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Abstract
Subcritical reactor controlled by linear proton accel-

erator is considered. Problems of such systems dynam-
ics modeling, taking into account the temperature feed-
backs on coolant and fuel are investigated. The ob-
tained dynamics equations describe physical processes
with characteristic times differing by orders of magni-
tude. Due to this feature some physical approximations
were introduced to simplify the equations of dynamics
based on the point kinetics model. This simplification
allows to use standard methods for numerical integra-
tion of ODE.
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1 Introduction
Accelerator driven systems (ADS) is a new type of

reactor which produces power even though it remains
sub-critical throughout its life [Carminati and et al,
1993]. The main elements of ADS are subcritical reac-
tor, neutron producing target and charged particle ac-
celerator. Nowadays ADS is considered to be one of
the most prospective ways to solve the main problems
of nuclear power engineering such as transmutation of
long-lived radioactive waste, safe energy production
and breeding new fissionable elements [Gerasimov and
Kiselev, 2001], [Golovkina et al., 2016a].
In contrast to traditional critical reactors, where the

control on reactor power rate is carried out by the neu-
tron absorbing rods, subcritical reactor is controlled by
charged particle accelerator in ADS. Reactivity coeffi-
cient changes in time due to feedbacks on temperature
effects (fuel and coolant) and simultaneous fuel burn-
ing and fission products accumulation. So problem of
ADS power-level maintenance with accelerator as well
as reactor dynamics investigation is arised.

In [Golovkina, 2017] was shown that the considered
physical processes progress in time with speeds differ-
ent by orders of magnitude. In order to correctly take
this speciality into account in numerical calculations
simplified dynamics model based on point kinetics is
used in [Golovkina, 2017]. In this paper four succes-
sive initial dynamics equations simplification were pro-
posed and their correctiveness on each step was shown.
As a result the physical limits of applicability of these
simplifications are formulated. It is shown that char-
acteristic times for physical processes in ADS reactor
meet these conditions. Using the finally obtained equa-
tions physically appropriate results were calculated.

2 Subcritical Reactor Control with Accelerator
Dynamics of the ADS subcritical reactor depends on

internal and external feedbacks. Internal feedbacks
are defined by physical properties of the reactor core,
whereas external feedbacks reflect reactor connection
with power plant (coolant flow, coolant temperature at
the reactor inlet).
For stable ADS operation at the constant power-level

the reactor core must have a negative feedback on the
fuel and coolant temperature as well as the average neg-
ative reactivity coefficient, which ensures reactor self-
regulation and maintenance of the average temperature.
Thermal power-level of the reactor core is determined

by the following expression:

NT =
EfQf

ν
, (1)

where Ef — energy released per one fuel nucleus fis-
sion, ν — average number of neutrons coming out in
fission event, Qf — intensity of fission neutrons gen-
eration, which in first approximation can be calculated
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by the following formula

Qf = S
1− keff

keff
. (2)

Here S — external neutron source intensity.

As can be seen from equations (1) and (2), the reac-
tor power depends on the intensity of the electronuclear
neutron source and the value of effective multiplication
factor keff, which is chosen to provide nuclear safety
and nowadays for ADS it is admitted not to exceed
value 0.98.

3 Dynamics of Subcritical Reactor Based on Point
Kinetics Model

Here and later instead of efficient multiplication fac-
tor keff we will consider reactivity of the reactor ρ =
keff − 1

keff
which is a dimensionless quantity used to

characterize reactor deviation from the critical state
[Keepin, 1965].

Internal feedbacks cause the dependence of reactiv-
ity on the fuel elements and coolant temperature. The
effect of the reactor temperature on its reactivity is
called the fuel temperature effect, and the influence of
the coolant temperature — coolant temperature effect.
Temperature effects are characterized by the respec-
tive temperature coefficients of reactivity αT and αTH .
Usually the dependence of reactivity on temperature is
represented by a linear function [Beckman, 2005]

ρ = αT (TT − T av
T ) + αTH (TTH − T av

TH) , (3)

where TT and TTH — current fuel and coolant temper-
ature correspondently, T av

T T av
TH — temperature of fuel

and coolant in the operating point.

The reactivity temperature effect is determined by two
components: dependence of the core materials den-
sity on temperature and the Doppler effect [Usynin and
Kusmartsev, 1985].

