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Abstract: This paper proposes a model predictive approach for H∞ control of
switched systems in discrete-time. A finite horizon dynamic game is set up for the
computation of the control input and a switching strategy guaranteeing robustness
at the face of bounded disturbances. A main point investigated in the paper is the
existence of an auxiliary law useful to activate the predictive algorithm. Copyright
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1. INTRODUCTION

In a discrete-time setting, this paper tackles the
problem of designing a control law for switched
systems. To be precise, given a switched system,
the problem consists in finding a control strategy
and a switching signal that ensure the internal
stability of the closed-loop system meanwhile en-
suring a given attenuation level of the closed-loop
input-output map.

Stability analysis of continuous time switched lin-
ear systems has been addressed by several au-
thors, (Branicky, 1998), (Hespanha, 2004), (Ye
et al., 1998), (Johansson, 1998), (Liberzon, 2003)
and (Hockerman-Frommer et al., 1998) among
others. On the contrary, discrete-time switched
systems are less studied, since many possible in-
teresting phenomena are not encountered, namely
Zeno or chattering behaviors, see (Daafouz and
Bernussou, 2001), (Xie et al., 2003), (Zhai, 2001).
In this paper we take advantage of the result

achieved in (Geromel and Colaneri, 2006) where a
stabilizing switching strategy is devised based on
coupled Lyapunov inequalities. In the present pa-
per, these inequalities are given a Riccati-type for-
mulation that permits the formulation and the so-
lution of the H∞ attenuation problem for switched
systems.

On the other hand, the presence of constraints
in the state and input of the system enforces the
use of Model Predictive Control (MPC) based on
the Receding Horizon (RH) paradigm, see e.g.
the survey papers (Mayne et al., 2000) and (De
Nicolao et al., 2000) on stabilizing MPC with
constraints. The robustness properties inherent to
stabilizing MPC algorithms designed for unper-
turbed systems, as well as the main approaches
followed so far to develop new MPC methods with
enhanced robustness characteristics, have been re-
cently discussed in (Skokaert and Maine, 2004),
(Magni and Scattolini, 2005), (Magni et al., 2006).
In this paper, the H∞ framework already studied



in (Magni et al., 2003) is considered to design
a stabilizing state-feedback H∞-RH control law
for constrained switched systems. The results of
the first part of the paper, i.e. the design of a
stabilizing switched control law for unconstrained
systems based on a Riccati-type formulation, are
then used to complete the MPC design coping
with state and control constraints.

2. PRELIMINARIES

Consider the switched system

x(t+) = Aσ(t)x(t) + B1σ(t)w(t) + B2σ(t)u(t) (1a)

z(t) = Cσ(t)x(t) + D1σ(t)w(t) + D2σ(t)u(t) (1b)

where t ∈ Z, x(t) ∈ Rn, w(t) ∈ Rm1 , u(t) ∈ Rm2 ,
t+ = t + 1 and, finally, σ(t) ∈ {1, 2, · · · ,M} is
an integer that selects the active model at time t
between M given ones.

In order to adopt a model predictive viewpoint,
we assume that the state variable x and the input
variable u, at each instant of time, must fulfill the
following constraints

x(t) ∈ X, u(t) ∈ U (2)

where X and U are two subsets of Rn and Rm2 ,
both containing the origin as interior point.

The problem is to determine a MPC state-
feedback law and a switching policy

u(t) = k̄o(x(t)), ξ(t) = ξ̄o(x(t)) (3)

in such a way that the closed loop system with
input w and output z has a finite L2 gain, bounded
by a positive attenuation level γ. Internal stability
is then achieved for any disturbance w satisfying

‖w(t)‖2 ≤ γ2
d‖z(t)‖2 (4)

with γγd < 1. The set of admissible signals w
satisfying (4) is denoted by W.

The problem above stated is very complicate per
se and becomes extremely demanding in view of
the hard constraints (2). To avoid trivial solutions,
we assume that the switched pair (Aσ, Cσ) is
observable. This means that there not exist a
initial state and a switching strategy resulting in
a null free output.

