Motion equations and some notes

Let x, y, z be coordinates ofM0 in Cxyz. Using
dimensionless variablesξ = x/l, η = y/l, ζ = z/l
and dimensionless timeτ (dτ = ωdt) one can present
motion equations for the particleM0 as





ξ′′ − 2η′ − ξ = ∂Π/∂ξ
η′′ + 2ξ′ − η = ∂Π/∂η
ζ ′′ = ∂Π/∂ζ,

(1)

where

Π = α

(
1− µ

ρ1
+

µ

ρ2

)
,

ρ1 = M0M1/l, ρ2 = M0M2/l. (Here by( )′ denote
derivative w.r.t.τ ). From (1) it follows that the particle
M0 can be immovable inCxyz only if ζ = 0 or η = 0.
It can easily be checked thatρ1 = ρ2 for relative equi-

libria in Cxy (ζ = 0). There exist from 0 up to 2 equi-
libria called TLPs in this plane (see [Beletsky, 2007]
for details).
It have been proved in [Beletsky and Rodnikov 2008b]

that the total number of relative equilibria called CLPs
in the planeCxz (η = 0) is from 3 up to 7 ifµ = 1/2.

4 On total number of Coplanar Libration Points
In the particular case of the ’vertical’ dumbbell (ϕ =

0) there are one isolated libration point in the dumb-
bell axis and one, two or three circles consisting of li-
bration points. Each of them can be called CLP at a
corresponding choice of coordinate axes.
In the particular case of the ’horizontal’ dumbbell

(ϕ = π/2) as well as in classical problem there exist
3 CLPs belonging toOz.
In the general case0 < µ < 1/2, 0 < θ < π/2

equations for CLPs coordinates can be presented as

ξ2
1 −

2ξ1

Φ1
+

(
ζ2
1 −

2ζ1

Φ1

)
cot2 ϑ +

1
Φ1 sin2 ϑ

= 0 (2)

α=
(µ− ξ1)(1−ζ1)(ξ2

1 sin2 ϑ + ζ2
1 cos2 ϑ)3/2

(1− µ)(ζ1 − ξ1)
, (3)

where expressions for new variablesξ1 andζ1 read

ξ1 = ξ/ sin ϑ + µ, ζ1 = ζ/ cosϑ + µ (4)

and

Φ1 = 1−
(

µ(1− ζ1)
ζ1(1− µ)

) 2
3

(5)

Note that any CLP lays in the strip restricted by the
straight lines which pass throughM1 andM2 in paral-
lel to Cx. Therefore,0 < ζ1 < 1. Note also that (2) is
a quadratic equation ofξ1. Substituting roots of (2) for
ξ1 in (3), we obtain

α = f1,2(ζ1; ϑ, µ) (6)

Analyzing functionsf1 andf2 behaviour, one can see
that the total number of (6) solutions is not less than



3 and not more than 7 for anyζ1 ∈ (0, 1) and for
any admissible value ofα,µ,ϑ. Let us remark that the
even number of (6) solutions is a rare situation. Fac-
tually, the even number of CLPs (4 or 6) takes place
only for some two-dimensional manifold in the three-
dimentional space of parametersα, µ, ϑ.

5 On Coplanar Libration Points location for the
symmetric dumbbell

In particular, if µ = 1/2 then the even number of
CLPs is impossible in general. In this case there ex-
ists CLP coinciding withC. This libration point is
called ’the central CLP’(CCLP). Other CLPs can be di-
vided into pairs symmetric w.r.t.C. It can be proved
that each of quadrantsξ1 > 1/2, ζ1 > 1/2 andξ1 <
1/2, ζ1 < 1/2 contains only one CLP called an exter-
nal CLP (ECLP). ECLPs are analogues of Eulerian li-
bration pointsL2 andL3 in RCP3B. Each of quadrants
ξ1 > 1/2, ζ1 < 1/2 and ξ1 < 1/2, ζ1 > 1/2 con-
tains one or two CLPs that are analogues ofL1. There-
fore these CLPs are conditionally called internal CLPs
(ICLP). (Here we use traditional designations of Eule-
rian Libration Points, for instance see [Markeev, 1978])

