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Abstract
A stochastic optimization problem with incomplete

information is considered. Optimal solutions are se-
lected using the minimax quantile criterion. This prob-
lem is related to a confidence estimation problem for
a random vector with incompletely known distribution.
Generalized confidence regions are used as confidence
estimates for a statistically uncertain vector. The quan-
tile stochastic optimization problem under incomplete
information is solved by means of an optimal choice of
a generalized confidence region.
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1 Introduction
Stochastic optimization problems with with incom-

plete information about distributions of random pertur-
bations were studied in [Birge,Wets, 1997; Ermoliev,
Gaivoronski and Neveda, 1986; Dupacova, 1986].
In this paper we deal with a quantile optimization

problem under uncertainty. Stochastic optimization
problems with the quantile criterion were studied in
[Precopa, 1995; Kibzun, Kan, 1996]. The estimation
problems for statistically uncertain systems were con-
sidered in [Kurzanski, Tanaka, 1989; Matasov, 1999;
Kats, Timofeeva, 1995].
The quantile optimization problem is related to the

confidence estimation problem. There are many confi-
dence regions for a given random vector corresponding
to the same probability level, so the confidence esti-
mation problem is usually reformulated as the problem
with quantile criterion. On the other hand a quantile
optimization problem may be reduced to the general-
ized minimax problem by an appropriate choice of the
confidence set for random perturbations.
In the paper two connected problems are studied:

– to define and to construct generalized confidence

regions for a random vector with incompletely
known distribution;

– to solve the quantile optimization problem depended
on both random and uncertain nonrandom param-
eters.

2 Problem statement
Let us consider a quantile optimization problem un-

der incomplete information on the random parameter
distribution. Let ξ̃(ω,Kµ) be a random vector with
incompletely known distribution, i.e. its distribution
function µ(·) is unknown and belongs to the set of pos-
sible distributions Kµ.
A function F (u, ξ̃(ω,Kµ)) is to be minimized on
u ∈ U . Here U is a set of all possible solutions u,
the function F (u, y) is measurable with respect to y
for any u ∈ U .
Let consider a quantile criterion for the stochastic op-

timization problem:

q̃α(u)→ min, u ∈ U, (1)

where q̃α(u) is the worst quantile:

q̃α(u) = min{q : P{F (u, ξ̃(ω,Kµ)) ≤ q} ≥ α},

P{ξ̃(ω,Kµ) ∈ B} , inf
µ(·)∈Kµ

P{ξ(ω, µ(·)) ∈ B}.

We assume further that the measure µ(·) depends on
the uncertain parameter z and the set Kµ has the form:
Kµ = {µ(·, z) | z ∈ Z}, where Z ∈ Rm is a given
compact set of possible values of the parameter z.
In this case the generalized quantile problem (1) may

be rewritten as

max
z∈Z

qα(u, z)→ min, u ∈ U, (2)



qα(u, z) = min{q : P{F (u, ξ(ω, z)) ≤ q} ≥ α}.

The problem (2) is a quantile optimization problem de-
pended on a random perturbation with a known distri-
bution and on an uncertain parameter.
For example, let us consider a quantile optimization

problem (2) for a function F (u, ξ̃(ω,Z)), where

F (u, y) = max
j=1,...,k

ψj(u, y),

ψj(u, y) = aTj u− cTj y − bj ,

ξ̃(ω,Z) = {η(ω) + z | z ∈ Z},

(3)

η(ω) is a Gaussian random vector with known statisti-
cal moments, z ∈ Z is an uncertain parameter, Z ⊂ Rn
is a given convex compact set, aj ∈ Rl, cj ∈ Rn,
bj ∈ R1 are given vectors.
The quantile optimization problem (2)–(3) is rather

complicated since the quantile function is not convex
or concave [Precopa, 1995]. It is known that a quan-
tile optimization problem cannot be considered as the
statistical moment problem.
If we solve the probability optimization problem for

arbitrary q:

max
u∈Rn

min
z∈Z

αq(u, z),

αq(u, z) = P{F (u, z + η(ω)) ≤ q},
(4)

then we could get [Timofeeva, 2007] a solution of the
quantile minimization problem. There are special al-
gorithms [Szantai, 1988] to calculate and estimate the
probability P{η(ω) ∈ K} for the polyhedron K ⊂
Rn. In the considered problem (3) this polyhedron is
defined by equation

K = K(u, z, q) = {y ∈ Rn : F (u, z + y) ≤ q}.

