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Abstract— Consider a linear system with input« and outputs « measurements ofi, ' and 2! are available fort =
y and z. Assume thatu’ and y* are measured for all timest¢ 1,2,...,7

and that 2* is measured only fort < 7, but it is of interest to « measurements oft andy! are available also fof > 7
know z* for ¢ > 7. Such a situation may arise when the sensor . o
measuring ~ fails and it is important to recover this variable, Considering that process and measurement noises affect

e.g. for feedback control. Another case arises when the sensorequations (1), the filtering aim is to obtain a (possibly wyati
measuring z is too complex and costly to be used, except for an in some sense) estimaté of ¢ for t > 7 using the available
initial set of experiments. Assuming thatz is observable from noise-corrupted input and output measurements.

the couple (u,y), the standard approach consist of a two-step . . .
procedure: identify a model first, then design an observer/Kalman Such a situation may arise when the sensor measufing

filter based on the identified model. Noticing that an estimator IS 00 expensive and/or complex to be used, except for an
of 2 is a system with (u*,y") as input that gives an estimate initial set of experiments. Another case arises when themen
of z* as output, the problem of directly identifying an estimator measuring:* fails and it is important to recover this variable,
model from the available noisy data in the time interval (0,7) e g. for feedback control.
is investigated. When §tochast|c noise is conS|dered., the direct The standard approach for the design of virtual sensors,
procedure can be carried out using standard techniques and . ) .
performs better or like the two-step approach. In the case of assuming the systerfi is not known, consist of a two-step
Set Membership noise, a procedure for the identification of procedure: first, a model/ is identified form the available
direct virtual sensors is presented. An example related to the noisy data sefu!,y!,z!) for t = 1,...,7; second, on the
vertical dynamics of vehicles with controlled suspension shows pase of M, a filter K is designed which gives an estimate
the effectiveness of the presented approaches. . st of 2t using as input(u?,yt) for t > 7. An alternative
Keywords—direct virtual sensors, Kalman filter, system iden- . : P
approach, proposed in [1], is to use the data (s€ty?, z%)

tification, estimation. X ! ; ” A X :
fort =1,...,7 to directly identify a filter\V which gives an

|. INTRODUCTION estimatez!, of z* using as inputut,y*) for t > 7.

Consider a discrete-time, linear, time-invariant, maitiv ~ In a stochastic framework, the noises affecting (1) are
able, dynamic systen$, initially at rest, described in state-supposed to be random sequences and optimality refers to
space form as: minimizing the estimation error variance. In [1], it was &imo

2 = Azt 4+ Byul + Byd! that the direct approach gives, in the case of exact modeling
yt = Chat 4ot 1) performance§ not worse than the two—sFep procedure ane, mor
2= Coat importantly, in the presence of modeling errors, the diyect

identified filter is the minimum variance estimator among
the selected approximating filter class, while a similaultes

is not assured by the two-step design, whose performance
deterioration due to modeling errors may be significantly
larger.

In a Set Membership framework, the noises affecting (1) are
supposed to be unknown but bounded sequences and optimal-
ity refers to minimizing a prefixed norm of the estimationogrr
To the authors’ knowledge, no results exist about the design

where, for a given time instarite N: 2/ € R" is the system
state;u’ € R is a known deterministic input* € R? is
a (possibly vectorial) unknown disturbance inpyt;c R is
a known (measured) output! € R is a partially unknown
output; v* € R is unknown measurement noisd; B;, B,
C, and Cs are constant matrices of suitable dimensions.

The assumptions about the systeéhdescribed by (1) are
the following ones:

« the matricesd, By, B, C andC; are not known; and performance evaluation of virtual sensors using a tep-s
« the pair [4,C4] is observable and then, in absence Qfpproach in this framework. In this paper a methodology for
noise,z” = f(Yy",U7) for any 7, where the direct identification of filters is presented, minimgithe
Uy = [ub, % ..., vt u"]" estimation error and guaranteeing some stability meastire o
Y7 o= b o2 .,y T the model being identified.

