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Abstract

A stochastic optimization problem with incomplete
information is considered. Optimal solutions are se-
lected using the minimax quantile criterion. This prob-
lem is related to a confidence estimation problem for
arandom vector with incompletely known distribution.
Generalized confidence regions are used as confidence
estimates for a statistically uncertain vector. The quan-
tile stochastic optimization problem under incomplete
information is solved by means of an optimal choice of
a generalized confidence region.
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1 Introduction

Stochastic optimization problems with with incom-
plete information about distributions of random pertur-
bations were studied in [Birge,Wets, 1997; Ermoliev,
Gaivoronski and Neveda, 1986; Dupacova, 1986].

In this paper we deal with a quantile optimization
problem under uncertainty. Stochastic optimization
problems with the quantile criterion were studied in
[Precopa, 1995; Kibzun, Kan, 1996]. The estimation
problems for statistically uncertain systems were con-
sidered in [Kurzanski, Tanaka, 1989; Matasov, 1999,
Kats, Timofeeva, 1995].

The quantile optimization problem is related to the
confidence estimation problem. There are many confi-
dence regions for a given random vector corresponding
to the same probability level, so the confidence esti-
mation problem is usually reformulated as the problem
with quantile criterion. On the other hand a quantile
optimization problem may be reduced to the general-
ized minimax problem by an appropriate choice of the
confidence set for random perturbations.

In the paper two connected problems are studied:

— to define and to construct generalized confidence

regions for a random vector with incompletely
known distribution;

— to solve the quantile optimization problem depended
on both random and uncertain nonrandom param-
eters.

2 Problem statement

Let us consider a quantile optimization problem un-
der incomplete information on the random parameter
distribution. Let {(w, K,) be a random vector with
incompletely known distribution, i.e. its distribution
function p(-) is unknown and belongs to the set of pos-
sible distributions K ,.

A function F(u,&(w,kK,)) is to be minimized on
u € U. Here U is a set of all possible solutions u,
the function F'(u,y) is measurable with respect to y
foranyu € U.

Let consider a quantile criterion for the stochastic op-
timization problem:

Go(u) — min, u € U, (D
where g, (u) is the worst quantile:

Go(u) = min{q : P{F(u,é(w, K,)) < q} > a},

P{é(w. K,) € B} £

b PlE@, () € BY
We assume further that the measure (-) depends on
the uncertain parameter z and the set K, has the form:
K, ={u(,z2) | z € Z}, where Z € R™ is a given
compact set of possible values of the parameter z.
In this case the generalized quantile problem (1) may
be rewritten as

max ¢ (¢, z) — min, u € U, )
z€EZ



qa(u, z) = min{q : P{F(u,{(w, 2)) < ¢} > a}.

The problem (2) is a quantile optimization problem de-
pended on a random perturbation with a known distri-
bution and on an uncertain parameter.

For example, let us consider a quantile optimization
problem (2) for a function F(u,£(w, Z)), where

F(u,y) = j;rlla?fkwj(u,y%

Vj(u,y) = alu—cly—by, (3)

{w,2) ={nw) +=z|z€ 2},

n(w) is a Gaussian random vector with known statisti-
cal moments, z € Z is an uncertain parameter, Z C R"
is a given convex compact set, a; € RE, c; € R,
b; € R! are given vectors.

The quantile optimization problem (2)—(3) is rather
complicated since the quantile function is not convex
or concave [Precopa, 1995]. It is known that a quan-
tile optimization problem cannot be considered as the
statistical moment problem.

If we solve the probability optimization problem for
arbitrary ¢:

max min oy (u, 2
uER™ 2672 at2),

“4)
aq(u, z) = P{F(u,z + n(w)) < q},

then we could get [Timofeeva, 2007] a solution of the
quantile minimization problem. There are special al-
gorithms [Szantai, 1988] to calculate and estimate the
probability P{n(w) € K} for the polyhedron K C
R™. In the considered problem (3) this polyhedron is
defined by equation

K=K(u,2z,q) ={yeR": F(u,z+y) < q}.

The probability optimization problem (4) may be
solved as the generalized moment problem with uncer-
tainty on the base of methods and algorithms proposed
in [Ermoliev, Gaivoronski and Neveda, 1986]. But this
approach demands a significant volume of calculations.

The proposed approach allows to find a suboptimal
solution of the quantile optimization problem and to
estimate the optimal quantile.

3 Properties of the generalized confidence sets
Let us definite a notion of a statistically uncertain ran-
dom vector and consider its confidence estimate.

Definition 1. [Timofeeva, 2002] A map &(w,Z)
Q x Z — R" is called a statistically uncertain ran-
dom vector if:

1. the function £(w, z) is a random vector for any
fixed z € Z, i.e. the set {w : {(w,z) € B} € Ais
measurable for any B € B™, z € Z;

2. the probability P,(B) = P{{(w,z) € B} isa
continuous function with respect to z for any fixed
B e B™;

3. the set Z is a compact set consisted of more than
one point.