Taking into account the remarks made above, reactor
core dynamics with thermal feedbacks is described by

the following system of equations:

dφ(t)

dt
=

(ρ(t)− βeff)φ(t)

l
+

N∑
i=1

λiC
i
eff(t) + qeff(t),

dCi
eff(t)

dt
=

βi
effφ(t)

l
− λiC

i
eff(t), (4)

ρ(t) = ρav + αT

(
T̂T (t)− T av

T

)
+

αTH (TTH(t)− T av
TH) ,

MTHCTH
dTTH(t)

dt
= 2GCTH(t) (Tin − TTH(t)) +

+hS (Tw(t)− TTH(t)) , (5)

ρT (TT , r)CT (TT , r)
∂TT (r, t)

∂t
= (6)

=
1

r

∂

∂r

(
rλT (TT , r)

∂TT (r, t)

∂r

)
+ qv(r, t),

t > 0, 0 < r < R,

φ(0) = φini, Ceff(0) = C ini
eff ,

ρ(0) = ρini, TTH(0) = T ini
TH , TT (r, 0) = T ini

T (r).

Here t — time, φ — neutron flux amplitude, βi
eff —

effective delayed neutron fraction, βeff =
N∑
i=1

, N —

number of delayed neutrons groups, l — mean prompt
generation time, Ci

eff — effective concentration of de-
layed neutron precursors, qeff — effective external neu-
tron source, λ — r — fuel element radius coordinate,
MTH — mass of coolant, TT (r, t) — fuel element tem-
perature distribution, T̂T (t) — volume average tem-
perature of the fuel element, Tw — temperature of the
fuel element wall, TTH — coolant temperature, G —
coolant mass flow, S — area of heat delivery surface of
the fuel elements in the reactor core, αT — fuel tem-
perature coefficient, αTH — coolant temperature co-
efficient, h — coolant heat-transfer coefficient, λT —
heat conductivity coefficient, CT — specific heat ca-
pacity of the fuel element, ρT — density of the fuel
element.
Taking into account equation (1) and assumption of

time and spatial variables separation, made during
point kinetics equations derivation [Usachev, 1955],
change in time of energy release spatial distribution in
the core is determined by the expression

N0(r, t) =
φ(t)Ef

∫
dE

∫
dΩMf F̃ (r,Ω, E)

ν
,

and change in time of the integral energy release:

N(t) =
φ(t)Ef

⟨
Mf F̃ (r,Ω, E)

⟩
ν

, (7)

then distribution of specific (by volume) energy re-

lease in equation (6) is defined as qv(r, t) =
N(r, t)

V0
,
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where V0 — volume of the reactor core, F̃ (r,Ω, E) —
neutron flux spatial–angle–energy distribution, φ(t) —
shape factor of the neutron flux, Mf — linear fission
operator, ⟨·, ·⟩ — scalar product in l2.
Simultaneous integration of equations (4), (5) and (6)

with given initial and boundary conditions is rather dif-
ficult problem, since the physical processes described
by them are characterized by time constant differing
in orders of magnitude [Strakhovskaya and Fedorenko,
1998].

4 Physical Simplifications
Four physical components with different characteris-

tic time, can be separated [Golovkina, 2017]:

1. Prompt neutrons. Average prompt neutrons life-
time l in the reactor depends on the neutron energy
spectrum and changes from 5 · 10−7 s (for fast re-
actors) to 5 · 10−4 s (for thermal reactors).

2. Delayed neutrons. Average delayed neutrons life-
time tdel = 0.1− 10 s.

3. Accelerator driver current. Micro impulses period
in the linear accelerator is T = 5 · 10−9 s, and
macro impulses period is T = 5 · 10−3 s.

4. Thermal feedbacks. The time constant, charac-
terizing the rate of the fuel elements temperature
change with energy release change in time is not
less than 0.01 s. The time constant characteriz-
ing the rate of coolant temperature change is de-
termined by the time of its passage through the re-
actor core and is a few seconds.

