
CYBERNETICS AND PHYSICS, VOL. 13, NO. 2, 2024, 152–160

SURVEY OF ENCODING TECHNIQUES FOR QUANTUM
MACHINE LEARNING

Siddhartha Sharma
Department of Computer Science

Indian Institute of Information Technology, Tiruchirappalli
India

siddharthasharma3110@gmail.com

Renugadevi N
Department of Computer Science

Tiruchirappalli
India

renugadevin@iiitt.ac.in

Article history:
Received 27.07.2024, Accepted 16.09.2024

Abstract
Quantum computing is a field of computation that pro-
cesses information in a fundamentally different way
compared to classical computers. Quantum computing
is a rapidly expanding research field with ongoing in-
vestigations regarding applications of quantum comput-
ing in widespread domains such as cryptography, artifi-
cial intelligence, communications, etc. The core focus
of this paper is quantum encoding which is a crucial
branch of quantum computing. Quantum encoding in-
volves mapping classical data into quantum states. This
paper provides an in-depth analysis of prominent quan-
tum encoding techniques with their strengths and weak-
nesses. Furthermore, this paper suggests development of
hybrid encoding methods capable of emulating the con-
cept of Euclidean distance by integrating amplitude and
angle encoding.
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1 Introduction
Quantum computing combines quantum mechanics,
information theory, and aspects of computer science.
The field of quantum information promises secure data
transfer, dramatic increase in computing speed.[Ray,
2011] It is a novel method that uses the principles
of quantum mechanics to handle highly challenging
situations in a very short amount of time [Gill and
Buyya, 2024]

Quantum machine learning represents a highly promis-
ing realm in contemporary physics and computer
science research, with far-reaching implications span-

ning quantum chemistry[Peruzzo et al., 2014], artificial
intelligence [Liu et al., 2024], and even high-energy
physics [Andreassen et al., 2019]. It can be defined as
the convergence of quantum computing and machine
learning, wherein machine learning algorithms are
executed on quantum devices[Wang and Liu, 2024]

Quantum encoding techniques play an essential
role in quantum computing as they deal with ac-
curate depiction of classical data in the Hilbert
Space, which is the basis for quantum operations.
Quantum encoding is used for Quantum machine
learning[Srinivasan et al., 2018][Schuld et al., 2016][Bi-
amonte et al., 2017][Orús et al., 2019][Ciliberto
et al., 2018][Schuld et al., 2020], Quantum cryptogra-
phy[Grover, 1996][Grover, 1997][Long et al., 1999],
Quantum Optimization[Botsinis et al., 2013][Botsinis
et al., 2015][Romero-Meléndez and González-Santos,
2017][Henao et al., 2015],Quantum Algorithms[Braine
et al., 2021][Watanabe et al., 2023][Fuller et al.,
2024][Liu et al., 2022b][O’Dwyer Boyle and Nikandish,
2024], etc. Encoding techniques like angle encoding,
amplitude encoding and basis encoding are widely used
for embedding classical data into quantum systems,
allowing quantum algorithm to process classic data
efficiently.

In quantum computer the fundamental unit of informa-
tion is referred to as ’qubit’. The qubit is not binary
(like classical bit) but quaternary in nature. A qubit can
exist not only in a state corresponding to the logical
state 0 or 1 as in a classical state bit but also in states
corresponding to a blend of superposition of those
classical states.

Quantum encoding techniques[Ding et al., 2024][Yano
et al., 2021][Cheng et al., 2021] generally center around
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manipulating the properties of a qubit such as orienta-
tion[Rath and Date, 2023] and magnitude[Nakaji et al.,
2022], etc.Encoding methods also use qubits to store
bits representing classical data[Weigold et al., 2021].
However, simple quantum encoding techniques such as
angle encoding, amplitude encoding and basis encoding
experience performance degradation when the size and
complexity of the classical dataset increases[Pande,
2024].

To achieve a better representation of classical data in the
Hilbert space, some authors such as Abrar et al.[Abrar-
Ul-Haq, 2020], Bhabhatsatam et al.[Bhabhatsatam,
2023] among others formulated new quantum encoding
techniques. These new techniques,[Abrar-Ul-Haq,
2020], [Bhabhatsatam, 2023] are combinations of
various simple quantum encoding strategies like basis
encoding, angle encoding, etc. The new methods work
well for datasets of data elements within the range
of zero to one. However, these new techniques have
higher time complexities compared to simple encoding
methods as they require knowledge of data before
processing.

