ON APPLICATION OF FIRST INTEGRALS IN ANALYSIS OF CONSERVATIVE SYSTEMS

Valtntin D. Irtegov

Abstract

The paper proposes a new approach to obtaining and qualitative investigation of invariant manifolds for the systems of differential equations, which have smooth first integrals. Examples of application of the technique proposed to some problems of rigid body dynamics are given.

I. INTRODUCTION

The approach proposed is based on the following theorem: Theorem 1: If a system of differential equations

$$
\begin{equation*}
\dot{x}_{i}=X_{i}(x, t,), \quad i=1, \ldots, n \tag{1.1}
\end{equation*}
$$

has a family of smooth first integrals $V(x, t, \lambda)=c$ (where λ is the family's parameter), and if partial derivatives of this family with respect to the variables $x_{i}, \quad i=1, \ldots, n$ may be represented in the form

$$
\begin{array}{r}
\frac{\partial V}{\partial x_{i}}=\sum_{l=1}^{k} a_{i, l}(x, t, \lambda) \varphi_{l}(x, t, \lambda) \\
+\sum_{l=1}^{k} \sum_{p=1}^{k} a_{i, l, p}(x, t, \lambda) \varphi_{l}(x, t, \lambda) \varphi_{p}(x, t, \lambda)+\ldots \tag{1.2}
\end{array}
$$

and the rank of the matrix $A=\left\|a_{i, l}(x, t, \lambda)\right\|$ is " k " on the family of manifolds

$$
\begin{equation*}
\varphi_{l}(x, t, \lambda)=0, \quad l=1, \ldots, k \tag{1.3}
\end{equation*}
$$

then the equations $\varphi_{l}(x, t, \lambda)=0, \quad l=1, \ldots, k$ define a family of system's (1.1) invariant manifolds, whose elements attribute stationary values to the corresponding elements of the family of first integrals $V(x, t, \lambda)=c$. Such families of invariant manifolds (1.3) will be called the invariant manifolds of steady motions (IMSMs).
Proof. Let us compute the derivative of integral $V(x, t, \lambda)$ due to initial differential equations (1.1) :

$$
\begin{equation*}
\frac{d V}{d t}=\sum_{j=1}^{n} \frac{\partial V}{\partial x_{j}} X_{j}+\frac{\partial V}{\partial t}=0 \tag{1.4}
\end{equation*}
$$

After that, compute the partial derivatives of the left-hand side expression (1.4) with respect to $x_{i} i=1, \ldots, n$. As a result, after obvious transformations, we have:

$$
\begin{gathered}
\sum_{j=1}^{n} \frac{\partial}{\partial x_{j}}\left(\frac{\partial V}{\partial x_{i}}\right) X_{j}+\frac{\partial}{\partial t}\left(\frac{\partial V}{\partial x_{i}}\right)=-\sum_{j=1}^{n} \frac{\partial V}{\partial x_{j}} \frac{\partial X_{j}}{\partial x_{i}}, \\
i=1, \ldots, n .
\end{gathered}
$$

The work has been supported by the INTAS-SB RAS grant No. 06-1000013-9019
V. D. Irtegov, Institute for System Dynamics and Control Theory, Siberian Branch, Russian Academy of Sciences, 134 Lermontov st., Irkutsk, 664033, Russia; irteg@icc.ru

Having substituted expressions for the partial derivatives $\partial V / \partial x_{i}$ (1.2) into the latter equations, from the theorem's conditions, we have:

$$
\begin{gathered}
\sum_{l=1}^{k} a_{i l}\left(\sum_{j=1}^{n} \frac{\partial \varphi_{l}}{\partial x_{j}} X_{j}+\frac{\partial \varphi_{l}}{\partial t}\right)=F_{i}\left(\varphi_{1}, \ldots, \varphi_{k}, x, \lambda\right), \\
i=1, \ldots, n
\end{gathered}
$$

where $F_{i}(0, \ldots, 0, x, \lambda)=0$ on the manifold $\varphi_{l}=0, \quad l=$ $1, \ldots, k$, for all the values of $i=1, \ldots, n$. Since due to the theorem we may assume the matrix rank $\left\|a_{i l}(x, t, \lambda)\right\|$ equal to k, the last equations on the manifold (1.3) will be reduced to the system

$$
\sum_{l=1}^{k} \frac{\partial \varphi_{l}}{\partial x_{j}} X_{j}+\frac{\partial \varphi_{l}}{\partial t}=0, \quad l=1, \ldots, k
$$

what proves the invariance of the family of manifolds $\varphi_{l}(x, t, \lambda)=0, l=1, \ldots, k$, for the initial system of differential equations (1.1) [3].