3. AUXILIARY LAW

In order to extend the rationale underlying the
model predictive control technique, we will discuss

the existence of an auxiliary control law for the
unconstrained H∞ problem of switched systems.
Consider a positive number γ and the coupled
matrix inequalities, ∀i, j

Pi > A′iPiAi +
M∑

j=1

λijPj + SiLiS
′
i + C ′iCi (5a)

0 < γ2I −B1iPiB
′
1i −D′

1iD1i (5b)

Si =
[
A′iPiB2i + CiD

′
2i A′iPiB1i + CiD

′
1i

]
(5c)

Li =
[

Li1 Li2

L′i2 L3i

]
(5d)

Li1 =−(B′
2iPiB2i + D′

2iD2i) (5e)

Li2 = B′
2iPiB1i + B′

2iD1i (5f)

Li3 = γ2I −D′
1iD1i −B′

1iPiB1i (5g)

where λij are suitable parameters such that∑M
j=1 λij = 0 and λii < 0, for each i =

1, 2, · · · ,M . These equation are henceforth re-
ferred as Riccati-Metzler inequalities. We are now
in a position to provide the following result.

Theorem 1. Suppose that there exist positive ma-
trices Pi and a Metzler matrix Λ = {λij} such that
inequalities (5a), (5b) are satisfied. Let

Ki = L−1
i Si (6)

Then, consider the control law

u(t) = Kσ(t)x(t) (7)

along with the switching rule

σ(t) = ξ(x(t)) = arg min
i

x′Pix (8)

Finally, let
V (x) = min

i
x′Pix (9)

and the set

Ω(Kσ, ξ, γ, γd) = {x : V (x) ≤ α} (10)

where α is a finite positive constant. Then the
closed loop system under (8), (7) is asymptotically
stable in Ω(Kσ, ξ, γ, γd) and it is such that

V (x(t+))− V (x(t)) < −‖z(t)‖2 + γ2‖w(t)‖2(11a)

∀x ∈ Ω(Kσ, ξ, γ, γd), ∀w ∈ W (11b)

Proof First of all, let Âi = Ai + B2iKi, Ĉi =
Ci + D2iKi. After cumbersome computations it
is possible to rewrite (5a)-(5b) as

Pi > Â′iPiÂi +
M∑

j=1

λijPj + S̄iL̄iS̄
′
i + Ĉ ′iĈi (12)

0 < γ2I −B1iPiB
′
1i −D′

1iD1i (13)

S̄i = Â′iPiB1i + Ĉ ′iD1i (14)

L̄i = (γ2I −D′
1iD1i −B′

1iPiB1i)−1 (15)



Assume now that i = arg min V (x(t)). Then

V (x(t + 1)) =

min
j

(w(t)′B′
i + x(t)′Â′i)Pj(Biw(t) + Âix(t))

≤ (w(t)′B′
i + x(t)′Âi)Pi(Biw2(t) + Âix(t))

= w(t)′w(t)− z(t)′z(t) + 2w(t)′S̄ix(t)

+x(t)(Â′iPiÂi + Ĉ ′iĈi)x(t)− w(t)′(L̄i)−1w(t)

let now ∆V = V (x(t + 1)) − V (x(t)). Thanks to
L̄i > 0, and by square completing we can write

∆V ≤ γ2‖w(t)‖2 − ‖z(t)‖2 + 2w(t)′S̄ix(t)

−w(t)′(L̄i)−1w(t)− x(t)
M∑

j=1

λijPjx(t)

−x(t)S̄iL̄iS̄
′
ix(t)

≤ γ2‖w(t)‖2 − ‖z(t)‖2

−‖w?(t)‖2 − x(t)′
M∑

j=1

λijPjx(t)

with w?(t) = L̄iS̄ix(t). Since, for each j,

x(t)Pix(t) ≤ x(t)Pjx(t)

from λij ≥ 0, i 6= j,
∑M

j=1 λij = 0, ∀i, it follows

∆V ≤ γ2‖w(t)‖2 − ‖z(t)‖2
so that ∆V is negative if γγd < 1. Asymptotic
stability then follows.