Let £(w, Z) be a statistically uncertain continuous ran-
dom vector, {X¢ | z € Z} be a family of confidence
sets with the level ¢, i.e. for any X3 the relation

P{g(w,2) € X} =a
holds. Denote by X, the union of the confidence sets

K= xe. 5)
z€Z

Usually the union X, of confidence regions corre-
sponding to all permissible distributions is taken as a
confidence region in statistically uncertain case. It is
shown in [Timofeeva, 2002] that this estimator may be
improved in the most cases by means of generalized
confidence regions.

Definition 2. A measurable set Xa c R™ s called
a generalized confidence set with level « for a statisti-
cally uncertain random vector £ (w, Z), if

P{é(w.2) € Xa} = min PE(w, 2) € Xa} = o

Generalized confidence sets (as well as standard con-
fidence sets) are not uniquely defined: there are
many generalized confidence regions corresponding to
a fixed probability a.

Theorem 1. If the union X, of the confidence sets is
a measurable set then it is a generalized confidence set
with a level ay > « for the statistically uncertain con-
tinuous random vector £(w, Z). The equality a; = «
holds if and only if there exists a parameter z* € Z
such that

P{¢(w,z") € X0} = o (6)

Proof. The equality X, = J X2 implies the rela-
z€Z
tion

IzréiélP{ﬁ(w,Z) € Xa} > Tzlggp{f(%z) €EXJ}=a

It means that X, is the generalized confidence set with
alevel a; > «. If we can find z* such that (6) holds,
then

o) = P{g(w,Z) € )A((,} < P{é(w,2%) € Xa} = q,



and therefore o = a.

Let for all z € Z, the inequality P{&(w, z) € X} <
« holds. The set Z is closed and the probability
P{{(w,2) € X, } continuously depends on z since
&(w, Z) is statistically uncertain random vector. Thus

néigp{f(w,z) € X,} <a,

and X’a is a confidence set with the level ay < . [

For the same statistically uncertain vector a union of
confidence sets may be a generalized confidence set
with the same probability level or with a greater level.
It depends on the forms of the confidence sets.

Theorem 2. Let X,, be the generalized confidence set
with the level o for the statistically uncertain random
vector £(w, Z) then there are confidence sets X (z)
with the level o such that

1. P{{(w,2) € X;(2)} = aforany z € Z;
2. U X3(2) = Xaos

z€Z ~
3. thereis z* € Z such that X (z*) = X,.

Proof. The third condition follows from deﬁnitNion of
the generalized confidence set: if P{¢(w, Z) € X,} =
«, then

in P Xo}=a.
miy P{E(w, 2) € Xo} = a
Denote by z* € Z the minimizer of the probability, i.e.

P{é(w,z") € Xa} = Igélélp{f(w,z) € on} = Q.

It means that X, is a confidence set with the level o for
&(w, z*) and the second condition holds. Let us choose
any z; € Z and denote

a1(z1) = P{€(w,21) € Xo} > a

If a1(z1) = o then we choose X*(z) = Xa.
If a1(z) > o then we can find a measurable set
X*(z1) C X, such that P{&(w,21) € XX(21)} = a
since the random vector £(w, z) has continuous distri-
bution. Thus we have constructed a family of X (z) C

X, such that

U Xi(z) =X, O
z€Z

The next statement [Timofeeva, 2002] follows from the
properties of the probability function.

Theorem 3. Let £(w,2) = {z +n(w) | 2 € Z} be a
statistically uncertain vector and the following condi-
tions hold:

1. n(w) is a continuous random vector with a given
density function f,(x);

. fo(x) > 0 forall z € R™;

Z C R™ is a given convex compact set;

4. B, is a convex compact confidence region with a
level oo € (0.5;1) for n(w): P{n(w) € By} = oy

5. 0 € int(B), where int(B) is the set of all interior
points of B.

w N

Then there exists € € (0,1) such that the set Z + £B,,
is a generalized confidence region of probability « for

&w,2).

The following simple example illustrates the proper-
ties of generalized confidence regions.

