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Abstract— Consider a linear system with input u and outputs
y and z. Assume that u

t and y
t are measured for all times t

and that z
t is measured only for t ≤ τ , but it is of interest to

know z
t for t > τ . Such a situation may arise when the sensor

measuring z fails and it is important to recover this variable,
e.g. for feedback control. Another case arises when the sensor
measuring z is too complex and costly to be used, except for an
initial set of experiments. Assuming that z is observable from
the couple (u, y), the standard approach consist of a two-step
procedure: identify a model first, then design an observer/Kalman
filter based on the identified model. Noticing that an estimator
of z

t is a system with (ut
, y

t) as input that gives an estimate
of z

t as output, the problem of directly identifying an estimator
model from the available noisy data in the time interval (0, τ)
is investigated. When stochastic noise is considered, the direct
procedure can be carried out using standard techniques and
performs better or like the two-step approach. In the case of
Set Membership noise, a procedure for the identification of
direct virtual sensors is presented. An example related to the
vertical dynamics of vehicles with controlled suspension shows
the effectiveness of the presented approaches.

Keywords—direct virtual sensors, Kalman filter, system iden-
tification, estimation.

I. I NTRODUCTION

Consider a discrete-time, linear, time-invariant, multivari-
able, dynamic systemS, initially at rest, described in state-
space form as:

xt+1 = Axt + B1u
t + B2d

t

yt = C1x
t + vt

zt = C2x
t

(1)

where, for a given time instantt ∈ N: xt∈ R
n is the system

state;ut ∈ R is a known deterministic input;d t ∈ R
d is

a (possibly vectorial) unknown disturbance input;yt ∈ R is
a known (measured) output;zt ∈ R is a partially unknown
output; vt ∈ R is unknown measurement noise;A, B1, B2,
C1 andC2 are constant matrices of suitable dimensions.

The assumptions about the systemS described by (1) are
the following ones:

• the matricesA, B1, B2, C1 andC2 are not known;
• the pair [A,C1] is observable and then, in absence of

noise,zτ = f(Y τ
1 , Uτ

1 ) for any τ , where

Uτ
1 = [u1, u2, . . . , uτ−1, uτ ]T

Y τ
1 = [y1, y2, . . . , yτ−1, yτ ]T ;

This research was supported in part by funds of Ministero dell’Istruzione,
dell’Universit̀a e della Ricerca under the Project “Advanced control and
identification techniques for innovative applications”.

M. Milanese, F. Ruiz and M. Taragna are with the Dipartimento di
Automatica e Informatica, Politecnico di Torino, Corso Duca degli Abruzzi 24,
I–10129, Torino, Italy. Email addresses:mario.milanese@polito.it,
fredy.ruiz@polito.it, michele.taragna@polito.it

• measurements ofut, yt and zt are available fort =
1, 2, . . . , τ ;

• measurements ofut andyt are available also fort > τ .
Considering that process and measurement noises affect

equations (1), the filtering aim is to obtain a (possibly optimal
in some sense) estimatêzt of zt for t > τ using the available
noise-corrupted input and output measurements.

Such a situation may arise when the sensor measuringzt

is too expensive and/or complex to be used, except for an
initial set of experiments. Another case arises when the sensor
measuringzt fails and it is important to recover this variable,
e.g. for feedback control.

The standard approach for the design of virtual sensors,
assuming the systemS is not known, consist of a two-step
procedure: first, a model̂M is identified form the available
noisy data set(ut, yt, zt) for t = 1, . . . , τ ; second, on the
base ofM̂ , a filter K̂ is designed which gives an estimate
ẑt
K of zt using as input(ut, yt) for t > τ . An alternative

approach, proposed in [1], is to use the data set(ut, yt, zt)
for t = 1, . . . , τ to directly identify a filterV̂ which gives an
estimateẑt

V of zt using as input(ut, yt) for t > τ .
In a stochastic framework, the noises affecting (1) are

supposed to be random sequences and optimality refers to
minimizing the estimation error variance. In [1], it was shown
that the direct approach gives, in the case of exact modeling,
performances not worse than the two-step procedure and, more
importantly, in the presence of modeling errors, the directly
identified filter is the minimum variance estimator among
the selected approximating filter class, while a similar result
is not assured by the two-step design, whose performance
deterioration due to modeling errors may be significantly
larger.