Thus, the system of nonstationary equations (4)–(6)
is characterized by significant variety of time constants
defining the dynamics of simulated physical processes.
So numerical solution of this system by standard meth-
ods [Hairer et al., 1993] requires the use of integration
step, corresponding to the physical process with a mini-
mum characteristic time (about 10−7 s). This approach
is not appropriate, since the reactor dynamics should be
determined within a long period of time. In this regard,
the influence of each of these physical components on
the dynamics of subcritical reactor controlled by lin-
ear accelerator was analyzed and approximate models,
which make it possible to use traditional methods for
ODE numerical solution are obtained.

4.1 Prompt-jump Approximation
As noted above, the time constant characterizing the

rate of fuel elements temperature change in time, and
the lifetime of delayed neutrons are approximately
0.01 s, that is several orders of magnitude greater than
the prompt neutrons average lifetime in the reactor. In
this regard, the dynamics of subcritical reactor taking
into account the feedbacks can be described by qua-
sistatic prompt-jump approximation [Hetrick, 1971],
because it predicts a sudden change in the reactor

power following a sudden change in reactivity. This ap-
proximation is based on the assumption, that the mean
prompt neutrons generation time is extremely small
and can be equated to zero.
Prompt-jump approximation is valid only in case

when the relative rate of change of reactor power in
a mean prompt neutrons generation time is sufficiently
small so that holds [Akcasu et al., 1971]:∣∣∣∣ l

βeff

dφ(t)/dt

φ(t)

∣∣∣∣ ≪ ∣∣∣∣1− ρ(t)

βeff

∣∣∣∣ .
In this case the term

l

βeff

dφ(t)

dt
in (4) can be neglected

and resulting approximate equations read

φ(t) =

(
N∑
i=1

λiC
i
eff(t) + qeff(t)

)
l

βeff − ρ(t)
,

dCi
eff(t)

dt
=

βi
effφ(t)

l
− λiC

i
eff(t), (8)

φ(0) = φini, Ceff(0) = C ini
eff .

In the Figure 1 the relative ADS power rate change in
time with external pulsed neutron source is shown. The
duration and the period of source pulses correspond
to the linear accelerator current macro pulses (fig. 2).
Calculations were carried out for the fast reactor core
(l = 3·10−6 s) using models (4)–(6) and (8), (5)–(6). It
is clear from the Figure 1, that these results almost co-
incide, so that demonstrates the possibility of prompt
neutrons approximation usage in calculations.

Figure 1. Dependence on time of the relative power rate for ADS
with fast reactor (general point kinetic approximation and prompt-
jump approximation)

Integration step for point kinetics equations (4)
shouldn’t exceed the average neutron life time in the
reactor [Golovkina et al., 2016b]. For the fast reactors
this value is ∼ 10−8 : 10−7 s, so the solving of equa-
tion (4) for the long lasting period of time becomes im-
possible. On the other hand, the usage of prompt neu-
trons approximation allows to increase the integration
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Figure 2. Charged particles current change in time in a linear ac-
celerator

step in several orders of magnitude. Also prompt neu-
trons approximation reduces the number of differential
equations by one.

4.2 Accelerator current continuity approximation
Period of current micropulses in the linear accelerator

(T = 5 ·10−9 s) is rather smaller than the mean prompt
neutrons generation time, so the intensity of the addi-
tional neutron source in ADS with a linear accelerator
can be treated as a sequence of square pulses with pe-
riod and length corresponding to the average current
value in the macropulse.
Period of current macropulse in the linear accelerator,

proposed to be used in ADS, is T = 5 · 10−3. Let us
analyze the influence of this value on a fuel element
temperature state, which defines the longterm ADS dy-
namics. For this reason let us consider the heat-balance
equation for a cylindrical fuel element:

MTCT
dT̂T (t)

dt
= N − 2

R
h(T̂T (t)− TTH), (9)

T̂T (0) = TTH .