The probability optimization problem (4) may be
solved as the generalized moment problem with uncer-
tainty on the base of methods and algorithms proposed
in [Ermoliev, Gaivoronski and Neveda, 1986]. But this
approach demands a significant volume of calculations.
The proposed approach allows to find a suboptimal

solution of the quantile optimization problem and to
estimate the optimal quantile.

3 Properties of the generalized confidence sets
Let us definite a notion of a statistically uncertain ran-

dom vector and consider its confidence estimate.

Definition 1. [Timofeeva, 2002] A map ξ̃(ω,Z) :
Ω × Z → Rn is called a statistically uncertain ran-
dom vector if:

1. the function ξ(ω, z) is a random vector for any
fixed z ∈ Z, i.e. the set {ω : ξ(ω, z) ∈ B} ∈ A is
measurable for any B ∈ B(n), z ∈ Z;

2. the probability Pz(B) = P{ξ(ω, z) ∈ B} is a
continuous function with respect to z for any fixed
B ∈ B(n);

3. the set Z is a compact set consisted of more than
one point.

Let ξ̃(ω,Z) be a statistically uncertain continuous ran-
dom vector, {Xα

z | z ∈ Z} be a family of confidence
sets with the level α, i.e. for any Xα

z the relation

P{ξ(ω, z) ∈ Xα
z } = α

holds. Denote by X̂α the union of the confidence sets

X̂α =
⋃
z∈Z

Xα
z . (5)

Usually the union X̂α of confidence regions corre-
sponding to all permissible distributions is taken as a
confidence region in statistically uncertain case. It is
shown in [Timofeeva, 2002] that this estimator may be
improved in the most cases by means of generalized
confidence regions.

Definition 2. A measurable set X̃α ⊂ R(n) is called
a generalized confidence set with level α for a statisti-
cally uncertain random vector ξ̃(ω,Z), if

P{ξ̃(ω,Z) ∈ X̃α} = min
z∈Z

P{ξ(ω, z) ∈ X̃α} = α.

Generalized confidence sets (as well as standard con-
fidence sets) are not uniquely defined: there are
many generalized confidence regions corresponding to
a fixed probability α.

Theorem 1. If the union X̂α of the confidence sets is
a measurable set then it is a generalized confidence set
with a level α1 ≥ α for the statistically uncertain con-
tinuous random vector ξ̃(ω,Z). The equality α1 = α
holds if and only if there exists a parameter z∗ ∈ Z
such that

P{ξ(ω, z∗) ∈ X̂α} = α. (6)

Proof. The equality X̂α =
⋃
z∈Z

Xα
z implies the rela-

tion

min
z∈Z

P{ξ(ω, z) ∈ X̂α} ≥ min
z∈Z

P{ξ(ω, z) ∈ Xα
z } = α.

It means that X̂α is the generalized confidence set with
a level α1 ≥ α. If we can find z∗ such that (6) holds,
then

α1 = P{ξ̃(ω,Z) ∈ X̂α} ≤ P{ξ(ω, z∗) ∈ X̂α} = α,



and therefore α1 = α.
Let for all z ∈ Z, the inequality P{ξ(ω, z) ∈ X̂α} <
α holds. The set Z is closed and the probability
P{ξ(ω, z) ∈ X̂α} continuously depends on z since
ξ̃(ω,Z) is statistically uncertain random vector. Thus

min
z∈Z

P{ξ(ω, z) ∈ X̂α} < α,

and X̂α is a confidence set with the level α1 < α. �
For the same statistically uncertain vector a union of

confidence sets may be a generalized confidence set
with the same probability level or with a greater level.
It depends on the forms of the confidence sets.

Theorem 2. Let X̃α be the generalized confidence set
with the level α for the statistically uncertain random
vector ξ̃(ω,Z) then there are confidence sets X∗α(z)
with the level α such that

1. P{ξ(ω, z) ∈ X∗α(z)} = α for any z ∈ Z;
2.

⋃
z∈Z

X∗α(z) = X̃α;

3. there is z∗ ∈ Z such that X∗α(z∗) = X̃α.

Proof. The third condition follows from definition of
the generalized confidence set: if P{ξ̃(ω,Z) ∈ X̃α} =
α, then

min
z∈Z

P{ξ(ω, z) ∈ X̃α} = α.

Denote by z∗ ∈ Z the minimizer of the probability, i.e.

P{ξ(ω, z∗) ∈ X̃α} = min
z∈Z

P{ξ(ω, z) ∈ X̃α} = α.