In a Set Membership framework, the noises affecting (1) are
supposed to be unknown but bounded sequences and optimal-
ity refers to minimizing a prefixed norm of the estimation error.
To the authors’ knowledge, no results exist about the design
and performance evaluation of virtual sensors using a two-step
approach in this framework. In this paper a methodology for
the direct identification of filters is presented, minimizing the
estimation error and guaranteeing some stability measure of
the model being identified.

As a case study, the filter design problem is solved for
an automotive application. The behavior of different linear
virtual sensors for a quarter-car suspension system is pre-
sented, comparing the estimates provided by observers based
on Kalman filter and the new Direct Virtual Sensor (DVS)
design techniques. In the field of semiactive suspensions,



many different control algorithms have been proposed, such
as the well established “two state” Sky-Hook (see e.g. [2])
and “clipped” strategies (see e.g. [3], [4]) or Model Predictive
Control techniques (see e.g. [5]). The computation of the
control move requires to know, at each sampling time, the state
of the suspension system. A typical configuration of sensorsis
based on accelerometers measuring the vertical accelerations
of the chassis (sprung mass) and/or of the wheel (unsprung
mass). In this example, the focus is on the estimation of
the relative vertical speed between chassis and wheel, using
data provided by just one accelerometer measuring the vertical
acceleration of the chassis. This matter is important not only
for cost reduction but also for safety reasons, for example
when a sensor fails and the corresponding signal has to be
recovered in some way for closing the feedback control loop.
In order to investigate the achievable results in a quite realistic
fashion, different Monte Carlo simulations have been carried
out using standard “benchmark” road profiles employed in
industrial tests, such as random, motorway, pavé, English
track, short back and drain well profiles.

The paper is organized as follows. In Section II the main
theoretical results on virtual sensors for stochastic settings are
recalled and summarized. In the third section, the formulation
of the direct virtual sensor identification for Set Membership
setting is presented. In Section IV the presented approach is
tested on a problem of filter design for the vertical dynamics
of vehicles with controlled suspensions. In the last section,
some concluding remarks are given.

II. V IRTUAL SENSORSDESIGN

FOR STOCHASTIC FRAMEWORK

In a stochastic setting, process and measurement noises
corrupting (1) are assumed to be stochastic white sequences.
For such a situation, a huge literature exists on the minimum
variance filter design, assuming that the systemS is known.
In the present context, on the contrary, the system model is
not known and the filter should be obtained from a noise-
corrupted set of data generated byS in an initial experiment.
Two different methodologies are considered to deal with this
task.

A. Two-step Procedure

The usual solution to the proposed problem is a two-step
procedure. First, an approximate system modelM̂ is obtained
using standard identification methods. Note that the noise
model should also be estimated as is needed for the filter
design.

Given a linear model structureM(θM ), θM ∈ DM ⊂ ℜnM ,
of the form

ŷt = Gyu(q, θM )u + Gye(q, θM )ey

ẑt = Gzu(q, θM )u + Gze(q, θM )ez
(2)

whereey andez are assumed to be white noise sequences and
Gyu, Gye, Gzu and Gze are discrete time transfer functions
in the standard forward shift operatorq. A model is selected

using a prediction error method as:

M(θ̂M ) = arg min
1

τ
det

τ
∑

t=1

[

et
y, et

z

]T [
et
y, et

z

]

(3)

State-space model sets have been considered in this paper.
When M(θ̂M ) or a suitable approximation is found, a

(steady state) Kalman filter̂K = K(θ̂M ) is designed on
the base ofM(θ̂M ) and the estimated noise properties. The
estimator usesyt andut to recover the state of the identified
system (3) with minimum variance and uses it to obtain the
desired output, thus giving the estimateẑ t

K of zt.