Example 1. Let

{w,Z) ={z+nw) |z},

where Z is the the interval Z = [—a, a], n(w) is a nor-
mal distributed random value with given statistical mo-
ments: B¢ =0, F¢2 =02

The set X,(0) = [—t0.540,t0.500], is a confidence
set for 77(w) with probability «.. Here

The sets
Xo(2) =2+ Xa(0), z€Z

are confidence sets with the level « for {(w, z) = z +
n(w), but

X, = UZXQ(Z) = Z + X,(0)

is not a generalized confidence set with the same level
for {(w, Z) since

min  P{z +nw) € Xo} > a.

z€[—a,al

Let us construct a symmetrical confidence set X (z)
for £(w, z). The set

Xo(2) = [zl — Aas |2 + Ad]
is a confidence set with the level « if
A, = ogal(a,ot|z|)

and g = gal(a, v) is the root of the equation

D(g + 20) + P(g9) = a. 7



From the inclusion X (z1) C X (z2) for |z2| > |#],
it follows that

U xi(z) = Xao(max|z]) = X2 (a),
z2EZ 8

and the generalized confidence set is

X, = [~ogal(a, 07 a) — a,a + ogal(a, 0 'a)].

The function gal(«, v) increases on « and decreases on
v. Since ®(g) < ®(g + 2v) < 0.5 then from (7) it
follows that ¢, 0.5 < gal(a,v) < t,/o forall v >0.
Therefore

Xo C Xy = Z + Xo(0).

On the other hand, if we take one-sided confidence re-
gions Y, (0) = [—00, to—0.50] for n(w), then the union

Yo = J(z+Ya(0) = Z + Y, (0)
z2€EZ

is the generalized confidence set with probability « for

¢(w, 2):

nzlienP{g(w,Z) eV, =a.

The generalized confidence sets for Gaussian n-vector
with the incompletely known mean value have the same
properties [Timofeeva, 2002].

4 Statistically uncertain quantile optimization
problem

Properties of the optimal quantile for stochastic op-

timization problem with complete information about

distributions were studied in [Precopa, 1995; Kibzun,

Kan, 1996].

Lemma 1. [Kibzun, Kan, 1996] Let n(w) be a con-
tinuously distributed random n-vector and F(y) be a
measurable function R™ — R, then the quantile

qo = min{q : P{F(n(w)) < ¢a} =
satisfies the relation

Go = jmin max F(y), ®)

where £, is the family of all confidence sets with level
not less than « for n(w):

Ea={Eq € B™ : P{n(w) € E4} > a}. (9)

Lemma 2. [Kibzun, Kan, 1996] Let a function
F(v,y) be continuous on V x R", V. C R! be a closed
set and

P{|F(v,n(w)) —¢q| <e} >0 (10)
forallv eV, q € (q—(v),q+(v)), where

Q—(U) = inf F(va)v q+(’U) = Sup F(Uay)
yeRn” yERn

Then quantile q,,(v) is continuous with respect to v for
all a € (0;1).

Let us return to the stochastic optimization problem
(2) with the quantile criterion and incomplete informa-
tion.

Let £(w,2) = p(n(w),z) for all z € Z, where the
function ¢(y, z) is measurable on y and continuous on
z, n(w) is a random vector with a given continuous
distribution, then F'(u, ¢(y,2)) = Fi(u,z,y) and the
quantile optimization problem (2) has a form:

ma;qa(u,z) — min,u € U, (11)
z€

da(u, z) = min{q : P{F1(u, z,n(w)) < q} > a}.

Theorem 4. Let n(w) be a continuous random vector,
Z C R™ be a compact set and the conditions of Lemma
2 are carry out for the function Fy(u,z,y) and v =
{u,2} € U x Z = V. Then the optimal quantile in
problem (2)

gt = inf a 12
Go = Inf maxga(u, 2) (12)

is equal to
Gy = inf max min max F(u,y), (13)

ueU z€Z E,€EL YyEE,

where E,, is the family of confidence sets (9).

Proof. From equality (8) it follows that

Golu,2) = Shin max Fi(u,z,y).

Since the conditions of Lemma 2 hold then the quan-
tile function ¢, (u, z) is continuous on the compact set
Z and there exist an optimal vector z*(u) such that
q(u, z*(u)) = min,cz q(u, 2).

Thus stochastic problem (2) is reduced to a gener-
alized minimax deterministic problem as it had been



made for quantile optimization problem with complete
information in [Kibzun, Kan, 1996]. O

The obtained problem (13) seems more difficult than
the initial quantile optimization problem (2). But
one can take an appropriate family of confidence sets
{EL(2) | z € Z}, then solve the problem

1 .
= inf max max Fj(u,z 14
Q(x el zeZ yEEé(z) 1( ) ay)v ( )

and consider its solution u' as a suboptimal solution

of the quantile optimization problem (2), and obtain an
estimate of the optimal quantile

qk > q.

The problem is how to choose the family of the confi-
dence sets.

If we take the same confidence set for all z € Z then
ql > Go. where

jo = inf min max max F(u, z,y). (15)
Qo= (U Eact., 265 yeb, (u,2,y)

Criterion (15) was considered [Kibzun, Kan, 1996] for
the statistically uncertain quantile optimization prob-
lem.