It means that X̃α is a confidence set with the level α for
ξ(ω, z∗) and the second condition holds. Let us choose
any z1 ∈ Z and denote

α1(z1) = P{ξ(ω, z1) ∈ X̃α} ≥ α.

If α1(z1) = α then we choose X∗α(z1) = X̃α.
If α1(z) > α then we can find a measurable set
X∗α(z1) ⊂ X̃α such that P{ξ(ω, z1) ∈ X∗α(z1)} = α
since the random vector ξ(ω, z) has continuous distri-
bution. Thus we have constructed a family ofX∗α(z) ⊂
X̃α such that

⋃
z∈Z

X∗α(z) = X̃α. �

The next statement [Timofeeva, 2002] follows from the
properties of the probability function.

Theorem 3. Let ξ̃(ω, z) = {z + η(ω) | z ∈ Z} be a
statistically uncertain vector and the following condi-
tions hold:

1. η(ω) is a continuous random vector with a given
density function fη(x);

2. fη(x) > 0 for all x ∈ Rn;
3. Z ⊂ Rn is a given convex compact set;
4. Bα is a convex compact confidence region with a

level α ∈ (0.5; 1) for η(ω): P{η(ω) ∈ Bα} = α;
5. 0 ∈ int(B), where int(B) is the set of all interior

points of B.

Then there exists ε ∈ (0, 1) such that the set Z + εBα
is a generalized confidence region of probability α for
ξ̃(ω,Z).

The following simple example illustrates the proper-
ties of generalized confidence regions.

Example 1. Let

ξ̃(ω,Z) = {z + η(ω) | z ∈ Z},

where Z is the the interval Z = [−a, a], η(ω) is a nor-
mal distributed random value with given statistical mo-
ments: Eξ = 0, Eξ2 = σ2.
The set Xα(0) = [−t0.5ασ, t0.5ασ], is a confidence

set for η(ω) with probability α. Here

Φ(tα) = α, Φ(t) =
1√
2π

∫ z

0

e−
z2
2 dz.

The sets

Xα(z) = z +Xα(0), z ∈ Z

are confidence sets with the level α for ξ(ω, z) = z +
η(ω), but

X̂α =
⋃
z∈Z

Xα(z) = Z +Xα(0)

is not a generalized confidence set with the same level
for ξ̃(ω,Z) since

min
z∈[−a,a]

P{z + η(ω) ∈ X̂α} > α.

Let us construct a symmetrical confidence set X∗α(z)
for ξ(ω, z). The set

X∗α(z) = [−|z| −∆α; |z|+ ∆α]

is a confidence set with the level α if

∆α = σgal(α, σ−1|z|)

and g = gal(α, v) is the root of the equation

Φ(g + 2v) + Φ(g) = α. (7)



From the inclusion X∗α(z1) ⊂ X∗α(z2) for |z2| > |z1|,
it follows that

⋃
z∈Z

X∗α(z) = X∗α(max
z∈Z
|z|) = X∗α(a),

and the generalized confidence set is

X̃α = [−σgal(α, σ−1a)− a, a+ σgal(α, σ−1a)].

The function gal(α, v) increases on α and decreases on
v. Since Φ(g) < Φ(g + 2v) < 0.5 then from (7) it
follows that tα−0.5 < gal(α, v) < tα/2 for all v > 0.
Therefore

X̃α ⊂ X̂α = Z +Xα(0).

On the other hand, if we take one-sided confidence re-
gions Yα(0) = [−∞, tα−0.5σ] for η(ω), then the union

Ŷα =
⋃
z∈Z

(z + Yα(0)) = Z + Yα(0)

is the generalized confidence set with probability α for
ξ̃(ω,Z):

min
z∈

P{ξ̃(ω,Z) ∈ Ŷα} = α.

The generalized confidence sets for Gaussian n-vector
with the incompletely known mean value have the same
properties [Timofeeva, 2002].

4 Statistically uncertain quantile optimization
problem

Properties of the optimal quantile for stochastic op-
timization problem with complete information about
distributions were studied in [Precopa, 1995; Kibzun,
Kan, 1996].