B. Direct Procedure

An alternative approach to the problem, as presented in [1],
is to perform, starting from data(ut, yt, zt) for t = 1, . . . , τ ,
the direct identification of a filter̂V , named Direct Virtual
Sensor (DVS), which gives an estimatêzt

V of zt using as
input (ut, yt) for t > τ .

This aim can be pursued by selecting the filterV̂ from
a suitable family of parameterized predictor modelsV (θV ),
θV ∈ DV ⊂ ℜnV , of the form:

xt+1
f = Af (θV )xt

f + Bf1 (θV )ut + Bf2 (θV ) yt

ẑt = Cf (θV )xt
f + Df1 (θV )ut + Df2 (θV ) yt (4)

where xf ∈ R
nf is the estimator state, and the optimality

criterion used in this paper to select the filterV̂ = V (θ̂V ) is
the error variance minimization:

θ̂V =arg min
θV ∈DV

1

2τ

τ
∑

t=1
ε2 (t, θV )

whereε (t, θV ) = zt − ẑt is the prediction error of predictor
modelsV (θV ), see e.g. [6].

The interest for this new approach stems from the fact that
even in the most favorable situation, e.g. when no modeling
errors occur and the minimum variance filter is actually
computable, the two-step procedure is proven to perform
no better than the direct approach. The following theorem
shows the statistical optimality properties of the two proposed
approaches.

Theorem[1]. Let Ē denote statistical expectation.
The following results hold with probability one asτ → ∞:

i) Ē
[

(zt − ẑ t
K)

2
]

≥ Ē
[

(zt − ẑ t
V )

2
]

ii) If S ∈ M(θM ), then V̂ is a minimal variance filter
among all linear causal filters mapping(u, y) into z.

iii) If S ∈ M(θM ), the model structureM(θM ) is globally
identifiable andS is stable, thenK̂ also is a minimal
variance filter so that:

Ē
[

(zt − ẑ t
K)

2
]

= Ē
[

(zt − ẑ t
V )

2
]

This theorem states that, in general, the direct procedure
offers better performances than the two-step procedure. In-
deed, at best (e.g. under the exact modeling assumptionS ∈
M(θM )), the two approaches have asymptotically (w.r.t.τ ) the
same accuracy. However, in the presence of modeling errors,
the directly identified filter, although not absolutely optimal,
is the minimum variance estimator among all linear filters of
the same order. A similar result is not assured by the two-step



design, whose performance degradation caused by modeling
errors may be significantly larger. Moreover, in the case of
no modeling errors, resultii) shows that the directly identified
filter V̂ is optimal even ifS is unstable, while this is not
guaranteed by the Kalman filter̂K.

III. V IRTUAL SENSORSDESIGN

FOR SET MEMBERSHIPFRAMEWORK

In a Set Membership setting, the noise sequences are
assumed to be bounded in some set. Moreover, the filter is
assumed to belong to a class of systems with some guaranteed
stability degree.

Under the assumed hypotheses about the systemS and in
particular the observability of the pair[A,C1], a family of
stable estimators exists for the system (1), in the form of
Luenberger observer:

xt+1
e = Axt

e + B1u
t + L(yt − C1x

t
e)

z̃t = C2x
t
e + M(yt − C1x

t
e)

(5)

Each IIR filter in the form (5) is an exponentially stable
dynamic system and can be written as:

z̃t =

∞
∑

k=0

αkut−k +

∞
∑

k=0

βkyt−k

where the decay rate of its impulse response is bounded as:
{

|αk| ≤ Luρ−k, k ∈ [0, ...,∞], Lu > 0, ρ > 1
|βk| ≤ Lyρ−k, k ∈ [0, ...,∞], Ly > 0, ρ > 1

(6)

The proposed methodology approximates the infinite im-
pulse response of the above estimator with a long enough FIR
filter V̂ SM . The structure of the direct virtual sensor for the
Set Membership framework (DVS-SM for short) is:

ẑt =

nu
∑

k=0

αkut−k +

ny
∑

k=0

βkyt−k (7)

wherenu, ny are given. The design parameters of this DVS-
SM filter areLu, Ly, ρ, nu, ny and can be suitably tuned in
order to minimize the overall estimation error.