Quantum fidelity[L’Abbate et al., 2024] is a measure
of similarity between two quantum states[Nielsen and
Chuang, 2010] and is estimated by methods such as
SWAP test[Liu et al., 2022a], Quantum state tomogra-
phy[Innan et al., 2024], direct fidelity estimation[Wang
et al., 2023], etc. In the classical domain, Euclidean
distance is used to measure the similarity between two
data elements[Abrar-Ul-Haq, 2020].

This paper aims for the following:

Provide an in-depth analysis of prevalent quantum
encoding techniques, highlighting their advantages
and disadvantages
Propose a novel encoding technique that facilitates
complex data representation with low time com-
plexity and reduced computational requirements.

The rest of the paper is structured as follows.

Section II provides a brief overview of basic quan-
tum computing techniques.
Section III provides a literature review detailing
popular quantum encoding techniques along with
their advantages and disadvantages.
Section IV contrasts the encoding methods dis-
cussed in Section III.
Section V suggests a hybrid encoding method capa-
ble of emulating the concept of Euclidean distance.

2 Preliminaries
Comparative performance of the different quantum

encoding techniques under varying conditions remains
an open area that warrants further research. This section
aims to provide a brief review of the relative strengths

and weaknesses of basic quantum encoding techniques.

Hilbert spaces are the closest generalization to infinite
dimensional spaces of the Euclidean spaces [Loaiza,
2017].Hilbert Space is a significant component of Quan-
tum Mechanics and it can be denoted as the complete
space of inner product. Hilbert space can play a central
role in order to determine the interpretation of the wave
function.[Das and Islam, 2021]

Basis Encoding
Basis Encoding is a fundamental quantum encoding
method that direct maps classical bits to qubits. The
mathematical representation of basis encoding is as fol-
lows[Khan et al., 2024]:

X ≈
∑m

i=−k bi2
i → |bm...b−k|

(1)

Where,

X : numeric input data,
m : original bit string length,

k : the degree of precision.

For Example, numerical data like ’12’ is initially con-
verted to its binary equivalent 11002. The classical bi-
nary equivalent is embedded in Hilbert space.

11002 → q0q1q2q3

Where,

q0 corresponds to |1⟩,
q1 corresponds to |1⟩,
q2 corresponds to |0⟩,
q3 corresponds to |0⟩.

Basis encoding is used for quantum algorithms[Collins
et al., 1998], [Shor, 1997], quantum cryptography[Li
et al., 2016], quantum machine learning[Bhabhatsatam,
2023] and other fields related to quantum computing.

The high degree of precision, simplicity and ease of
implementation are major advantages of basis encoding.
However, basis encoding can only embed simple and
discrete data elements. This limitation arises as each
qubit stores a single bit of data, which does not leverage
the sparsity of the data. Other encoding methods such as
amplitude encoding, angle encoding, QRAM(Quantum
random access memory)[Weigold et al., 2021], dense an-
gle encoding[LaRose and Coyle, 2020] etc are better for
compact and resource-efficient data representation.This
advantage arisis because methods like dense angle
encoding and QRAM exploit quantum properties such
as relative phase degree of freedom and superposition
of states respectively[Jaques and Rattew, 2023].For-
mulae for QRAM and Dense angle are mentioned below:
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X qram
−−−→

∑n−1
n=0

1√
n
|xi⟩

|x⟩ dense−−−→⊗⌊N/2⌋
i=1

(
cos(2πx2i−1)|0⟩+ e2πix2i sin(2πx2i−1)|1⟩

(2)
Where,

xi : denotes i-th basis states

Amplitude Encoding
Amplitude encoding is a technique that embeds clas-
sical data into probability amplitudes of a quantum
state[Schuld and Petruccione, 2018]. This is achieved
by normalizing features of classical data points and then
representing these normalized features as amplitudes of
basis states. Mathematically, amplitude encoding can be
represented as[Mashtura et al., 2023] :

|ψs⟩ =
∑2n

i=1 ci|i⟩
(3)

Where,

|ψs⟩ denotes the prepared quantum state from a data
point having 2n dimensions,

|i⟩ denotes i-th computational basis state,
ci is the i-th element of data point C.