Remark 1. The Riccati inequalities (5a)-(5b) are
not LMI’s in the variables Pi, and, moreover,
depend on the choice of the design parameters λij .
As for this second problem, a simplification can
be made at the price of a certain conservatism,

i.e. the term
M∑

i=0

λijPj can be substituted by the

simpler term α(Pj − Pi) where α is a positive
design parameter. Moreover, the inequalities (5a)-
(5b) can be rewritten as LMIs in the variables
Xi = P−1

i . Premultiplying and postmultiplying
(12) by Xi and letting Ki = WiPi, after cumber-
some computations, it follows that matrices Mi,
i = 1, 2, · · · ,M are positive definite, where the
single matrix Mi is




Xi(1 + α) XiA
′
i + W ′

iB
′
2i XiC

′
i + W ′

iD2i

√
αXi

? Xi − B1iB
′
1i

γ2
−B1iD

′
1i

γ2
0

? ?
D1iD

′
1i

γ2
0

? ? ? Xj




These inequalities are easily solvable by standard
LMI tools and a line search in α. Theorem 1 can be

reformulated in the following way: Suppose that
there exist positive definite matrices Xi, matrices
Wi and a positive scalar α > 0 such that Mi > 0.
Let Ki = WiX

−1
i and consider the control law (7)

along with the switching rule (8) with Pi = X−1
i .

Then the closed loop system under (1a), (6), (8)
is asymptotically stable in Ω(Kσ, ξ, γ, γd), see (6),
and it is such that (11) is met with.

4. MODEL PREDICTIVE SWITCHING
CONTROL

In a model predictive control context, we will
consider a finite time-interval [t, t + N + 1]. At
a given time t the designer has to chose a vector
of strategies

χ(t,N) =
[
ξ0(x(t)) · · · ξN−1(x(t + N − 1))

]

and a vector of control values

K(t, N) =
[
k0(x(t)) · · · kN−1(x(t + N − 1))

]

where the positive integer N is the prediction
horizon and

(
ξi : Rn → {1, 2, · · ·M}, ki : Rn → Rm2

)

is the so-called policy. The sequence of distur-
bances chosen by “nature” is denoted as

Q(t, N) =
[
w(t) w(t + 1) · · · w(t + N − 1)

]

In the classical Receding Horizon (RH) approach,
only open loop strategies

χ(t,N) =
[
σ(t) σ(t + 1) · · · σ(t + N − 1)

]

K(t,N) =
[
u(t) u(t + 1) · · · u(t + N − 1)

]

are considered. In order to take into account the
variation of the state variable (due to the unpre-
dictable behavior of the nature) we are well ad-
vised to consider closed-loop strategies and, con-
sequently, minimize with respect to the sequence
of policies. In general this problem is particular
demanding since the policies in K(t) belong to an
infinite-dimensional space. Concerning χ(t), there
are a finite number (NM) of policies since ξi(x)
may assume only M values.

Now, assume that there exists an auxiliary law
σaus(t) = ξ(x(t)), uaus(t) = Kσ(t)x(t), a domain
of attraction Ω(Kσ, ξ, γ, γd) whose boundary is
a level line of a positive function VF (x), with
VF (0) = 0 such that, ∀x ∈ Ω(Kσ, ξ, γ, γd) the
constraints are satisfied (2) and ∀w ∈ W, it results

VF (x(t + 1))− VF (x(t)) < −‖z(t)‖2 + γ2‖w(t)‖2
Notably, this auxiliary control law can be the one
developed in Section 3. The problem now consists



in minimizing with respect to (χ(t,N),K(t,N))
and maximize, with respect to Q(t,N) the cost
function

J(x̄,K, χ,Q, N) = VF (x(t + N) +

+
t+N−1∑

i=t

‖z(i)‖2 − γ2‖w(i)‖2 (16)

subject to system (1) with x(t) = x̄ and x(t+N) ∈
Ω(Kσ, ξ, γ, γd) ⊂ Rn. If (χ̄(t,N), K̄(t,N), Q̄(t,N))
is the optimal solution of this min-max problem,
according to the receding horizon principle, set

ξ(t) = ξ̄0(x(t)), u(t) = k̄0(x(t)) (17)

The control law (17) turns out to be the MPC
control law (3) in Section 2.

Theorem 2. Assume that the pair (Aσ, Cσ) is
switching observable and that the auxiliary strat-
egy exist. Let XMPC the set of all states x̄ such
that the above min-max problem admits a solu-
tion. Then,

(i) XMPC is a positively invariant set for the
closed loop (1), (17) system.

(ii) Ω(Kσ, ξ, γ, γd) ⊆ XMPC , ∀N
(iii) The origin is asymptotically attractive for
the closed loop system (1), (17) in XMPC .