Stationarity of this family of invariant manifolds follows from the fact that expressions for partial derivatives of the family of first integrals $V(x, t, \lambda)$ with respect to the phase variables turn zero on the manifold. The latter follows from the form of these partial derivatives (1.2).

Remark 1: If for some relations of the form $\psi_{q}(x, t, \lambda)=$ $0, q=1, \ldots, m$ the rank of some submatrices of the rectangular matrix A decreases, then equations $\varphi_{l}(x, t, \lambda)=$ $0, \quad \psi_{q}(x, t, \lambda)=0, l=1, \ldots, k ; q=1, \ldots, m$, may define the families of invariant manifolds, which lie on the IMSM $\varphi_{l}(x, t, \lambda)=0, l=1, \ldots, k$. The latter may fail to be stationary, i.e. may fail to attribute a stationary value to the first integral $V(x, t, \lambda)$.

Remark 2: In many cases, when the first integrals are polynomial, application of the above theorem for the purpose of obtaining and investigation of invariant manifolds appears to be efficient. Furthermore, it is often possible to apply one of several possible techniques in order to represent the corresponding families of first integrals of the differential equations in the form of a polynomial or a series of some set of functions.

Remark 3: It is obvious from the form of expression (1.2) that the family of first integrals, which corresponds to above representation, shall have the form:

$$
V=\sum_{l, p=1}^{k} b_{l p}(x, t, \lambda) \varphi_{l} \varphi_{p}+\sum_{l, p, q=1}^{k} b_{l p q}(x, t, \lambda) \varphi_{l} \varphi_{p} \varphi_{q}+\ldots
$$

and if the expression (which begins from the quadratic form with respect to $\left.\varphi_{p}, \quad p=1, \ldots, k\right)$ is a sign-definite function with respect to φ_{p}, then, due to V.I.Zubov's theorem [2], it is possible to conclude on stability of the elements of our family of IMSMs.
Consider some examples related to application of the approach to some problems of mechanics.

II. ON INVARIANT MANIFOLDS OF KIRCHHOFF'S EQUATIONS

Consider the following equations of motion for a rigid body in fluid in Sokolov's case [1]:

$$
\begin{align*}
& \dot{s}_{1}=-\alpha^{2} r_{2} r_{3}-\alpha r_{1} s_{2}-\left(\beta r_{3}-s_{2}\right)\left(\beta r_{2}-s_{3}\right), \\
& \dot{s}_{2}=\left(\alpha^{2}+\beta^{2}\right) r_{1} r_{3}-\left(\alpha r_{1}+\beta r_{2}\right) s_{1}+\left(\alpha r_{3}-s_{1}\right) s_{3}, \\
& \dot{s}_{3}=\left(\beta r_{1}-\alpha r_{2}\right) s_{3}, \\
& \dot{r}_{1}=r_{2}\left(\alpha r_{1}+\beta r_{2}+2 s_{3}\right)-r_{3} s_{2}, \\
& \dot{r}_{2}=r_{3} s_{1}-r_{1}\left(\alpha r_{1}+\beta r_{2}+2 s_{3}\right), \\
& \dot{r}_{3}=r_{1} s_{2}-r_{2} s_{1} . \tag{2.5}
\end{align*}
$$

These equations possess 2 first integrals:

$$
\begin{aligned}
& 2 H=s_{1}^{2}+s_{2}^{2}+2 s_{3}^{2}+2\left(\alpha r_{1}+\beta r_{2}\right) s_{3}- \\
& \quad\left(\alpha^{2}+\beta^{2}\right) r_{3}^{2}=2 h, \\
& 2 V=\left(\alpha^{2}+\beta^{2}\right)\left(r_{1} s_{1}+r_{2} s_{2}\right)^{2}+ \\
& \quad 2\left(r_{1} s_{1}+r_{2} s_{2}\right) s_{3} \times\left(\alpha s_{1}+\beta s_{2}\right)+ \\
& \quad s_{3}^{2}\left(s_{1}^{2}+s_{2}^{2}+\left(\alpha r_{1}+\beta r_{2}+s_{3}\right)^{2}\right)=c .
\end{aligned}
$$