Notice that the estimation errorδt = zt − ẑt is bounded.
In fact, δt = zt − ẑt = (zt − z̃t) + (z̃t − ẑt) = δ̃

t
+ δ̂

t
.

The term δ̃
t

= zt − z̃t is the estimation error of filter (5),
governed by the error dynamics resulting from the effect of
noise and disturbances on the differenceξt

x = xt−xt
e between

the system and filter states. From (1) and (5), it follows that
ξt+1

x = (A − LC1)ξ
t
x + B2d

t − Lvt

δ̃
t
= (C2 + MC1) ξt

x − Mvt
(8)

and thenδ̃
t

is bounded sincedt and vt are assumed to be
bounded. Moreover, for anyρ > 1, the termδ̂

t
= z̃t − ẑt =

∑

∞

k=nu+1 αkut−k +
∑

∞

k=ny+1 βkyt−k is bounded for any
bounded inputut and outputyt.

A measure of the estimation error is given by the following
weightedp-norm:

WN = ‖δτ‖
Wδ

p =
∥

∥W−1
δ δτ

∥

∥

p
=

(

τ
∑

k=1

∣

∣

∣
w−1

δ,kδk
∣

∣

∣

p
)1/p

with δτ =
[

δ1, . . . , δτ
]T

andWδ = diag(wδ,1, wδ,2, . . . , wδ,τ )
a given weighting matrix wherewδ,k > 0 ∀k. By suitably

choosingWδ, it is possible to consider noise measures depen-
dent onk : for example,Wδ = diag(z1, z2, . . . , zτ−1, zτ )
in the case of relative measurement errors.

For givenLu, Ly, nu, ny and ρ, an optimal filterV̂ SM of
the form (7) can be selected by minimizing the above estimate
quality measure, thus leading to the following identification
problem:

[α̂0, . . . , α̂nu
, β̂0, . . . , β̂ny

] = arg min ‖δτ‖
Wδ

p

such that














δt =zt−
nu
∑

k=0

αkut−k−
ny
∑

k=0

βkyt−k, t ∈ [1, 2, . . . , τ ]

|αk| ≤ Luρ−k, k ∈ [0, . . . , nu]
|βk| ≤ Lyρ−k, k ∈ [0, . . . , ny]

(9)

When disturbances and noise are assumed to be energy
bounded signals, i.e.dt ∈ ℓ2(Z+) and vt ∈ ℓ2(Z+), the
solution of the identification problem (9) withp = 2 and
Wδ = I[τ×τ ] leads to the minimization of the estimation error
variance. In this case, the problem (9) can be efficiently solved
by quadratic programming.

When disturbances and noise are assumed to be amplitude
bounded signals, i.e.dt ∈ ℓ∞(Z+) and vt ∈ ℓ∞(Z+), the
solution of the identification problem (9) withp = ∞ and
Wδ = I[τ×τ ] leads to the minimization of the worst-case
estimation error. In this case, solution to problem (9) can
be obtained by minimax optimization. Since minimax is a
complex and not efficient procedure, a conservative but less
demanding approximation for thep = ∞ case is:

[α̂0, . . . , α̂nu
, β̂0, . . . , β̂ny

, σ] = arg minσ

such that






















σ ≥ 0

w−1
δ,t

∣

∣

∣

∣

zt−
nu
∑

k=0

αkut−k−
ny
∑

k=0

βkyt−k

∣

∣

∣

∣

≤ σ, t ∈ [1, 2, . . . , τ ]

|αk| ≤ Luρ−k, k ∈ [0, . . . , nu]
|βk| ≤ Lyρ−k, k ∈ [0, . . . , ny]

(10)
Solution to problem (10) is linear programming. Standard and
efficient algorithms exist to solve it.