. . - . As a case study, the filter design problem is solved for
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many different control algorithms have been proposed, suaking a prediction error method as:
as the well established “two state” Sky-Hook (see e.g. [2]) Tie o4
and “clipped” strategies (see e.g. [3], [4]) or Model Préislie ey €] @)
Control techniques (see e.g. [5]). The computation of th§ate-space model sets have been considered in this paper.
control move requires to know, at each sampling time, thesta \yhen A7(h,,) or a suitable approximation is found, a
of the suspension system. A typical configuration of senSorS(steady state) Kalman filtekk = K(d,/) is designed on
based on accelerometers measuring the vertical accelsatine pase ofM(@M) and the estimated noise properties. The
of the chassis (sprung mass) and/or of the wheel (Unsprifitimator useg! andw! to recover the state of the identified

mass). In this example, the focus is on the estimation gfstem (3) with minimum variance and uses it to obtain the
the relative vertical speed between chassis and wheelg usjjasired output, thus giving the estimatg of .

data provided by just one accelerometer measuring thecakrti _

acceleration of the chassis. This matter is important nét orB. Direct Procedure

for cost reduction but also for safety reasons, for exampleAn alternative approach to the problem, as presented in [1],
when a sensor fails and the corresponding signal has toi§&o perform, starting from datau?, 5, 2*) for t = 1,..., 7,
recovered in some way for closing the feedback control looghe direct identification of a filtei”, named Direct Virtual

In order to investigate the achievable results in a quitéstéa  Sensor (DVS), which gives an estimaté of 2! using as
fashion, different Monte Carlo simulations have been edrriinput (u!,y") for t > 7.

out using standard “benchmark” road profiles employed in This aim can be pursued by selecting the filiérfrom
industrial tests, such as random, motorway, §afnglish a suitable family of parameterized predictor modgl$6y),
track, short back and drain well profiles. 0y € Dy C R™v, of the form:

The paper is organl_zed as follows. In Section I the main  .t+1 _ Ay (0v) 2% + By (Oy) u' + Bps (Ov) o'
theoretical results on virtual sensors for stochastiéregttare S Cp (Oy) i D (Ov) ut + Dya (03t 4)
recalled and summarized. In the third section, the fornat == fn vI)Ty v r20v)y o
of the direct virtual sensor identification for Set Membépsh Wherez; € R" is the estimator state, and the optimality
setting is presented. In Section IV the presented appraactffiterion used in this paper to select the filtér= V' (6v) is
tested on a problem of filter design for the vertical dynamidg€ €rror variance minimization:

. 1 T
M () = argmin — det Y [e},, €]
T t=1

of vehicles with controlled suspensions. In the last sectio 0y =arg min € ZT: 2 (t,0y)
some concluding remarks are given. OveDy 4T t=1
wheree (t,0y) = 2* — 2! is the prediction error of predictor
[l. VIRTUAL SENSORSDESIGN modelsV (6y ), see e.g. [6].
FOR STOCHASTIC FRAMEWORK The interest for this new approach stems from the fact that

| tochasti i q ; even in the most favorable situation, e.g. when no modeling
N a stochastic setling, process and measurement NOI3RRrs occur and the minimum variance filter is actually

corrupting (1) are assumed to be stochastic white SeqUENGER,, ) ale, the two-step procedure is proven to perform
For such a situation, a huge literature exists on the MINIMUM patter than the direct approach. The following theorem

variance filter design, assuming that the syst&rs known. shows the statistical optimality properties of the two mrsed
In the present context, on the contrary, the system mOdela'ﬁproaches

not known and the filter should be obtained from a noise- Theorem[1]. Let £ denote statistical expectation.

corrupted set of data generated §yin an initial experiment. The following results hold with probability one as— oco:
Two different methodologies are considered to deal with thi _

task. ) B[ - 2% 2 B[ - 2]

iy If S € M(0y), then V is a minimal variance filter
A. Two-step Procedure among all linear causal filters mappiitg, y) into z.
If S e M(0y), the model structurd/(6,,) is globally
identifiable andS is stable, thenk also is a minimal
variance filter so that:

The usual solution to the proposed problem is a two-steﬁ")
procedure. First, an approximate system madels obtained
using standard identification methods. Note that the noise
model should also be estimated as is needed for the filter FE {(zt - 2;)2] =F [(zt - 2‘})2}

design. |
Given a linear model structut®l (6,;), 65; € Dpy C R, This theorem states that, in general, the direct procedure
of the form offers better performances than the two-step procedure. In

o deed, at best (e.g. under the exact modeling assumgstian

g{t B Gyula, Onr)u+ Gye(g, Oni)ey (2) M (0y)), the two approaches have asymptotically (wm)ithe

2 = Gaule, Om)ut Geelg, Our)e: same accuracy. However, in the presence of modeling errors,
wheree, ande, are assumed to be white noise sequences athe directly identified filter, although not absolutely opéil,
Gyu, Gye, G-, and G, are discrete time transfer functionss the minimum variance estimator among all linear filters of
in the standard forward shift operatgr A model is selected the same order. A similar result is not assured by the twp-ste



design, whose performance degradation caused by modelamgosingiVy, it is possible to consider noise measures depen-
errors may be significantly larger. Moreover, in the case dent onk : for example,W; = diag(z!, 22, ..., 2771, 27)

no modeling errors, resuil) shows that the directly identified in the case of relative measurement errors.

filter V is optimal even ifS is unstable, while this is not For givenL,, L, n,,n, andp, an optimal filterVSM of
guaranteed by the Kalman filtdf. the form (7) can be selected by minimizing the above estimate
quality measure, thus leading to the following identifioati
problem:

)

IIl. VIRTUAL SENSORSDESIGN
FORSET MEMBERSHIPFRAMEWORK

In a Set Membership setting, the noise sequences are [Go;--.;Gn,;Bo,- -, 0y, ] =argminll5rllgvé
assumed to be bounded in some set. Moreover, the filter is such that
assumed to belong to a class of systems with some guaranteed . , 2« kA ik
stability degree. 0=z ‘goo‘k“ ‘,Eoﬁky tel2. o O
Under the assumed hypotheses about the systeand in lag| < Lup™", k€[0,...,n,]
particular the observability of the pajd, C;], a family of 1Bel < Lyp~*, k€0,...,n,]
stable estimators exists for the system (1), in the form of

Luenberger observer: When disturbances and noise are assumed to be energy

bounded signals, i.ed’® € ¢3(Z;) andv' € (5(Z,), the
t+1 _ t t t_ t ' + 2N+
Te B éx€t+ BAZ“ QLL(C%/ ' Cre) (5) solution of the identification problem (9) with = 2 and
2= Latet (y - 17) _ W = Ij, ) leads to the minimization of the estimation error
Each IIR filter in the form (5) is an exponentially stablgariance. In this case, the problem (9) can be efficientlyesbl
dynamic system and can be written as: by quadratic programming.
St S t—k s —k When disturbances and noise are assumed to be amplitude
T kz_oozku +kz_%ﬂky bounded signals, i.ed® € (. (Z;) and vt € (o (Z4), the
where the decay rate of its impulse response is bounded a0!ution of the identification problem (9) with = oo and
lan| < Lup™, k€[0,...00), Ly >0,p>1 Wg_ = _I[TXT] leads to_the m|n|m|za_t|on of the worst-case
(6) estimation error. In this case, solution to problem (9) can

1Brl < Lyp~*, kel0,..,00,L, >0,p>1 ; - oo ) . .
The proposed methodology approximates the infinite irrtl)-e obtained by minimax optimization. Since minimax is a

. . gnplex and not efficient procedure, a conservative but less
pulse response of the above estimator with a long enough 'ﬁemandin approximation for the— oo case is:
filter VM. The structure of the direct virtual sensor for the g app B '