Here MT — mass of fuel, R — radius of fuel ele-
ment, temperature of coolant TTH and power of inter-
nal energy-release N are supposed to be constant, also
temperature change on the radius of fuel element is ne-
glected.
Let us estimate the fuel element time constant (time

for which its temperature changes in e times) using
equation (9). Turn to the dimensionless variables u =

∆T̂T

∆T 0
T

=
T̂T (t)− TTH

TT − TTH
and τ =

tN

ρTCT∆T 0
T

:

du(τ)

dτ
= 1− 2h∆T 0

T

RN
u(τ), u(0) = 0. (10)

The solution of equation (10) is an exponential func-
tion like u(τ) = 1/a − exp(−aτ)/a, where a =

2h∆T 0
T

RN
. Then u(t) = 1/a − exp(−t/t)/a and time

constant of the fuel element will be calculated using the
formula

t =
RρTCT

2h
. (11)

In case tf.e. ≫ tmac, then the temperature of the fuel el-
ement won’t change in the time between power pulses,
so the temperature oscillation can be neglected. Due to
this fact external neutron source can be treated as con-
stant in time with intensity equal to the average time
value of q(t):

qav =
Qmaxτ

T
. (12)

Here Qmax — amplitude of neutron source power
macropulse, τ — macropulse length, T — macropulse
period.
tf.e. depends on physical characteristics of fuel ele-

ment material and lies in the range 0.01–1 s, that is
in order of magnitude greater than current macropulse
period in linear accelerator.
To illustrate the formulated criteria let’s consider the

problem of fuel element heating-up during the ADS
reactor start from the cold state with pulsed neutron
source with period tf.e. ≫ tmac and tf.e. < tmac. This
process is described by nonstationary heat conductivity
equation (6) with initial

TT (r, 0) = TTH

and boundary condition on the external surface of the
fuel element:

−λT
∂TT (r, t)

∂r

∣∣∣∣
r=R

= h(TT (r, t)− TTH). (13)

Here h — heat-transfer coefficient.
In figs. 3 and 4 the dependence of ADS fuel element

temperature with pulsed neutron source for which in
the first case condition tf.e. ≫ tmac is realized, and in
the second case — tf.e. < tmac. When tf.e. ≫ tmac ex-
ternal neutron source pulses doesn’t influence on the
temperature change mode, so in this case the approx-
imation (12) can be successfully used for the reactor
longterm dynamics analysis.

4.3 Point Approximation of a Fuel Element
As was shown above, in the general case fuel element

temperature distribution is described by nonstationary
heat conductivity equation (6) with given initial and
boundary conditions.
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Figure 3. Temperature of the fuel element change in time (tfel ≫
tmac). Red – average current, black pulsed current.

Figure 4. Temperature of the fuel element change in time (tfel <
tmac). Red – average current, black pulsed current.

The main criteria defining the solution of nonsta-
tionary heat conductivity equation are Bi (Bio) Fo
(Fourier) [Lykov, 1967]:

Bi =
h

λ
R, (14)

Fo =
λT t

ρTCTR2
. (15)

The process of fuel element heating or cooling can be
divided into three stages. Initial temperature distribu-
tion plays a greater role on the first stage. It means that
any irregularity in initial temperature distribution is re-
flected on temperature distribution in the next instants
of time. The second stage is called regular mode: tem-
perature distribution inside the fuel element doesn’t de-
pend on initial distribution. The third stage corresponds
to the steady state, when the temperature in every point
of fuel element equals to the temperature of surround-
ing environment.
The dependence Fost(Bi), defining the regular ther-

mal conditions coming for cylinder is presented in Fig-
ure 5 [Lykov, 1967], lim

Bi→∞
Fost = 0.58.

Figure 5. Dependence of Fo value on Bi value, defining the reg-
ular thermal conditions beginning.

Bi value is uniquely defined for the fuel element of
known radius and given heat conductivity and heat
transfer coefficients (14). The correspondent value
Fost is found using the plot in Figure 5. With this value
the transient period of regular thermal conditions can
be defined:

treg =
Fost(Bi)ρTCTR

2

λT
. (16)

In case, when the characteristic time of delayed neu-
trons tdel exceeds the time of regular thermal conditions
setting up, then instead of solving of nonstationary heat
conduction equation (6) point model, based on the ther-
mal balance in the fuel element, can be used:

MTCT
dT̂T (t)

dt
= N(t)− hS (Tw(t)− TTH(t)) .

(17)
Here T̂T (t) — change in time of the average volume
temperature of the fuel element, N(t) — change in
time of thermal power released inside the fuel ele-
ment (7), hS (Tw(t)− TTH(t)) — quantity of heat, re-
moved by coolant from the fuel element surface area
S, Tst(t) — temperature of the fuel element surface,
MT — mass of the fuel element, CT — specific heat
capacity of the fuel element material.
Temperature of the fuel element heat delivery surface

is presented in the right side of equation (17). Let’s
find its connection with the average temperature. The
dependence of temperature of cylindrical fuel element
on its radius in stationary heat conductivity mode is
described by the following function [Isachenko et al.,
1975]:

T (r) = T st
TH +

N stR

2h
+

N st

4λT

(
R2 − r2

)
, (18)

where R — radius of the fuel element.