The variables $s_{i}, r_{i}, \quad i=1,2,3$ are linear forms of the projections of the body's mass center velocity vector and of the vector of its angular rate. It can be readily seen from the structure of integral V that the use of the functions

$$
\varphi_{1}=r_{1} s_{1}+r_{2} s_{2}, \quad \varphi_{2}=s_{3},
$$

allows one to represent the first integral in the following form:

$$
\begin{aligned}
2 \tilde{V}= & \left(\alpha^{2}+\beta^{2}\right) \varphi_{1}^{2}+2\left(\alpha s_{1}+\beta s_{2}\right) \varphi_{1} \varphi_{2}+\left(s_{1}^{2}+s_{2}^{2}+\right. \\
& \left.\left(\alpha r_{1}+\beta r_{2}\right)^{2}\right) \varphi_{2}^{2}+2\left(\alpha s_{1}+\beta s_{2}\right) \varphi_{2}^{3}+\varphi_{2}^{4} .
\end{aligned}
$$

Partial derivatives of the first integral \tilde{V} with respect to the phase variables with the precision up to the first-order terms with respect to φ_{1}, φ_{2} may be written as:

$$
\begin{align*}
\frac{\partial \tilde{V}}{\partial s_{1}}= & \left(\alpha^{2}+\beta^{2}\right) r_{1} \varphi_{1}+\ldots, \\
\frac{\partial \tilde{V}}{\partial s_{2}}= & \left(\alpha^{2}+\beta^{2}\right) r_{2} \varphi_{1}+\ldots, \\
\frac{\partial \tilde{V}}{\partial s_{3}}= & \left(\alpha s_{1}+\beta s_{2}\right) \varphi_{1}+\left(s_{1}^{2}+s_{2}^{2}\right. \\
& \left.+\left(\alpha r_{1}+\beta r_{2}\right)^{2}\right) \varphi_{2}+\ldots, \\
\frac{\partial \tilde{V}}{\partial r_{1}}= & \left(\alpha^{2}+\beta^{2}\right) s_{1} \varphi_{1}+\ldots, \\
\frac{\partial \tilde{V}}{\partial r_{2}}= & \left(\alpha^{2}+\beta^{2}\right) s_{2} \varphi_{1}+\ldots, \\
\frac{\partial \tilde{V}}{\partial r_{3}}= & 0 . \tag{2.6}
\end{align*}
$$

Obviously, there exists the second order minor for the matrix of the linear part of the system (2.6) with respect to variables φ_{1}, φ_{2}, which is not identically zero on the manifold $\varphi_{1}=\varphi_{2}=0$. This minor writes:

$$
\begin{gathered}
\Delta_{2}=s_{2}\left(\left(\alpha^{2}+\beta^{2}\right)\left(s_{1}^{2}+s_{2}^{2}+r_{2}^{2} s_{1}^{-2}\left(\beta s_{1}-\alpha s_{2}\right)^{2}\right)\right. \\
\left.-\left(\alpha s_{1}+\beta s_{2}\right)^{2}\right)
\end{gathered}
$$

Then, according to Theorem 1, the manifold $\varphi_{l}=\varphi_{2}=0$ is the IMSM of the system of differential equations (2.5). The vector field on the invariant manifold $\varphi_{2}=s_{3}=0$ has the form:

$$
\begin{array}{r}
\dot{s}_{1}=-\left(\alpha^{2}+\beta^{2}\right) r_{2} r_{3}+\left(\alpha r_{1}+\beta r_{2}\right) s_{2}, \\
\dot{r}_{1}=r_{2}\left(\alpha r_{1}+\beta r_{2}\right)-r_{3} s_{2}, \\
\dot{s}_{2}=\left(\alpha^{2}+\beta^{2}\right) r_{1} r_{3}-\left(\alpha r_{1}+\beta r_{2}\right) s_{1}, \\
\dot{r}_{2}=r_{3} s_{1}-r_{1}\left(\alpha r_{1}+\beta r_{2}\right), \\
\dot{r}_{3}=r_{1} s_{2}-r_{2} s_{1} . \tag{2.7}
\end{array}
$$

The latter equations have the first integral:

$$
W=r_{1} s_{1}+r_{2} s_{2}=\mathrm{const}
$$

Consequently, the IMSM obtained above may be interpreted geometrically as an intersection of the invariant hyperplane $s_{3}=0$ and the hypersurface of the first integral

$$
\tilde{W}=r_{1} s_{1}+r_{2} s_{2}+r_{3} s_{3}=0
$$

Investigation of a set, on which the determinant Δ_{2} turns zero, allows one to obtain degenerate invariant manifolds (submanifolds), which belong to the invariant manifold $\varphi_{1}=$ $r_{1} s_{1}+r_{2} s_{2}=0, \quad \varphi_{2}=s_{3}=0$.