6 Stability conditions in general
Linearizing (1) in vicinity of any found equilibrium

we obtain the system of the first approximation. Equa-
tion for eigenvaluesλ of this system reads

λ6 + 2λ4 + A2λ
2 + A0 = 0, (7)

whereA1,2 depends onξ, η, α, µ, ϑ for TLPs and de-
pends onζ, η, α, µ, ϑ for CLPs. As the considered
dynamical system is conservative, one can see that the
chosen equilibrium is stable by the first approximation
only if all roots of (7) are various and purely imaginary.
(If some roots equal to 0 then an additional studying is
required). Thus all roots of

x3 + 2x2 + A2x + A0 = 0

should be various and negative real numbers. It follows
that stability conditions for any libration points read

A0 > 0, A2 > 0,

D =
(

A0

2
− A2

3
+

8
27

)2

+
(

3A2 − 4
9

)3

< 0
(8)

7 Stability regions
The criterion of TLPs stability has been deduced from

(8) in [Beletsky and Rodnikov 2008a]. The brief for-
mulation of this criterion reads: ’Ifµ(1 − µ) < 1/36
then TLPs are stable by the first approximation other-
wise both stability and instability are possible.’
In the particular caseϑ = 0 from (8) it follows that all

equilibria are unstable. Reducing stability conditions
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one can see that the circles of libration points can be
stable or unstable.
In the particular caseϑ = π/2 from (8) it follows that

analogues ofL2 andL3 are unstable but analogue of
L1 at the difference with the classical problem is stable
for 1/9 < α < 1/8 and can be stable for some values
of µ if α ≤ 1/9.
Consider now CLPs stability for symmetric dumb-

bell, i.e. for µ = 1/2. Substituting 0 forξ and
for ζ in (8) we obtain stability conditions directly
for CCLP. Correspondent regions of stability are
the curvilinear triangles BCD and FEG de-
picted in fig. 3. In this fig. B(arccos 1/3; 1/8),
C(π/2; 1/8), D(π/2; 1/9), E(arccos 1/3; 1/24),
F (arccos

√
5/3; 1/24), G(arccos 1/

√
3; 0). Combin-

ing the found regions with diagram from [Beletsky and
Rodnikov 2008b] one can see that ICLPs exist only if
CCLP is unstable. In other words, if CCLP is stable
then total number of CLPs equal to 3.
Eliminatingα andϑ from expressions forA0 andA1

by (2) and (3) one can see thatA0 < 0 in semi-strips
ξ1 > 1/2, 1/2 < ζ1 < 1 andξ1 < 1/2, 0 < ζ1 <
1/2. Hence ECLPs are always unstable. Nevertheless,
(8) are fulfilled in four areas of the strip0 < ζ1 < 1.
Two of these areas are depicted in fig. 2. (In this fig.
A(0.842, 0.093)). The last two areas are symmetric to
depicted ones w.r.t.C.
It can be proved that there exist not more than one pair

of stable ICLPs. Thus the total number of stable CLPs
is not more 2.
Note that equalities (2,3) are an original mapping

from the plane(ξ1, ζ1) to the plane(ϑ, α). Using this
mapping and combining diagram from [Beletsky and
Rodnikov 2008b] with images of stability regions in
fig. 2 and with regions of stability for CCLP one can
build the final diagram of CLPs stability forµ = 1/2.
Regions of this diagram depicted in fig. 3 are marked
asn + m, wherem is a number of stable CLPs and
m is a number of unstable CLPs. Coordinates of some
points areA(0.458, 0.046), H(0, 1/8), P (0, 3

√
3/8),
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Q(0.07, 0.012), S(0.626, 0.0607).

8 Conclusion
In this paper stability of a particle equilibria in the

plane composed by axis of a rigid body’s dynamical
symmetry and by axis of the body precession are stud-
ied in assumption that the body gravitational field can
be replaced with the gravitational field of two spheres
of equal masses. Criteria of these equilibria stability
by the first approximation are deduced. The number of
stable and unstable equilibria is computed. The corre-
spondent diagram in the plane of parameters is built.
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