Regardless of the used norm, solution to problems (9) or
(10) is a high order FIR filter, which in many cases is not well
suited for practical use, for example in real time estimation.
Since the found FIR filter is an approximation of the impulse
response of a stable finite order filter, it is possible to perform a
model order reduction, fitting the identified impulse responses
with a stable and causal IIR filter̂V SM

n of a prefixed ordern.
The selection of the design parametersLu, Ly, nu, ny and

ρ can be made in different ways. For example, the direct
procedure for stochastic framework may be applied to the
available data set using different filter structures (orders) and
then a suitable bound on the impulse responses of the resulting
filters can be looked for. Another possibility is to solve the
identification problem without constraints and then, starting
from this solution, choose conservative bounds forLu and
Ly, and finally perform a line search onρ varying nu andny

according to the selected decay rate.



IV. V IRTUAL SENSORS FORSEMIACTIVE SUSPENSIONS

In this work, the virtual sensor methodologies are applied to
the vertical dynamics of a road vehicle. The used model is a
quarter-car semiactive suspension system, having the structure
depicted in Fig. 1. The chassis and the wheels are modeled as
rigid bodies and static linear characteristics are assumedfor
suspension. The parameters characterizing the model are:

• Mc: sprung (chassis) mass.
• Mw: unsprung (tire, wheel and other suspension compo-

nents) mass.
• Kc: suspension spring constant.
• Kw: tire stiffness coefficient.

The variables describing the system are:

• xr: road profile.
• xw: wheel vertical position.
• xc: chassis vertical position.
• u(t): damping force.

The quarter-car model dynamics are given by the following
set of differential equations:

Mcẍc = u − Kc (xc − xw)

Mwẍw = −u + Kc (xc − xw) − Kw (xw − xr)
(11)

The parameter values used in the simulations are reported in
Table I and have been taken from [5].

Fig. 1. Quarter-car suspension schematic

TABLE I

PARAMETERS VALUES USED IN THESIMULATION

Parameter Value
Mc 432.82 kg
Mw 40 kg
Kc 17200 N/m
Kw 200000 N/m

In semiactive suspension systems, the damping force is
u(t) = −β(t) [ẋc(t) − ẋw(t)], where the damping coefficient
β(t) is variable. At present, a widely used semiactive tech-
nique is the “On-Off Sky-Hook” control (see e.g. [7]), where
the damper is adjusted at maximum or minimum damping to

provide the following force:

u =

{

ui,max (ẋc − ẋw) if ẋc (ẋc − ẋw) ≥ 0
ui,min (ẋc − ẋw) if ẋc (ẋc − ẋw) < 0

The maximum and the minimum curvesui,max and ui,min

are represented in Fig. 2 as functions of the relative speed
vwc(t) = ẋwc = ẋw(t) − ẋc(t).

The quarter-car model has been implemented in Simulink
in order to obtain data simulating a possible experimental
setup, characterized by type of road profile, control strategy,
experiment length, measured variables and sensors accuracy.

It is considered that the road profilexr is not known, the
damping forceu(t) is known and corresponds to a “On-Off
Sky-Hook” control, acceleration̈xc can be measured with
a precision of5%, the relative vertical speeḋxwc can be
measured only on an initial experiment with a precision of
5%.

Six data sets have been generated from the quarter-car
model, all with a length of13.7 seconds. Each data set
corresponds to the system response to a “benchmark” road
profile, subject to zero initial conditions, as described in[5].
The considered road profiles are among those used for the
on-road tuning of the CDC-Skyhook (continuous damping
control) system. These road profiles allow to test different
dynamic conditions of the vehicle, in terms of frequencies
and amplitudes:

• Random (shortened as RR): random road.
• Motorway (shortened as MW): level road.
• Pav́e (shortened as PV): road with small amplitude irreg-

ularities.
• English Track (shortened as ET): road with irregularly

spaced sequences of bumps and holes.
• Short Back (shortened as SB): impulsive road.
• Drain Well (shortened as DW): negative impulsive road.

Each data set consists of the values ofu, ẍc and ẋwc,
recorded with a sample timeTs = 1/512s.