Set Membership framework (DVS-SM for short) is: (60, -+ 6tm,, Bos - -5 B, 0] = argmin o
Ny Ny . such that
o SUTRES S S R
k=0 k=0

wheren,,, n, are given. The design parameters of this DVS- ng
SM filter are Ly, Ly, p, nu, ny an_d can be suitably tuned in | < Lup™*, k€ [0,... 0]
order to minimize the overall estimation error. 18,1 < Lyp*, ke 0 ny]
Notice that the estimation errdf = z' — ' is bounded. M=l T (10)
. - . T QUG
In fact, 6" = 2" — 20 = (' = 2) + (3" = 2') = 6 + 0. golution to problem (10) is linear programming. Standard an
The termd = z' — z' is the estimation error of filter (5), efficient algorithms exist to solve it.
governed by the error dynamics resulting from the effect of Regardless of the used norm, solution to problems (9) or
noise and disturbances on the differete= = — x| between (10) is a high order FIR filter, which in many cases is not well
the system and filter states. From (1) and (5), it follows thaguited for practical use, for example in real time estinmatio
€ = (A — LCY)EL + Bodt — Lot 8 Since the found FIR filter is an approximation of the impulse
5= (Co + MCy) €L — Mot (8) response of a stable finite order filter, it is possible toqrenfa
. ] model order reduction, fitting the identified impulse resgem
and theno is bounded sincel’ and v' areAtaSSL{r;nedAtto beith a stable and causal IIR filtdrS™ of a prefixed order.
bounded. MOE?‘/ZVGV' for any > 1, ttﬁ‘ke termd = 2 — ' = Tpe selection of the design parametérs Ly, n.,, n, and
D ke, g1 QR+ 30, 1 By’ is bounded for any  can pe made in different ways. For example, the direct

Moy Ny
2> aput R =3 Byt Tk <ot €[1,2,...,7]
k=0 k=0

bounded input.’ and outputy". o _ procedure for stochastic framework may be applied to the
A measure of the estimation error is given by the followingyailable data set using different filter structures (csjend
weightedp-norm: then a suitable bound on the impulse responses of the resulti
Ws . T kIP e filters can be looked for. Another possibility is to solve the
WN = |é-]," = HW5 5THp = Z ’wa k0 ‘ identification problem without constraints and then, start
k=1

. from this solution, choose conservative bounds fqr and
with 6, = [61, . ,67] andWs = diag(ws 1, ws,2,...,ws~) Ly, and finally perform a line search gnvarying n,, andn,,
a given weighting matrix wherev; ;, > 0 Vk. By suitably according to the selected decay rate.



IV. VIRTUAL SENSORS FORSEMIACTIVE SUSPENSIONS  provide the following force:

In this work, the virtual sensor methodologies are appléed t u= { Ui,max (ff?c - ?w) %f Le @c - Qj"w) >0
the vertical dynamics of a road vehicle. The used model is a Uimin (Le = Tw) 1f Ze (Ee — dw) <0

quarter-car semiactive suspension system, having thetsteu The maximum and the minimum curves ;.. and w; i
depicted in Fig. 1. The chassis and the wheels are modelech&® represented in Fig. 2 as functions of the relative speed
rigid bodies and static linear characteristics are assufoed Vwc(t) = Twe = Tw(t) — Lc(t).

suspension. The parameters characterizing the model are: The quarter-car model has been implemented in Simulink

« M,: sprung (chassis) mass. in order to obta_in data simulating a po;sible experimental

« M,: unsprung (tire, wheel and other suspension compgEtUP, characterized by type of road profile, control sysate
nents) mass. expe_rlment _Iength, measured vanabl_es r_:md sensors agcurac

. K.: suspension spring constant. It is considered t_hat the road profile. is not known, the

. K, tire stiffness coefficient. damping forceu(t) is known and corresponds to a “On-Off

Sky-Hook” control, acceleratiori;, can be measured with

The variables describing the system are: a precision of5%, the relative vertical speed,. can be

« z,: road profile. measured only on an initial experiment with a precision of
o x,,: Wheel vertical position. 5%.
« x.: chassis vertical position. Six data sets have been generated from the quarter-car
« u(t): damping force. model, all with a length of13.7 seconds. Each data set
The quarter-car model dynamics are given by the followingprresponds to the system response to a “benchmark” road
set of differential equations: profile, subject to zero initial conditions, as described5h
Mpie = u— K, (. — 1) 1) The considered road profiles are among those used for the

Myip = —t+ Ko (20 — 20) — Ko (20 — 21 on-road tuning of the CDC-Skyhook (continuous damping
The parameter values used in the simulations are reporteac?wtro'.) syster.n.. These road p'roflle.s allow to test d|ffergnt
Table I and have been taken from [5]. dynamic conditions of the vehicle, in terms of frequencies

and amplitudes:

« Random (shortened as RR): random road.
xi Mc « Motorway (shortened as MW): level road.
« Pa\e (shortened as PV): road with small amplitude irreg-
ularities.
Kc u(t) « English Track (shortened as ET): road with irregularly
spaced sequences of bumps and holes.
« Short Back (shortened as SB): impulsive road.
X, M o Drain Well (shortened as DW): negative impulsive road.
" Each data set consists of the valueswofz. and .,
recorded with a sample timg, = 1/512s.
X l K The complete data set, formed by the six subsets of 7000
r " samples of each measured variable, has been partitioned as
follows:
Fig. 1. Quarter-car suspension schematic 5000 T ‘ B!
£000 -
TABLE | 3000 -
PARAMETERS VALUES USED IN THE SIMULATION 2000
Parameter Value g 19001
M. 432.82 kg s
My, 40 kg g
K. 17200 N/m £ o
K., 200000 N/m % 000 |

In semiactive suspension systems, the damping force
u(t) = —B(t) [£(t) — 24 (t)], where the damping coefficient
B(t) is variable. At present, a widely used semiactive tech % 4 s ©:¢ @2 o 02 o4 08 o8 1
nigue is the “On-Off Sky-Hook” control (see e.g. [7]), where susgerisidnelalive speed Ve (U5)
the damper is adjusted at maximum or minimum damping to Fig. 2. Damper map




« identification set: the data corresponding to the fixSt has been used as performance criterion, befingand ¢

seconds of the acquisition with a particular road profilehe initial and the final time instants of any experiment,

« testing set: the data corresponding to seconds fi&o respectively. The average value of tl#&S Ry for the 100

13.7 of the acquisition with the same road profile considebtained filters has been considered as a criterion to campar
ered for the identification set, and the data corresponditite three algorithms.

to the13.7 seconds of acquisition with the other five road In the two-step methodology, for each one of the 100 exper-
profiles. This set has been used for testing the accuranyents, a SITO (Single Input-Two Outputs) systdthin the

of identified models on data not used for identification.form (2), with forcef as input and:. and#,,. as outputs, has

The aim of a virtual sensor for the experimental setdpeen identified using standard identification methods.éra
presented above is to estimate the relative vertical spged routine of the MATLAB Identification Toolbox has been used
of the quarter car model, using the available acceleratigm fit an initial Amodel. On the base of this model, a steadyestat
measurement;. and the applied suspension foregt). In  Kalmanfilter K has been designedteo-stepvirtual sensor.
fact, it was shown in [8] that the best trade-off betweenrfilte In either direct methodology, for each one of the 100
complexity and error signal ratio can be obtained using tif&periments, a TISO (Two Inputs-Single Output) system with
chassis accelerometer instead of the wheel accelerorhetar, force f and acceleratior¥. as inputs and:,,. as output has
for relative speed an position estimates. been identified aslirect virtual sensor. .

Please observe that the quarter-car model described byor the stochastic framework, model$ in the form (4)
equations (11) is undamped and this may lead to identificatibave been identified using standard identification methiods;
problems for both two-step and direct virtual sensor desigarticular, the MATLABpemroutine has been used.
techniques. To avoid that, it is enough to consider the suspe For the Set Membership framework, filter$'*" in the form
sion forceu(t) as the sum of two terms: a forge.i,.(t) (7) have been identified by solving the identification prable
and a known forcef(t) = u(t) — B,iwc(t). By taking f(t) (9), usingp = 2 as norm andW; = I, as weighting
instead ofu(t) as input, the overall suspension system isatrix. To design in a suitable way the filtdF > | filters
guaranteed to be asymptotically stable, since it containsofiorders4 to 8 obtained with the direct methodology for
fictitious dampers,. between chassis and wheel. This wayhe stochastic framework have been evaluated. Their irapuls
all the assumptions of the Theorem reported in Section |l aresponses are plotted in figure 3 and a choicelgf =
fulfilled — in particular, those required for the resiilf — and 3.75-10~%, L, = 0.175 and n,, = n,, = 148 appears reason-

a fair comparison between the different methodologies neay Bble. The choice of the value is related to the considered
performed. In this paper, the valyg = 3000 Ns/m has been performance criterion. Thé&/ SRy has been evaluated for a
chosen, being approximately the average damping betweensingle experiment identifying filter§SM with different p in
maximum and minimum curves represented in Fig. 2. the rangd0.9, 1]. In figure 4 the results are plotted and the best