Lemma 1. [Kibzun, Kan, 1996] Let η(ω) be a con-
tinuously distributed random n-vector and F (y) be a
measurable function Rn → R1, then the quantile

q∗α = min{q : P{F (η(ω)) ≤ qα} ≥ α

satisfies the relation

q∗α = min
Eα∈Eα

max
y∈Eα

F (y), (8)

where Eα is the family of all confidence sets with level
not less than α for η(ω):

Eα = {Eα ∈ B(n) : P{η(ω) ∈ Eα} ≥ α}. (9)

Lemma 2. [Kibzun, Kan, 1996] Let a function
F (v, y) be continuous on V ×Rn, V ⊂ Rl be a closed
set and

P{|F (v, η(ω))− q| ≤ ε} > 0 (10)

for all v ∈ V, q ∈ (q−(v), q+(v)), where

q−(v) = inf
y∈Rn

F (v, y), q+(v) = sup
y∈Rn

F (v, y)

Then quantile qα(v) is continuous with respect to v for
all α ∈ (0; 1).

Let us return to the stochastic optimization problem
(2) with the quantile criterion and incomplete informa-
tion.
Let ξ(ω, z) = ϕ(η(ω), z) for all z ∈ Z, where the

function ϕ(y, z) is measurable on y and continuous on
z, η(ω) is a random vector with a given continuous
distribution, then F (u, ϕ(y, z)) = F1(u, z, y) and the
quantile optimization problem (2) has a form:

max
z∈Z

qα(u, z)→ min, u ∈ U, (11)

qα(u, z) = min{q : P{F1(u, z, η(ω)) ≤ q} ≥ α}.

Theorem 4. Let η(ω) be a continuous random vector,
Z ⊂ Rm be a compact set and the conditions of Lemma
2 are carry out for the function F1(u, z, y) and v =
{u, z} ∈ U × Z = V . Then the optimal quantile in
problem (2)

q̃∗α = inf
u∈U

max
z∈Z

qα(u, z) (12)

is equal to

q̃∗α = inf
u∈U

max
z∈Z

min
Eα∈Eα

max
y∈Eα

F (u, y), (13)

where Eα is the family of confidence sets (9).

Proof. From equality (8) it follows that

qα(u, z) = min
Eα∈Eα

max
y∈Eα

F1(u, z, y).

Since the conditions of Lemma 2 hold then the quan-
tile function qα(u, z) is continuous on the compact set
Z and there exist an optimal vector z∗(u) such that
q(u, z∗(u)) = minz∈Z q(u, z).
Thus stochastic problem (2) is reduced to a gener-

alized minimax deterministic problem as it had been



made for quantile optimization problem with complete
information in [Kibzun, Kan, 1996]. �
The obtained problem (13) seems more difficult than

the initial quantile optimization problem (2). But
one can take an appropriate family of confidence sets
{E1

α(z) | z ∈ Z}, then solve the problem

q1α = inf
u∈U

max
z∈Z

max
y∈E1

α(z)
F1(u, z, y), (14)

and consider its solution u1 as a suboptimal solution
of the quantile optimization problem (2), and obtain an
estimate of the optimal quantile

q1α ≥ q̃∗α.

The problem is how to choose the family of the confi-
dence sets.
If we take the same confidence set for all z ∈ Z then
q1α ≥ q̂α, where

q̂α = inf
u∈U

min
Eα∈Eα

max
z∈Z

max
y∈Eα

F1(u, z, y). (15)

Criterion (15) was considered [Kibzun, Kan, 1996] for
the statistically uncertain quantile optimization prob-
lem.
Obviously an inequality

q̃∗α ≤ q̂α. (16)

is carried out.
Let us note that inequality (16) is as a rule a strict

inequality and formulate sufficient conditions for the
equality.

Theorem 5. Let the conditions of Theorem 4 hold and
for any u ∈ U there exists z∗ = z∗(u) ∈ Z such that

max
z∈Z

F1(u, z, y) = F1(u, z∗(u), y)

for all y ∈ Rn, then the minima of the criteria coincide:
q̃∗α = q̂α.

Proof. It follows from condition of the Theorem that

q̂α = inf
u∈U

min
Eα∈Eα

max
y∈Eα

max
z∈Z

F1(u, z, y) =

= inf
u∈U

min
Eα∈Eα

max
y∈Eα

F1(u, z∗(u), y) ≤

≤ inf
u∈U

max
z∈Z

min
Eα∈Eα

max
y∈Eα

F1(u, z, y) = q̃∗α.