The complete data set, formed by the six subsets of 7000
samples of each measured variable, has been partitioned as
follows:

Fig. 2. Damper map



• identification set: the data corresponding to the first6.8
seconds of the acquisition with a particular road profile;

• testing set: the data corresponding to seconds from6.8 to
13.7 of the acquisition with the same road profile consid-
ered for the identification set, and the data corresponding
to the13.7 seconds of acquisition with the other five road
profiles. This set has been used for testing the accuracy
of identified models on data not used for identification.

The aim of a virtual sensor for the experimental setup
presented above is to estimate the relative vertical speedẋwc

of the quarter car model, using the available acceleration
measuremenẗxc and the applied suspension forceu(t). In
fact, it was shown in [8] that the best trade-off between filter
complexity and error signal ratio can be obtained using the
chassis accelerometer instead of the wheel accelerometer,both
for relative speed an position estimates.

Please observe that the quarter-car model described by
equations (11) is undamped and this may lead to identification
problems for both two-step and direct virtual sensor design
techniques. To avoid that, it is enough to consider the suspen-
sion forceu(t) as the sum of two terms: a forceβcẋwc(t)
and a known forcef(t) = u(t) − βcẋwc(t). By taking f(t)
instead ofu(t) as input, the overall suspension system is
guaranteed to be asymptotically stable, since it contains a
fictitious damperβc between chassis and wheel. This way,
all the assumptions of the Theorem reported in Section II are
fulfilled – in particular, those required for the resultiii) – and
a fair comparison between the different methodologies may be
performed. In this paper, the valueβc = 3000 Ns/m has been
chosen, being approximately the average damping between the
maximum and minimum curves represented in Fig. 2.

The correspondence between the virtual sensor problem
formulated in Section I and the actual signals is:u = f ,
d = xr, y = ẍc andz = ẋwc.

Two sets of identification experiments have been taken into
account, with two different kinds of noisev corrupting the
measurements in equations (1). In the first set of experiments,
white random Gaussian noise corrupts the samples, such that
the hypotheses of the stochastic framework of Section II are
true. In the second one, amplitude bounded noise corrupts
the measurements, thus meeting the assumptions of the Set
Membership framework of Section III. A Monte Carlo simu-
lation with 100 experiments has been performed for each noise
type, using the same simulation conditions (road profile), but
with different realizations of the noise sequences affecting the
samples.

A. Virtual Sensors Identification Under Gaussian Noise

For each experiment, white Gaussian sequences corrupt the
system outputs̈xc and ẋwc with a noise to signal ratio of5%.

The filter performance has been evaluated on the testing
set, and the percent ratio between estimation error and signal,
evaluated as:

ESR% = 100

√

1
tf−t0+1

∑tf

t=t0
(zt − ẑt)

2

√

1
tf−t0+1

∑tf

t=t0
(zt)

2
,

has been used as performance criterion, beingt0 and tf
the initial and the final time instants of any experiment,
respectively. The average value of theESR% for the 100
obtained filters has been considered as a criterion to compare
the three algorithms.

In the two-step methodology, for each one of the 100 exper-
iments, a SITO (Single Input-Two Outputs) system̂M in the
form (2), with forcef as input and̈xc andẋwc as outputs, has
been identified using standard identification methods. Thepem
routine of the MATLAB Identification Toolbox has been used
to fit an initial model. On the base of this model, a steady state
Kalman filterK̂ has been designed astwo-stepvirtual sensor.

In either direct methodology, for each one of the 100
experiments, a TISO (Two Inputs-Single Output) system with
force f and acceleration̈xc as inputs anḋxwc as output has
been identified asdirect virtual sensor.

For the stochastic framework, modelŝV in the form (4)
have been identified using standard identification methods;in
particular, the MATLABpem routine has been used.