The correspondence between the virtual sensor probl@erformances are obtained with= 0.965: this suggested to
formulated in Section | and the actual signals is:= f, maintain this choice op throughout the overall Monte Carlo
d=2,, y=2d.andz = .. simulation. Reduced order filterg>" have been identified

Two sets of identification experiments have been taken inlby suitably approximating the FIR filter S,
account, with two different kinds of noise corrupting the  Since in a practical situation the system order is not a jprior
measurements in equations (1). In the first set of expersnerknown, filters of orderl to 8 have been obtained and the
white random Gaussian noise corrupts the samples, such thependence of the estimation quality on the model order has
the hypotheses of the stochastic framework of Section Il dbeen evaluated for any methodology.
true. In the second one, amplitude bounded noise corruptdt is a common practice in automotive tests to use the
the measurements, thus meeting the assumptions of the dst acquired with the random road profile as identification
Membership framework of Section Ill. A Monte Carlo simuset. However, in [8] it turned out that the best results in
lation with 100 experiments has been performed for eactenoterms of estimation error can be obtained with data acquired
type, using the same simulation conditions (road profila}, bwith the pae profile; hence, either identification set has been
with different realizations of the noise sequences affigcthe considered in this paper. Table Il reports the méafiRy,

samples. achieved in the Monte Carlo simulations with all the road
A. Virtual Sensors ldentification Under Gaussian Noise profiles in the testing set for filter structures of order=
' 1 8

For each exPeriment, Wh_ite Gau_ssian sequences corrupt thEproiting the physical insight, the two-step procedure
system outputs:. andz,,. with a noise to signal ratio d¥%. patyrally leads to design® order Kalman filters. Instead,

The filter performance has been evaluated on the testifging the direct procedures essentially black-box apjremc
set, and the percent ratio between estimation error an@lsigihy/s filters have to be chosen as the best trade-offs between

evaluated as: ; estimation error and filter complexity. According to theuks
\/ﬁ Sl (2F = £) in Table I1, for both the direct methodologigs® order filters
ESRy =100 can be picked out, regardless of the data considered for the

1 t 2 ’
Vi Sk, () identification.
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Fig. 4. ESRy, of filters VSM versus the choice gf value.

TABLE I
MEAN ES Ry, UNDER WHITE GAUSSIAN NOISE

005l Random Road as Id Sef Paw Road as Id Set

. n K Vo vsM K Vo vsM
K 1 2337|219 219 |[[ 2073 219 219
oall i 2 474 | 100| 85 375 | 85 8.3
! 3 195 | 4.8 4.1 15.8 | 3.9 3.8
; 4 122 | 46 43 49 | 40 3.8
i 5 83 | 45 4.2 48 | 3.9 3.8
-0a5i 5 6 112 | 45 4.3 48 | 3.9 3.8
I 7 81 | 4.4 4.3 6.3 3.9 3.8
------------------------------------ 8 75 | 4.4 4.3 6.2 | 3.9 3.8
s ‘ ‘ ‘ ‘ ‘ ‘ 148 - - 3.4 - - 3.1
0 0.05 0.1 0.15 0.2 0.25 0.3

Time (s)

Fig. 3. Estimated DVS impulse responses (solid lines) andilpesisounds ; ; ; ;

for the DVS-SM usingL, = 3.75 - 104 and L, = 0.175: p — 1 (dashed tained in the same rpg\?[ner presentegl in _the Gauss!an case.

line), p = 0.965 (dotted line),p = 0.9 (dash-dotted line). Top, impulse Reduced order filterd/; rlave been identified by suitably

response from applied suspension forteo relative speeds,,.. Bottom, approximating the FIR filtet/SM |

impulse response from chassis acceleraiorto relative speedu.. The filter performances have been evaluated on the testing
set, but in this case the weight@dnorm of the estimation
error, evaluated as:

B. Virtual Sensors Identification Under Set Membership &lois 1/2

ty
For each experiment, amplitude bounded noise sequences WN = (Z ‘wgiék‘g)
corrupt the system outputs. and ... At each time instant, k=to
the noise is a realization of a random variable uniformlifas been used as performance criterion, beingand ¢,
distributed into a range bounded B§t of the instantaneous the initial and the final time instants of any experiment,
signal amplitude. respectively, and” = z* — 2. The average value of tHé& N
Note that the stochastic framework methodologies impficitfor the 100 obtained filters has been considered as a criterio
assume a Gaussian noise and then cannot take into accevrifompare the three algorithms.
the information on the error boundedness. Neverthelesseth  For each noise realization, filters of ordérto 8 have
procedures have been applied in order to compare the adhielyeen estimated using the three reported methodologies. Dat
performances. acquired with the random road and the pavrofiles have been
In the direct Set Membership methodology, filter$™ considered as identification set, as explained in the stticha
in the form (7) have been identified by solving thease. Table Ill reports the medif N achieved in the Monte

identification problem (9), usingp = 2 as norm and Carlo simulations with all the road profiles in the testing se
Ws = diagws,1,...,ws,) = diag(Z]), being Z] = Table IV reports the corresponding meAi$ Ry, achieved by
(21, 22, ..., 2771 27]T the output measurements vectorthe same filters, to allow a fear comparison with the results

The a priori information on the model class has been olsbtained in the Gaussian case.



TABLE Il

MEAN W N UNDER SET MEMBERSHIP NOISE

Random Road as Id Se Pae Road as Id Set
n || KTV Jusm| k] v UM
1 904.9 | 176.9 | 81.9 1008.2 | 179.1 | 174.5
2 357.1| 54.9 53.8 381.2 | 534 58.3
3 1614 | 31.6 28.6 136.9 | 22.2 15.3
4 89.4 | 253 20.1 35.8 21.7 14.7
5 98.1 | 26.5 19.1 30.3 14.8 12.9
6 111.8 | 245 19.1 29.5 15.2 13.0
7 726 | 21.7 18.6 27.9 14.6 12.7
8 544 | 234 19.3 37.7 14.0 12.7
148 - - 15.4 - - 14.0
TABLE IV
MEAN ESRy, UNDER SET MEMBERSHIP NOISE
Random Road as Id Sgt Pawe Road as Id Set
n || & v [use || & [ v [usm
1 2493 | 21.5| 109.1 || 268.1| 21.4 | 215
2 65.7 | 7.7 8.6 107.6 | 7.3 8.5
3 222 | 3.7 4.2 204 | 3.6 2.9
4 18.0 | 3.3 3.0 5.4 35 2.7
5 155 | 33 2.8 4.3 2.7 2.6
6 157 | 3.2 2.8 4.3 2.7 2.6
7 9.6 2.9 2.8 4.0 2.7 2.6
8 7.1 3.1 2.8 5.1 2.6 2.6
148 - - 2.1 - - 2.2

V. CONCLUSIONS

From the presented results it turns out that, both the direct
methodologies outperform Kalman filters and, even more
important, do not suffer from performance degradation edus
by under-modeling that may occur with Kalman filters. This
allows, in the direct procedures, to use a sub-optimal swlut
of lower complexity that the optimal, with an acceptableseo
of performance.

For any given order, the filters identified with the direct
Set Membership methodology offer better performances than
those identified with the stochastic one, in particular wtten
random road data is used. Furthermore, in order to achieve
the performances of the DVS-SM, higher order structures
should be used for the DVSs identified with the stochastic
methodology. Note that in most of the cases the FIR DVS-
SM perform better than DVSs and reduced order DVS-SM.

When amplitude bounded noise corrupts the measurements,
the Kalman filters offer a poor performance, even using high
order structures. TheilW N is more than two times higher
than that of the direct virtual sensors. This results remark
the sensitivity of the two-step approach to the kind of noise
corrupting the observations.
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