Obviously an inequality

do < da- (16)

is carried out.

Let us note that inequality (16) is as a rule a strict
inequality and formulate sufficient conditions for the
equality.

Theorem 5. Let the conditions of Theorem 4 hold and
forany u € U there exists z* = z*(u) € Z such that

max Fy(u, z,y) = F1(u, 2" (u),y)
z2€Z

forally € R™, then the minima of the criteria coincide:
q:; = (ja'
Proof. It follows from condition of the Theorem that

(o = inf min max max F} (u, z,y) =
@ uwelU Eq€€q yeE, z€Z ( ’ 7y)

= inf i F * <
Jnf min max Fy(u, 2" (u),y) <

< inf max min max Fy(u,z,y) = G~

uelU zeZ E €€y yeE,

Since the inequality ¢, < ¢, is carried out in any case,
we get G, = go. U

Example 2. Let us consider the problem of minimiza-
tion of the function

Fi(u, z,n(w)) = |2 +u+n(w)],

where z € Z = [29 — a, 29 + a] is the an incompletely
known parameter, v € R!, n(w) is a random pertur-
bation. Let 7(w) have the normal distribution with the
known parameters En = 0, En? = 2. We choose
a control according to the minimax quantile criterion

(12):

Jom .
= minmax u, z
Qo uelU zeZ QQ( ’ )

Ga(u,2) = {g: P{lz+u+n(w)[ < ¢t > a}
According to Theorem 3 we have :

¢, = minmax min max |z + u + y|.
‘ u 2€Z Eo€E4 yEE,

From properties of the probability function [Kibzun,
Kan, 1996] it follows that the optimal value

do(1,2) = min max|z+u+y

is reached on a symmetrical confidence set for any fixed
u, z. According to Example 1 we get

qo(u, 2) = ogal(a, |u+ 2| - o7) + |u + 2|
and

~%

@, = minmax(|u + z| + ogal(a, o |u + z|).
u  z2€Z

Since the quantile g, (u, z) = Qo (|u+ 2|) is monotone
with respect to v = |u + z| then the minimax value is
reached at the saddle point of the problem

min max |u + z|,
u  zEZ

i.e. at the point (u*, 2*), where u* = —zp, 2* = 29 ta.
The optimal quantile is equal to

i’ =a+ogal(a, 0 ta).

If we consider the random and uncertain perturbations
together (see (15)), then

(o = min min max max |[u+z+y| =a+tysa 0.
u E.€€y ze€Z yeE,



In the considered problem
Go < ¢4 forall a >0, «€ (0.5,1).

The similar effect is observed in the most stochastic
quantile optimization problems with uncertainty.

The optimization over confidence sets can be substi-
tuted by the optimization over generalized confidence
sets.

Theorem 6. Let £(w,Z) be a statistically uncertain
continuous random vector, a function F (u,y) be con-
tinuous then

*

¢» = inf min max F(u,y), (17)
u€U B, €€q yEEa

where &, C~B(”) is the family of the generalized confi-
dence sets E,, with level not less than o:

Eo ={Es € B™ : P{é(w, Z) € E,} > a}.

Proof. Any generalized confidence set E, can be pre-
sented as a union of confidence sets E(z) with the
same level. There is z* € Z such that E* (2*) = E,,
(see Theorem 2). Therefore for any fixed u € U the
relation

min max F(u,y) = max min max F(u,y)
Eq.€€q yeEq 2€Z Eq€€q yEE,

holds. [J

The Theorem 6 allows us to find an optimal family of
the confidence sets F,(z) for the estimate (14) of the
optimal quantile.

The exact minimax solution of the minimax problem
(17) requires a significant calculations. But we can find
a suboptimal solution and estimate the optimal quan-
tile.

For example, let us consider again the quantile opti-
mization problem for function (3) and take a general-
ized confidence region Y,! of the given level « for sta-
tistically uncertain vector £(w, Z) = {z +n(w) | z €
Z},eg.:

Yo ={y eR": |lyll <r(a, 2)}

or Yy ={yeR": chy <~j(e,Z) | j € J}, where

JcA{L,...,k}.
The optimal quantile is estimated by

it (u) < ¢ = mi F ) 18
4o (u) < qu(ur) i max (u,y).  (18)

Here w; is the solution of a standard minimax problem:

1 _ : _ 3 .
¢ (u1) = min max F(u,y) = min max max Vi(u,y),

where the functions ¢;(u, y) are linear with respect to
y and u. Of course, the estimate (18) depends on the
generalized confidence set Y} and can be improved by
an appropriate choice of the set Y,!.

5 Conclusion

The quantile optimization for problem with incom-
plete information about random parameters distribu-
tions is considered. The problem is reduced to the prob-
lem of the optimal choice of generalized confidence re-
gion for statistically uncertain vector.
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