For the Set Membership framework, filtersV̂ SM in the form
(7) have been identified by solving the identification problem
(9), using p = 2 as norm andWδ = I[τ×τ ] as weighting
matrix. To design in a suitable way the filter̂V SM , filters
of orders 4 to 8 obtained with the direct methodology for
the stochastic framework have been evaluated. Their impulse
responses are plotted in figure 3 and a choice ofLu =
3.75 ·10−4, Ly = 0.175 and nu = ny = 148 appears reason-
able. The choice of theρ value is related to the considered
performance criterion. TheESR% has been evaluated for a
single experiment identifying filterŝV SM with different ρ in
the range[0.9, 1]. In figure 4 the results are plotted and the best
performances are obtained withρ = 0.965: this suggested to
maintain this choice ofρ throughout the overall Monte Carlo
simulation. Reduced order filterŝV SM

n have been identified
by suitably approximating the FIR filter̂V SM .

Since in a practical situation the system order is not a priori
known, filters of order1 to 8 have been obtained and the
dependence of the estimation quality on the model order has
been evaluated for any methodology.

It is a common practice in automotive tests to use the
data acquired with the random road profile as identification
set. However, in [8] it turned out that the best results in
terms of estimation error can be obtained with data acquired
with the pav́e profile; hence, either identification set has been
considered in this paper. Table II reports the meanESR%

achieved in the Monte Carlo simulations with all the road
profiles in the testing set for filter structures of ordern =
1, . . . , 8.

Exploiting the physical insight, the two-step procedure
naturally leads to design4th order Kalman filters. Instead,
being the direct procedures essentially black-box approaches,
DVS filters have to be chosen as the best trade-offs between
estimation error and filter complexity. According to the results
in Table II, for both the direct methodologies3rd order filters
can be picked out, regardless of the data considered for the
identification.
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Fig. 3. Estimated DVS impulse responses (solid lines) and possible bounds
for the DVS-SM usingLu = 3.75 · 10

−4 andLy = 0.175: ρ = 1 (dashed
line), ρ = 0.965 (dotted line),ρ = 0.9 (dash-dotted line). Top, impulse
response from applied suspension forcef to relative speedẋwc. Bottom,
impulse response from chassis accelerationẍc to relative speeḋxwc.

B. Virtual Sensors Identification Under Set Membership Noise

For each experiment, amplitude bounded noise sequences
corrupt the system outputs̈xc and ẋwc. At each time instant,
the noise is a realization of a random variable uniformly
distributed into a range bounded by5% of the instantaneous
signal amplitude.

Note that the stochastic framework methodologies implicitly
assume a Gaussian noise and then cannot take into account
the information on the error boundedness. Nevertheless, these
procedures have been applied in order to compare the achieved
performances.

In the direct Set Membership methodology, filtersV̂ SM

in the form (7) have been identified by solving the
identification problem (9), usingp = 2 as norm and
Wδ = diag(wδ,1, . . . , wδ,τ ) = diag(Zτ

1 ), being Zτ
1 =

[z1, z2, . . . , zτ−1, zτ ]T the output measurements vector.
The a priori information on the model class has been ob-

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

ρ

E
S

R
 %

Fig. 4. ESR% of filters V̂ SM versus the choice ofρ value.

TABLE II

MEAN ESR% UNDER WHITE GAUSSIAN NOISE

Random Road as Id Set Pav́e Road as Id Set

n K̂ V̂ V̂ SM
n K̂ V̂ V̂ SM

n

1 233.7 21.9 21.9 207.3 21.9 21.9
2 47.4 10.0 8.5 37.5 8.5 8.3
3 19.5 4.8 4.1 15.8 3.9 3.8
4 12.2 4.6 4.3 4.9 4.0 3.8
5 8.3 4.5 4.2 4.8 3.9 3.8
6 11.2 4.5 4.3 4.8 3.9 3.8
7 8.1 4.4 4.3 6.3 3.9 3.8
8 7.5 4.4 4.3 6.2 3.9 3.8

148 - - 3.4 - - 3.1

tained in the same manner presented in the Gaussian case.
Reduced order filterŝV SM

n have been identified by suitably
approximating the FIR filter̂V SM .