Since the expression obtained above for Δ_{2} may be written as

$$
\Delta_{2}=s_{2} s_{1}^{-2}\left(\beta s_{1}-\alpha s_{2}\right)^{2}\left(\left(\alpha^{2}+\beta^{2}\right) r_{2}^{2}+s_{1}^{2}\right)
$$

then one of the degenerate invariant manifolds, which lies on the IMSM $\varphi_{l}=\varphi_{2}=0$, is defined by the following system of equations:

$$
r_{1} s_{1}+r_{2} s_{2}=0, \quad s_{3}=0, \quad \beta s_{1}-\alpha s_{2}=0
$$

which may be complemented with the following equation:

$$
\left(\beta r_{1}-\alpha r_{2}\right)=0
$$

The latter represents a condition of existence of a nontrivial solution for s_{1} and s_{2} of the first two equations of our manifold. The vector field on this invariant manifold has the form:

$$
\dot{r_{1}}=r_{2}\left(\alpha r_{1}+\beta r_{2}\right), \quad \dot{r_{2}}=-r_{1}\left(\alpha r_{1}+\beta r_{2}\right) .
$$

It can easily be verified that this system of differential equations has the first integral:

$$
W_{1}=r_{1}^{2}+r_{2}^{2}=\text { const } .
$$

Due to the known Lyapunov's theorem, the integral allows one to state that the trivial solution $r_{1}=r_{2}=0$ of the latter
system (2.7) is stable. Hence, there is a stable trivial solution lying on the invariant manifold
$r_{1} s_{1}+r_{2} s_{2}=0, \beta s_{1}-\alpha s_{2}=0, s_{3}=0 .\left(\beta r_{1}-\alpha r_{2}\right)=0$
Consider now the following family of the problem's first integrals:

$$
\begin{gathered}
2 K=2 \lambda_{0} H-\lambda V=2 \lambda_{0}\left(s_{1}^{2}+s_{2}^{2}+2 s_{3}^{2}\right. \\
\left.+2\left(\alpha r_{1}+\beta r_{2}\right) s_{3}-\left(\alpha^{2}+\beta^{2}\right) r_{3}^{2}\right)- \\
\lambda\left[\left(\alpha^{2}+\beta^{2}\right)\left(r_{1} s_{1}+r_{2} s_{2}\right)^{2}+2\left(r_{1} s_{1}+r_{2} s_{2}\right) s_{3}\left(\alpha s_{1}+\beta s_{2}\right)\right. \\
\left.+s_{3}^{2}\left(s_{1}^{2}+s_{2}^{2}+\left(\alpha r_{1}+\beta r_{2}+s_{3}\right)^{2}\right)\right]
\end{gathered}
$$

and write down stationary conditions for the latter expression:

$$
\begin{gathered}
\frac{\partial K}{\partial s_{1}}=\lambda_{0} s_{1}-\lambda\left\{s_{1}\left[\left(\alpha^{2}+\beta^{2}\right) r_{1}^{2}+2 \alpha r_{1} s_{3}+s_{3}^{2}\right]\right. \\
\left.+s_{2}\left[\left(\alpha^{2}+\beta^{2}\right) r_{1} r_{2}+s_{3}\left(\beta r_{1}+\alpha r_{2}\right)\right]\right\}=0, \\
\frac{\partial K}{\partial s_{2}}=\lambda_{0} s_{2}-\lambda\left\{s_{1}\left[\left(\alpha^{2}+\beta^{2}\right) r_{1} r_{2}+s_{3}\left(\beta r_{1}+\alpha r_{2}\right)\right]\right. \\
\left.+s_{2}\left[\left(\alpha^{2}+\beta^{2}\right) r_{2}^{2}+2 \beta r_{2} s_{3}+s_{3}^{2}\right]\right\}=0, \\
\frac{\partial K}{\partial s_{3}}=\lambda_{0}\left(2 s_{3}+\alpha r_{1}+\beta r_{2}\right)-\lambda\left\{s_{1}\left[r_{1}\left(\alpha s_{1}+\beta s_{2}\right)+s_{1} s_{3}\right]\right. \\
+s_{2}\left[\left(r_{2}\left(\alpha s_{1}+\beta s_{2}\right)+s_{2} s_{3}\right]+\right. \\
\left.\left(2 s_{3}+\alpha r_{1}+\beta r_{2}\right)\left[\lambda_{0}-\lambda\left(s_{3}+\alpha r_{1}+\beta r_{2}\right) s_{3}\right]\right\}=0, \\
\frac{\partial K}{\partial r_{1}}=-\lambda s_{1}^{2}\left[\left(\alpha^{2}+\beta^{2}\right) r_{1}+\alpha s_{3}\right]-\lambda s_{2} s_{1}\left[\left(\alpha^{2}+\beta^{2}\right) r_{2}+\beta s_{3}\right]+ \\
\alpha s_{3}\left[\lambda_{0}-\lambda\left(s_{3}+\alpha r_{1}+\beta r_{2}\right) s_{3}\right]=0, \\
\frac{\partial K}{\partial r_{2}}=-\lambda s_{1} s_{2}\left[\left(\alpha^{2}+\beta^{2}\right) r_{1}+\alpha s_{3}\right] \\
\quad-\lambda s_{2}^{2}\left[\left(\alpha^{2}+\beta^{2}\right) r_{2}+\beta s_{3}\right]+ \\
\beta s_{3}\left[\lambda_{0}-\lambda\left(s_{3}+\alpha r_{1}+\beta r_{2}\right) s_{3}\right]=0 \\
\frac{\partial K}{\partial r_{3}}=-\lambda_{0}\left(\alpha^{2}+\beta^{2}\right) r_{3}=0 .
\end{gathered}
$$

If the denotations $\varphi_{1}=s_{1}, \varphi_{2}=s_{2}, \varphi_{3}=r_{3}, \varphi_{4}=$ $\lambda_{0}-\lambda\left(s_{3}+\alpha r_{1}+\beta r_{2}\right) s_{3}$ are introduced, then the latter equations assume the form of equations (1.2). The transposed matrix of coefficients for the linear part of the system on the manifold $\varphi_{i}=0, \quad i=1, \ldots, 4$, has the form:

$$
\left(\begin{array}{cccccc}
A & B & 0 & 0 & 0 & 0 \\
B & C & 0 & 0 & 0 & 0 \\
0 & 0 & D & \alpha s_{3} & \beta s_{3} & 0 \\
0 & 0 & 0 & 0 & 0 & -\left(\alpha^{2}+\beta^{2}\right)
\end{array}\right)
$$

where:

$$
\begin{gathered}
A=\lambda_{0}-\lambda\left[\left(\alpha^{2}+\beta^{2}\right) r_{1}^{2}+2 \alpha r_{1} s_{3}+s_{3}^{2}\right], \\
B=-\lambda\left[\left(\alpha^{2}+\beta^{2}\right) r_{1} r_{2}+s_{3}\left(\beta r_{1}+\alpha r_{2}\right)\right], \\
C=\lambda_{0}-\lambda\left[\left(\alpha^{2}+\beta^{2}\right) r_{2}^{2}+2 \beta r_{2} s_{3}+s_{3}^{2}\right], \\
D=\left(2 s_{3}+\alpha r_{1}+\beta r_{2}\right) .
\end{gathered}
$$

Since the rank of our matrix is 4 on the manifold under scrutiny, the equations

$$
\begin{equation*}
s_{1}=s_{2}=r_{3}=0, \lambda_{0}-\lambda\left(s_{3}+\alpha r_{1}+\beta r_{2}\right) s_{3}=0 \tag{2.8}
\end{equation*}
$$

due to Theorem 1 define a family of IMSMs for differential equations (2.5) of the body's motion.

Likewise in the example considered above, it can readily be verified that the equations

$$
s_{1}=s_{2}=r_{3}=0
$$

define the invariant manifold (IM) of system (2.5). The vector field on the given IM writes

$$
\begin{aligned}
\dot{s}_{3} & =\left(\beta r_{1}-\alpha r_{2}\right) s_{3}, \quad \dot{r}_{1}=r_{2}\left(\alpha r_{1}+\beta r_{2}+2 s_{3}\right), \\
\dot{r}_{2} & =-r_{1}\left(\alpha r_{1}+\beta r_{2}+2 s_{3}\right) .
\end{aligned}
$$

The latter differential equations have the first integral:

$$
U=\left(s_{3}+\alpha r_{1}+\beta r_{2}\right) s_{3}=\text { const } .
$$

So, the family of IMSMs obtained above is the intersection of the hyperplane $s_{1}=s_{2}=r_{3}=0$ and the family of hypersurfaces corresponding to the first integral of energy H for arbitrary value of constant h.