Since the inequality q̃∗α ≤ q̂α is carried out in any case,
we get q̃∗α = q̂α. �

Example 2. Let us consider the problem of minimiza-
tion of the function

F1(u, z, η(ω)) = |z + u+ η(ω)|,

where z ∈ Z = [z0 − a, z0 + a] is the an incompletely
known parameter, u ∈ R1, η(ω) is a random pertur-
bation. Let η(ω) have the normal distribution with the
known parameters Eη = 0, Eη2 = σ2. We choose
a control according to the minimax quantile criterion
(12):

q̃∗α = min
u∈U

max
z∈Z

qα(u, z)

qα(u, z) = {q : P{|z + u+ η(ω)| ≤ q} ≥ α.}

According to Theorem 3 we have :

q̃∗α = min
u

max
z∈Z

min
Eα∈Eα

max
y∈Eα

|z + u+ y|.

From properties of the probability function [Kibzun,
Kan, 1996] it follows that the optimal value

qα(u, z) = min
E∈Eα

max
y∈E
|z + u+ y|

is reached on a symmetrical confidence set for any fixed
u, z. According to Example 1 we get

qα(u, z) = σgal(α, |u+ z| · σ−1) + |u+ z|

and

q̃∗α = min
u

max
z∈Z

(|u+ z|+ σgal(α, σ−1|u+ z|).

Since the quantile qα(u, z) = Qα(|u+z|) is monotone
with respect to v = |u + z| then the minimax value is
reached at the saddle point of the problem

min
u

max
z∈Z
|u+ z|,

i.e. at the point (u∗, z∗), where u∗ = −z0, z∗ = z0±a.
The optimal quantile is equal to

q̃∗α = a+ σgal(α, σ−1a).

If we consider the random and uncertain perturbations
together (see (15)), then

q̂α = min
u

min
Eα∈Eα

max
z∈Z

max
y∈Eα

|u+ z+ y| = a+ t0.5α ·σ.



In the considered problem

q̂α < q̃∗α for all a > 0, α ∈ (0.5, 1).

The similar effect is observed in the most stochastic
quantile optimization problems with uncertainty.
The optimization over confidence sets can be substi-

tuted by the optimization over generalized confidence
sets.

Theorem 6. Let ξ̃(ω,Z) be a statistically uncertain
continuous random vector, a function F (u, y) be con-
tinuous then

q̃∗α = inf
u∈U

min
Ẽα∈Ẽα

max
y∈Ẽα

F (u, y), (17)

where Ẽα ⊂ B(n) is the family of the generalized confi-
dence sets Ẽα with level not less than α:

Ẽα = {Ẽα ∈ B(n) : P{ξ̃(ω,Z) ∈ Ẽα} ≥ α}.

Proof. Any generalized confidence set Ẽα can be pre-
sented as a union of confidence sets E∗α(z) with the
same level. There is z∗ ∈ Z such that E∗α(z∗) = Ẽα
(see Theorem 2). Therefore for any fixed u ∈ U the
relation

min
Ẽα∈Ẽα

max
y∈Ẽα

F (u, y) = max
z∈Z

min
Eα∈Eα

max
y∈Eα

F (u, y)

holds. �
The Theorem 6 allows us to find an optimal family of

the confidence sets Eα(z) for the estimate (14) of the
optimal quantile.
The exact minimax solution of the minimax problem

(17) requires a significant calculations. But we can find
a suboptimal solution and estimate the optimal quan-
tile.
For example, let us consider again the quantile opti-

mization problem for function (3) and take a general-
ized confidence region Y 1

α of the given level α for sta-
tistically uncertain vector ξ̃(ω,Z) = {z + η(ω) | z ∈
Z}, e.g.:

Y 1
α = {y ∈ Rn : ‖y‖ ≤ r(α,Z)}

or Y 1
α = {y ∈ Rn : cTj y ≤ γj(α,Z) | j ∈ J}, where

J ⊂ {1, . . . , k}.
The optimal quantile is estimated by

q̃∗α(u) ≤ q1α(u1) = min
u∈U

max
y∈Y 1

α

F (u, y). (18)

Here u1 is the solution of a standard minimax problem:

q1(u1) = min
u∈U

max
y∈Y 1

α

F (u, y) = min
u∈U

max
j

max
y∈Y 1

α

ψj(u, y),

where the functions ψj(u, y) are linear with respect to
y and u. Of course, the estimate (18) depends on the
generalized confidence set Y 1

α and can be improved by
an appropriate choice of the set Y 1

α .

5 Conclusion
The quantile optimization for problem with incom-

plete information about random parameters distribu-
tions is considered. The problem is reduced to the prob-
lem of the optimal choice of generalized confidence re-
gion for statistically uncertain vector.
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