Consider a 2D classical cartesian coordinate C = (1,2).
After normalization, the point transforms to ( 1√

5
, 2√

5
)

and will be embedded as follows:

(
1√
5
,
2√
5
) Embedding
−−−−−−−−→

1√
5
|0⟩+ 2√

5
|1⟩

Amplitude encoding is used in quantum neural
networks[Chalumuri et al., 2021], [Silver et al.,
2022][Oliveira et al., 2008], quantum support vector
machines(QSVM)[Nakaji et al., 2022], quantum data
compression[Majji et al., 2023], and other quantum
computing applications. The advantage of Amplitude
encoding is that it can represent compact data with
space complexity of log2n. Further, robust scalability is
another advantage of amplitude encoding, which makes
this method ideal for handling big data. However, there
are challenges associated with amplitude encoding, such
as noise susceptibility, need for normalization, lack of
fault tolerance, etc hamper the accuracy of amplitude
encoding. For example,(10,20) and (1,2), which are
distinct points on a cartesian plane are encoded as
1√
5
|0⟩+ 2√

5
|1⟩ in amplitude encoding.

Other encoding methods like angle encoding, dense
angle encoding, etc were developed to understand the
relationship between features of a datapoint.

Angle Encoding
In angle encoding, classical data is embedded into rota-
tion angles of a qubit using quantum rotation gates[Shi
et al., 2024]. Mathematically angle encoding can be for-
mulated as[LaRose and Coyle, 2020]:

|x⟩ = ⊗[N/2]
i=1 cos(πx2i−1)|0⟩+ e2πix2isin(πx2i−1)|1⟩

(4)

Where,
x denotes feature vector x = [x1, ...xn]

T ∈ RN .

We can also use simple linear mapping functions to
achieve angle encoding.For example: To encode numer-
ical value C = 1

2 with the mapping function θ = πx, C
would be encoded as:

θc = πx
1

2
=
π

2

|C⟩ = cos(
θ

2
)|0⟩+ sin(

θ

2
)|1⟩

|C⟩ = cos(
π

4
)|0⟩+ sin(

π

4
)|1⟩

|C⟩ = 1√
2
|0⟩+ 1√

2
|0⟩

Angle encoding is used for quantum-inspired tensor
networks[Stoudenmire and Schwab, 2017], supervised
and unsupervised machine learning, Quantum neural
networks[Landman, 2021] et al. Advantages of angle
encoding include simple state preparation, the ability
to capture relations between attributes of a data point,
simple circuit implementation among others. Nonethe-
less, problems such as measurement overhead, limited
suitability, scalability issues, etc limit the effectiveness
of angle encoding. The major disadvantage of angle en-
coding is configuring an appropriate mapping function
as the mapping function should fit all data values within
the range of 0 to π. Configuring such mapping functions
requires complete knowledge of data before processing.

To overcome the issues faced with simple quan-
tum encoding methods, new quantum encoding meth-
ods[Mashtura et al., 2023] were developed by combin-
ing multiple simple encoding methods. These new meth-
ods not only resolved the difficulties of individual sim-
ple encoding methods, but also amplified their advan-
tages. Other alternate quantum encoding schemes were
also developed in parallel which utilize concepts such as
fourier transforms[Musk, 2020][Tan et al., 2015], quan-
tum annealing[Mahmud et al., 2022], [Havlı́ček et al.,
2019],[Bar et al., 2023], etc.
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3 Encoding Techniques for Quantum Machine
Learning

This section covers research papers on quantum en-
coding methods and outlines the benefits and drawbacks
of the mentioned techniques.

To provide analysis of errors at readout in IBMQ’s
Bogota device, Quiroga et al.[Quiroga et al., 2021]
implemented a quantum machine learning model based
on the k-means algorithm. This paper recommends the
use of either amplitude or angle encoding to embed
classical data into Hilbert Space. For angle encoding,
this paper applied the following formula:

θ = arctana1

a0

(5)

for a 2D input vector, a = (a0, a1).

The mapping function used in this paper is flexible as
the range of arctan is (−∞,∞). However, with the
increase in values, the gradient of the arctan function
becomes almost zero. Another disadvantage of angle
encoding is that it fails to extract knowledge about
magnitudes. Hence this encoding function cannot be
used for data with attributes of different magnitudes. An
example of the same is illustrated below.

Pi = (0.1, 2.5) Pj = (10, 300) Pk = (0.2, 6)

θP i = arctan(
2.5

0.1
) = 1.53 radians

θP j = arctan(
300

10
) = 1.53 radians

θP k = arctan(
6

0.2
) = 1.53 radians

Although the data points are distinct, despite that they
are encoded with the same θ value

Modi et al.[Modi et al., 2023] applied the quantum k-
means clustering algorithm to decode M- Quadrature
Amplitude Modulation (M-QAM) signals. This paper
uses angle encoding with the following mapping func-
tion:

x”i =
π

2
(x

′

i + 1) y”i =
π

2
(y

′

i + 1)

(6)
Where, (x

′
, y

′
)i =

(x,y)i
rmax

,

rmax = maxi
√
x2i + y2i .