206 CYBERNETICS AND PHYSICS, VOL. 6, NO. 4

Let’s find the coupling coefficient between the average
and surface temperature of the fuel element using the
expression (18):

µ =
T st

w

T st
av

=
T st
TH +N stR/2h

T st
TH +N stR/2h+N stR2/8λT

,

then the equation (17) takes on form

MTCT
dT̂T (t)

dt
= N(t)− hS

(
µT̂T (t)− TTH(t)

)
.

(19)
Let us consider two systems, in which coefficients of

heat conductivity and heat transfer are chosen in way
that condition Bi ≪ 1 is achieved for the first sys-
tem, and Bi ≫ 1 — for another one. In figs. 6,
7 dependence of volume average temperature on time
calculated using (6) and dependence of point temper-
ature calculated using (19) are presented. As can be
seen from the figure, these plots almost coincide when
Bi ≪ 1, so in this case point fuel element model (19)
is sufficient to use for average temperature of the fuel
element.

Figure 6. Fuel element average temperature change in time. Black
line — heat conductivity equation (6), red line — point approxima-
tion model (19) (Bi ≪ 1).

It should also be noted, that time constant of the
coolant is defined by the speed of its circulation in the
reactor core and is approximately several seconds. Due
to this fact the coolant feedback can be excluded from
the equation (3).

4.4 Final Simplified Model for Long-term ADS
Dynamics Calculation

Under these physical assumptions: prompt-jump ap-
proximation [Keepin, 1965], accelerator current con-
tinuity approximation and point approximation of the

Figure 7. Fuel element average temperature change in time. Black
line — heat conductivity equation (6), red line — point approxima-
tion model (19) (Bi ≫ 1).

fuel element, the resulting system of differential–
algebraic equations for longtime subcritical reactor dy-
namics calculation are obtained:

φ =

(
N∑
i=1

λiC
i
eff(t) + qav

eff

)
l

βeff − ρ(t)
,

dCi
eff(t)

dt
=

βi
effφ(t)

l
− λiC

i
eff(t),

ρ(t) = ρav + αT

(
T̂T (t)− T av

T

)
, (20)

MTHCTH
dTTH(t)

dt
= 2GCTH(t) (Tin − TTH(t)) +

hS
(
µT̂T (t)− TTH(t)

)
,

MTCT
dTT (t)

dt
= N(t)− hS

(
µT̂T (t)− TTH(t)

)
.

Ceff(0) = C ini
eff , ρ(0) = ρini, TTH(0) = T ini

TH ,

T̂T (0) = T ini
TH .

System of equations (20) can successfully be used for
longterm ADS dynamics analysis.

5 Calculation Results
Let us consider ADS with fast subcritical reactor and

external pulsed neutron source after start-up from a
cold state and coming up to the given power level. In
Figure 8 and 9 as an example, calculation results of re-
activity and power rate change are presented [Golovk-
ina et al., 2014]. As can be seen from Figure 8 in the
initial moments there is a power excursion, which is
suppressed by fuel temperature feedback (the Doppler
effect). It also should be noted that fuel temperature
remains constant after reactor start up due to fuel ele-
ments thermal inertia [Golovkina et al., 2016b].
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Figure 8. The ADS reactor power level change in time

Figure 9. The reactivity coefficient change in time

6 Conclusion
Questions of dynamics modeling in subcritical reac-

tor, taking into account the temperature feedbacks on
the basis of point kinetics model are considered. Influ-
ence of the modeling processes characteristic time on
the longtime reactor core dynamics is investigated. Af-
ter comprehensive analysis the initial dynamics equa-
tion were simplified in order to use for their numerical
integration standard methods, particularly Runge-Kutta
method of 4th order. As an example, subcritical reactor
dynamics during start-up was calculated. As a result
a short-time power surge higher the power rating level
can be observed, wheres the fuel temperature doesn’t
exceed its rated value.
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