The filter performances have been evaluated on the testing
set, but in this case the weighted2 norm of the estimation
error, evaluated as:

WN =

( tf
∑

k=t0

∣

∣

∣
w−1

δ,kδk
∣

∣

∣

2
)1/2

has been used as performance criterion, beingt0 and tf
the initial and the final time instants of any experiment,
respectively, andδk = zk − ẑk. The average value of theWN
for the 100 obtained filters has been considered as a criterion
to compare the three algorithms.

For each noise realization, filters of order1 to 8 have
been estimated using the three reported methodologies. Data
acquired with the random road and the pavé profiles have been
considered as identification set, as explained in the stochastic
case. Table III reports the meanWN achieved in the Monte
Carlo simulations with all the road profiles in the testing set.
Table IV reports the corresponding meanESR% achieved by
the same filters, to allow a fear comparison with the results
obtained in the Gaussian case.



TABLE III

MEAN WN UNDER SET MEMBERSHIP NOISE

Random Road as Id Set Pav́e Road as Id Set

n K̂ V̂ V̂ SM
n K̂ V̂ V̂ SM

n

1 904.9 176.9 81.9 1008.2 179.1 174.5
2 357.1 54.9 53.8 381.2 53.4 58.3
3 161.4 31.6 28.6 136.9 22.2 15.3
4 89.4 25.3 20.1 35.8 21.7 14.7
5 98.1 26.5 19.1 30.3 14.8 12.9
6 111.8 24.5 19.1 29.5 15.2 13.0
7 72.6 21.7 18.6 27.9 14.6 12.7
8 54.4 23.4 19.3 37.7 14.0 12.7

148 - - 15.4 - - 14.0

TABLE IV

MEAN ESR% UNDER SET MEMBERSHIP NOISE

Random Road as Id Set Pav́e Road as Id Set

n K̂ V̂ V̂ SM
n K̂ V̂ V̂ SM

n

1 249.3 21.5 109.1 268.1 21.4 21.5
2 65.7 7.7 8.6 107.6 7.3 8.5
3 22.2 3.7 4.2 20.4 3.6 2.9
4 18.0 3.3 3.0 5.4 3.5 2.7
5 15.5 3.3 2.8 4.3 2.7 2.6
6 15.7 3.2 2.8 4.3 2.7 2.6
7 9.6 2.9 2.8 4.0 2.7 2.6
8 7.1 3.1 2.8 5.1 2.6 2.6

148 - - 2.1 - - 2.2

According to the results in Table III, on the base of the
random road experiment DVS and DVS-SM of4th order can
be picked out, while5th order DVS and3rd order DVS-SM
might be reasonably chosen from the Pavé road experiment
results.

Finally, in Table V the meanESR% achieved in the
Monte Carlo simulations under Gaussian and Set Membership
noises are summarized for the optimal virtual sensors selected
according to the above criteria.

TABLE V

MEAN ESR% FOR4th ORDERKALMAN FILTERS AND OPTIMAL DVSS

Gaussian noise Set Membership noise

Road K̂ V̂ V̂ SM
n V̂ SM K̂ V̂ V̂ SM

n V̂ SM

RR 12.2 4.8 4.1 3.4 18.0 3.3 3.0 2.1
PV 4.9 3.9 3.8 3.1 5.4 2.7 2.9 2.2

V. CONCLUSIONS

From the presented results it turns out that, both the direct
methodologies outperform Kalman filters and, even more
important, do not suffer from performance degradation caused
by under-modeling that may occur with Kalman filters. This
allows, in the direct procedures, to use a sub-optimal solution
of lower complexity that the optimal, with an acceptable loose
of performance.

For any given order, the filters identified with the direct
Set Membership methodology offer better performances than
those identified with the stochastic one, in particular whenthe
random road data is used. Furthermore, in order to achieve
the performances of the DVS-SM, higher order structures
should be used for the DVSs identified with the stochastic
methodology. Note that in most of the cases the FIR DVS-
SM perform better than DVSs and reduced order DVS-SM.

When amplitude bounded noise corrupts the measurements,
the Kalman filters offer a poor performance, even using high
order structures. TheirWN is more than two times higher
than that of the direct virtual sensors. This results remark
the sensitivity of the two-step approach to the kind of noise
corrupting the observations.
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