It is obvious from the form of the matrix of coefficients that the rank of some part of submatrices of the matrix can decrease under some additional constraints imposed on the problem's variables. This takes place, for example, when $s_{3}=0$. It can easily be verified that under the above constraint and for $\lambda_{0}=0$ we obtain the following invariant manifold for the system of differential equations (2.5):

$$
\begin{equation*}
s_{1}=s_{2}=r_{3}=s_{3}=0 \tag{2.9}
\end{equation*}
$$

Obviously, IM (2.9) is a submanifold of the family of IMSMs (10). The vector field on the given IM writes:

$$
\dot{r}_{1}=r_{2}\left(\alpha r_{1}+\beta r_{2}\right), \quad \dot{r}_{2}=-r_{1}\left(\alpha r_{1}+\beta r_{2}\right)
$$

There is a stable equilibrium position $r_{1}=r_{2}=0$ on the IM (2.9). In this case, this result may be interpreted as conditional stability of the body's equilibrium position with respect to some part of the variables r_{1}, r_{2}.

III. ON INVARIANT MANIFOLDS OF THE KOVALEVSKAYA TOP

As shown above, in some cases, the procedure of finding IMSMs proposed allows one to obtain sufficient conditions of stability for the IMSMs obtained by Lyapunov's second method. For example, in the case of the Kovalevskaya top, the equations of motion

$$
\begin{align*}
& 2 \dot{p}=q r, \quad 2 \dot{q}=-p r+x_{0} \gamma_{3}, \quad \dot{r}=-x_{0} \gamma_{2}, \\
& \dot{\gamma_{1}}=r \gamma_{2}-q \gamma_{3}, \quad \dot{\gamma_{2}}=p \gamma_{3}-r \gamma_{1}, \\
& \dot{\gamma_{3}}=q \gamma_{1}-p \gamma_{2} \tag{3.10}
\end{align*}
$$

have the Kovalevskaya first integral:

$$
2 V=\left(p^{2}-q^{2}-x_{0} \gamma_{1}\right)^{2}+\left(2 p q-x_{0} \gamma_{2}\right)^{2} .
$$

Assuming

$$
\varphi_{1}=p^{2}-q^{2}-x_{0} \gamma_{1}, \quad \varphi_{2}=2 p q-x_{0} \gamma_{2},
$$

we can obtain the following representation for the integral:

$$
\begin{equation*}
2 V=\varphi_{1}^{2}+\varphi_{2}^{2} \tag{3.11}
\end{equation*}
$$

The conditions of stationarity for this integral with respect to the variables $p, q, r, \gamma_{1}, \gamma_{2}, \gamma_{3}$ write:

$$
\begin{aligned}
& \frac{\partial V}{\partial p}=2 \varphi_{1} p+2 \varphi_{2} q=0, \frac{\partial V}{\partial q}=-2 \varphi_{1} q+2 \varphi_{2} p=0 \\
& \frac{\partial V}{\partial \gamma_{1}}=-\varphi_{1} x_{0}=0, \frac{\partial V}{\partial \gamma_{2}}=-\varphi_{1} x_{0}=0
\end{aligned}
$$

It can readily be seen, the rank of the matrix of coefficients for φ_{1}, φ_{2} in the expressions of the partial derivatives of V with respect to phase variables is 2 . So, according to Theorem 1, the manifold $\varphi_{1}=0, \varphi_{2}=0$ is the IMSM of the differential equations (3.10) of motion for a rigid body (these are well-known Delone invariant manifolds). Since integral (3.11) is a sign-definite function of φ_{1}, φ_{2}, this IMSM is stable.

References

1. Sokolov V.V. A new integrable case of Kirchhoff's equations // Theoretical and Mathematical Physics, 2001, Vol. 129, No.1, pp.1335-1340.
2. Zubov V.I. Oscillations and Waves.- Leningrad: Leningrad University Publishing, 1986.- 415 p.
3.Levi-Civita T., Amaldi U. Lezioni di Meccanica Rasionale.- Bologna, 1926.- 436 p.