Proof. Define by V (x̄, N) the optimal perfor-
mance, i.e. V (x̄, N) = Jo(x̄, K̄, χ̄, Q̄, N). We now
prove that XMPC is a positively invariant set for
the closed loop system (1), (17). If x̄ ∈ XMPC ,
then there exist K̄ and χ̄ that bring the state
in Ω(Kσ, ξ, γ, γd) at time t + N , i.e. x(t + N) ∈
Ω(Kσ, ξ, γ, γd). Hence, letting t + i = ti for short,
consider the new policy at time t1, i.e.

χ̂(t,N) =
[
ξ̄1(x(t)) · · · ξ̄N−1(x(tN−1)) σaus(tN )

]

K̂(t,N) =
[
k̄1(x(t)) · · · k̄N−1(x(tN−1)) uaus(tN )

]

Since Ω(Kσ, ξ, γ, γd) is invariant with respect to
the auxiliary law with w(t) ∈ W, such a policy
is still feasible. Moreover, being the auxiliary law
feasible, it follows that Ω(Kσ, ξ, γ, γd) ⊆ XMPC

so that also the origin is included in XMPC . Now
observe that, letting Q(t, N) = 0, see (16), we can
conclude that

J(x̄,K, χ, 0, N) = VF (x(t+N))+
t+N−1∑

i=t

‖z(i)‖2 > 0

for each x̄ ∈ XMPC , x̄ 6= 0. Moreover

V (x̄, N) = J(x̄, K̄, χ̄, Q̄, N) ≥ min
K×χ

J(x̄,K, χ, 0, N)

for each x̄ ∈ XMPC , x̄ 6= 0. In conclusion, for
every x̄ ∈ XMPC it results:

V (x̄, N) > 0, x̄ 6= 0

Now we prove that V (x̄, N) is decreasing. Indeed,
consider the horizon of length N + 1 and the
policies

χ̃(t, N + 1) =
[
χ̄(t,N) σaus(tN )

]

K̃(t, N + 1) =
[ K̄(t,N) uaus(tN )

]

Q̃(t, N + 1) =
[ Q̄(t,N) w(tN )

]

Therefore

J(x̄, K̃(t,N + 1), χ̃(t,N + 1), Q̃(t, N + 1), N + 1) =(
tN∑

i=t

‖z(i)‖2 − γ2‖w(i)‖2
)

+ VF (x(tN+1)

= VF (x(tN+1))− VF (x(tN )) +

+‖z(tN )‖2 − γ2‖w(tN )‖2

+VF (x(tN )) +
tN−1∑

i=t

‖z(i)‖2 − γ2‖w(i)‖2

Being

VF (x(tN+1)−VF (x(tN )) ≤ −‖z(tN )‖2+γ2‖w(tN )‖2

it follows

J(x̄, K̃(t,N + 1), χ̃(t,N + 1), Q̃(t, N + 1), N + 1))

≤
(

tN−1∑

i=t

‖z(i)‖2 − γ2‖w(i)‖2
)

+ VF (x(tN ))

Consequently,

V (x̄, N + 1)

≤ max
w∈W

J(x̄, K̃(t,N + 1), χ̃(t,N + 1), Q̃(t,N + 1), N + 1))

≤
(

tN−1∑

i=t

‖z(i)‖2 − γ2‖w(i)‖2
)

+ VF (x(tN ))

= V (x̄, N)

In conclusion

V (x̄, N + 1) ≤ V (x̄, N)

Furthermore,

V (x̄, N) = V (Aσx̄ + B1σw + B2σu), N − 1) +

+‖z‖2 − γ2‖w‖2

so that

V (x̄, N)≥ V (Aσx̄ + B1σw + B2σu), N) +

+‖z‖2 − γ2‖w‖2

and finally, for each x̄ ∈ XMPC :



V (Aσx̄ + B1σw + B2σu), N)− V (x,N) ≤
γ2‖w‖2 − ‖z‖2 ≤ (γ2γ2

d − 1)‖z‖2
−ε‖z‖2 < 0

The above strict inequality sign follows from the
detectability assumption.

5. CONCLUSIONS

In the paper a new result on model predictive
control of switched systems has been presented. In
the authors’ opinion this result can be the basis for
further research on multilevel hierarchical control,
see (Scattolini and Colaneri, 2007).
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