Due to normalization, this encoding method can cap-
ture magnitudes of attributes belonging to a data point.
Also, this method extracts relationships between magni-
tudes of disparate data points. As a result, this encoding
method achieves an average accuracy of about 95 per-
cent. Nevertheless, this encoding method is unsuitable
for large and multidimensional datasets due to the high
time complexity of normalization.

Abrar et al.[Abrar-Ul-Haq, 2020] implemented quantum
clustering to classify cells into different types of cancer.
The encoding method followed in this paper uses nor-
malized data for angle encoding with the mathematical
formula :

x
′
← x

max(x→)

(7)
For two normalized features x

′

0 and x
′

1, Mapping will
be as follows:

θ = (x
′

0 + 1)
π

2

ϕ = (x
′

1 + 1)
π

2

In this encoding method, the normalization is achieved
using a simpler formula than the one used by Modi et
al.[Modi et al., 2023]. As a result, this method captures
magnitudes with a simple circuit design. However, this
encoding method requires normalized data similar to
the encoding scheme implemented by Modi et al.[Modi
et al., 2023]. Hence, this method is not suitable for
processing large and multidimensional datasets.

Bhabhatsatam et al.[Bhabhatsatam, 2023] introduced the
Bit-Partition hybrid quantum encoding method to effi-
ciently store and process classical data in quantum sys-
tems. This hybrid method combines amplitude and basis
encoding. For the problem statement defined in this pa-
per, the encoding was achieved using the following for-
mulae:

|ψx⟩ =
√
xnorm|0⟩+

√
1− xnorm|1⟩

|ψb⟩ = |b⟩

|ψXB⟩ = |ψx⟩ ⊗ |ψb⟩

(8)
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Where,

S = [x, b],
x is an integer in the range 0 to N-1,

xnorm = x
N−1 ,

b is either 0 or 1.

This hybrid encoding method not only amplifies the
advantages but also diminishes the issues of amplitude
and basis encoding. Normalized amplitude encoding
captures the information regarding the magnitude of
attributes associated with a data point. Basis encoding
enables this hybrid encoding method to understand finer
details of attributes belonging to data points. Hence,
this encoding method can represent high dimensional
continuous data robustly. Nonetheless, this method
suffers from high space complexity due to the integra-
tion of basis encoding in the hybrid encoding scheme.
As a result, this hybrid encoding method has limited
applicability.

Mashtura et al.[Mashtura et al., 2023] proposed a new
quantum encoding structure that combines angle encod-
ing and amplitude encoding in parallel. The parallel
utilization of angle and amplitude encoding results in
better information extraction about the magnitude and
relation between attributes of a data point. As a result,
this encoding structure performs slightly better than
amplitude and angle encoding. Nevertheless, the better
performance of this method comes at the cost of higher
circuit complexity. This encoding structure requires as
many qubits as the sum of qubits required for amplitude
and angle encoding. The time complexity of this
encoding structure is similar to the time complexity of
angle and amplitude encoding. Due to these limitations,
only small quantum neural networks can be designed
with this encoding methodology.

Other encoding methods utilize quantum circuits such as
Instantaneous Quantum Polynomial Circuit[Kyriienko
and Magnusson, 2022], ZFeatureMap, ZZFeatureMap,
PauliFeatureMap and manually configured Feature
Maps[Umeano and Kyriienko, 2024] etc. However, such
approaches suffer issues such as limitation in expressiv-
ity, Limited Scalability, Noise and error sensitivity, etc
when compared to simple encoding methods like basis,
amplitude and angle encoding.

4 Challenges and Future Discussion
A major bottleneck experienced by quantum encoding
methods is normalization.Normalization increases the
time complexity of the encoding method as it requires

scanning of the entire dataset. However, for the current
encoding methods normalization of dataset is needed for
extracting information regarding the magnitudes.
To mitigate the normalization requirement, quantum en-
coding methods should attempt to emulate the concept
of Euclidean distance. For this, encoding should be done
relative to classical data points in consideration. Relative
encoding has no requirements of normalization and also
provides flexibility in the representation of data points.
For example:

Ci = 15, Cj = 10 Ck = 25

θpq = atan(
Cp

Cq
)

θij = atan(
15

10
) = 0.98 radians

θik = atan(
15

25
) = 0.54 radians

Such encoding methods can be developed independent
of the dataset. The development of hybrid encoding
schemes combining amplitude and angle encoding is
an avenue to achieve relative encoding. Integrated
usage of amplitude and angle encoding will enable the
comparison of magnitudes and ratios for data points
under scrutiny.

5 Conclusion
Quantum computing is a nascent and rapidly evolving

field that plays a significant role in determining the suc-
cess rate of any quantum algorithm. Quantum encoding
techniques are an integral part of all quantum machine
learning algorithms. This research paper has reviewed
major quantum encoding techniques highlighting their
advantages and disadvantages. It has explored the
potential of hybrid encoding by discussing significant
research works in the field. This paper suggests the
integration of amplitude and angle encoding technique
to enhance the overall performance. Continued research
and innovation are essential for unlocking the full quan-
tum advantage and realizing the potential of quantum
computers and algorithms.
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Table 1: Analysis of Quantum Encoding algorithms

Ref Aim Algorithm/s Advantages Disadvantages

[Abrar-Ul-
Haq, 2020]

Implementing
quantum cluster-
ing technique for
classification of
cancer cells

Amplitude Encoding

θ = (x
|
0 + 1)

π

2

ϕ = (x
|
1 + 1)

π

2

Where,

x
|
0 =

x0
Max(x0)

x
|
1 =

x1
Max(x0)

For (x0, x1) in a dataset
containing n such data
items

•High Classification accu-
racy.

•Requires fewer iterations
than its classical counter-
part

•As the encoding method
requires Normalization,
leads to higher space
complexity of O(n).

•Suffers from issues such
as precision and noise
sensitivity

[Bar et al.,
2023]

Suggests hybrid
quantum classical
approach for
utilizing quantum
computers for
image classifica-
tion

Multiple angle encoding
•Outperforms pre-existing
methods in terms of accu-
racy

•Provides a general model
for image classification

Dynamic kernel size of
the technique performs
poorly for images with
greater information.

[Bhabhatsatam,
2023]

Applies Bit-
Partition hybrid
quantum encod-
ing methods to
store and process
classical data in
quantum systems
efficiently

Hybrid Quantum En-
coding

• Basis Encoding
• Amplitude Encod-

ing

xnorm =
x

N − 1

bnorm = b

For (x0, x1) in a dataset
containing n such data
items

•Outperforms constituent
encoding schemes

•Balances the strengths
and weaknesses of
constituent encoding
schemes

•Comparatively more
space intensive due
to the incorporation
of basis encoding in
the hybrid encoding
method

•Performance suffers on
increase in information
and magnitudes of at-
tributes and datapoints.

[Mahmud
et al., 2022]

Proposes time-
efficient methods
for C2Q data
encoding and
Q2C data decod-
ing for quantum
algorithms

Quantum Wavelet trans-
form •Improved time efficiency

•Competitive with the
state-of-the-art model
with optimized circuit
depth

•Higher complexity
when compared with
encoding strategies
such as the one im-
plemented by Quiroga
et al. [Quiroga et al.,
2021]

•Fidelity suffers with an
increase in information
about the image/data
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[Mashtura
et al., 2023]

Proposes ar-
chitecture for
classification of
classical data

Parallel utilization of an-
gle and amplitude encod-
ing

•Higher Accuracy
•Leverages combined
strength of several encod-
ing techniques

•High Complexity
•Encoding method not
very robust

•Specific to certain types
of data

[Modi et al.,
2023]

Implementation
of quantum K
means clustering

Angle encoding
•Simple Encoding strategy
with high accuracy

•Lower space complexity
when compared to encod-
ing strategies in similar
domain

•Time complexity is high
due to the requirement
of scanning through the
whole database before
setting the parameters
for encoding

[Quiroga
et al., 2021]

Implementation
of quantum k
means clustering
to discriminate
quantum states at
readout

Angle Encoding

θ = arctan(
a1
a0

)

For (a1, a0) Amplitude
Encoding

a|n =
an
||a||

For an = (a0, a1, . . . ak)

•Few of the highest accu-
racy rates among quan-
tum encoding algorithms

•Simpler than prevalent al-
gorithms

•Independent of the
dataset

Failure rate increases
briskly when the mag-
nitude of the data
increases.

From this study and Table 1, it is inferred that, while
basis encoding is simple and effective, it is resource-
intensive. Amplitude encoding is a powerful method but
requires normalization and fails to capture relationships
between attributes within a dataset. Angle encoding is
compact and versatile, though it comes with complex-
ities and resource overheads. Hybrid encoding outper-
forms the existing methods by combining the strengths
of simple quantum encoding schemes. The implementa-
tion of hybrid encoding techniques, specifically, the in-
tegration of amplitude and angle encoding can enhance
the performance.
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