
Necessary and sufficient conditions for stability of MRAC systems
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Abstract
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1 Introduction

In many interesting nonlinear control problems, the closed-loop control system can be modeled by
the non-auotnomous differential equation

ẋ = F (t, x) (1)

where F (·, x) is not necessarily periodic.

We will consider general nonlinear time-varying systems of the form (1) where F : R× Rn → Rn is
such that solutions of (1) exist over finite intervals.

We consider a particular class of nonlinear systems (1) with x := col[x1, x2], x1 ∈ Rn1 , x2 ∈ Rn2

which may be viewed as a generalization of the classical strictly positive real system well studied in
the context of linear systems. Hence, the structure of systems we consider in this section is important
because, when inputs and outputs are considered1, they naturally yield passive systems. Consequently,
the type of results that we will present here may be used in the analysis of passivity-based (adaptive)
control systems. This will be illustrated further below, with the application to adaptive control of robot
manipulators.

A typical example of systems with matching nonlinearities is what we may call of the “MRAC-type”
where MRAC stands for Model Reference Adaptive Control. These systems appear as closed loop
equations in MRAC of linear plants (cf. [15]). In the purely nonlinear context, they have also been for
instance, in [25, 28, 8, 5].

Our results rely on the key condition, well-known in adaptie control literature, of persistency od
excitation; particularly, a PE property tailored for nonlinear systems which we call δ-PE. To put our
contriutions in perspective let us recall that for linear systems

ẋ = −P (t)x, P (t) = P (t)T ≥ 0, ∀ t ≥ 0

it was shown in [19] that it is necessary and sufficient for uniform asymptotic stability that P (t) be
persistently exciting (PE), namely that there exist a > 0 and b ∈ R such that for all unitary vectors
x ∈ Rn, ∫ t

t◦

|P (s)x| ds ≥ a(t− t◦) + b ∀ t ≥ t◦ ≥ 0 . (2)

1E.g. in applications of mechanical systems these may be external generalized torques and generalized velocities re-
spectively.
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Equivalently, this system is uniformly (in t◦) completely (i.e. for all initial states) observable (see e.g.
[1]) from the output y(t) := P (t)x(t) if and only if P (·) is PE. Notice that P (t) does not need to be full
rank for any fixed t.

That PE is a necessary condition for uniform asymptotic (exponential) stability for linear systems
has been well-known for many years now. In the case of general nonlinear systems, this was established
for a generalized notion of persistency of excitation by Artstein in [2, Theorem 6.2] using limiting
equations. Our method is different: our definition is not trajectory-dependent and, sufficiency relies on
a recent extension of Matrosov’s theorem.

2 Mathematical preliminaires

2.1 Notation and definitions

Notation. For two constants ∆ ≥ δ ≥ 0 we define H(δ,∆) := {x ∈ Rn : δ ≤ |x| ≤ ∆}. We also
will use B(r) := H(0, r). A continuous function ρ : R≥0 → R≥0 is of class N if it is non decreasing.
A continuous function γ : R≥0 → R≥0 is of class K (γ ∈ K), if it is strictly increasing and γ(0) = 0;
γ ∈ K∞ if in addition, γ(s) → ∞ as s → ∞. A continuous function β : R≥0 × R≥0 → R≥0 is of class
KL if β(·, t) ∈ K for each fixed t ∈ R≥0 and β(s, t) → 0 as t → +∞ for each s ≥ 0. We denote by
x(·, t◦, x◦), the solutions of the differential equation ẋ = F (t, x) with initial conditions (t◦, x◦).

We recall that a function F (·, ·) is locally Lipschitz in x uniformly in t if for each x0 there exists L
such that

|F (t, x)− F (t, y)| ≤ L |x− y|

for all x and y in a neighbourhood of x0 and for all t ∈ R. For a locally Lipschitz function V : R×Rn → R
we define its total time derivative along the trajectories of ẋ = F (t, x) as, V̇ (t, x) := ∂V

∂t + ∂V
∂x F (t, x) .

In general, this quantity is defined almost everywhere.

As it has been motivated e.g. in [28, 18], for these systems the most desirable forms of stability are
those which are uniform in the initial time:

Definition 1 (Uniform global stability) The origin of the system (1) is said to be uniformly globally
stable (UGS) if there exists γ ∈ K∞ such that, for each (t◦, x◦) ∈ R × Rn each solution x(·, t◦, x◦)
satisfies

|x(t, t◦, x◦)| ≤ γ(|x◦|) ∀ t ≥ t◦ . (3)

Definition 2 (Uniform global attractivity) The origin of the system (1) is said to be uniformly globally
attractive if for each r, σ > 0 there exists T > 0 such that

|x◦| ≤ r =⇒ ‖x(t, t◦, x◦)‖ ≤ σ ∀ t ≥ t◦ + T . (4)

Furthermore, we say that the (origin of the) system is uniformly globally asymptotically stable (UGAS)
if it is UGS and uniformly globally attractive.

We will also make use of the following.

Definition 3 (Uniform exponential stability) The origin of the system (1) is said to be uniformly (locally)
exponentially stable (ULES) if there exist constants γ1, γ2 and r > 0 such that for all (t◦, x◦) ∈ R×Br

and all corresponding solutions

‖x(t, t◦, x◦)‖ ≤ γ1‖x◦‖e−γ2(t−t◦) ∀t ≥ t◦. (5)

The system (1) is uniformly globally exponentially stable (UGES) if there exist γ1, γ2 > 0 such that
(5) holds for all (t◦, x◦) ∈ R× Rn. �
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2.2 The key-condition: δ Persistency of excitation

We recall the definition of “uδ-PE”, a property originally introduced in [14, 28].

Let x ∈ Rn be partitioned as x := col[x1, x2] where x1 ∈ Rn1 and x2 ∈ Rn2 . Define the column
vector function φ : R× Rn → Rm and the set D1 := (Rn1\ {0})× Rn2 .

Definition 4 A function φ(·, ·) where t 7→ φ(t, x) is locally integrable, is said to be uniformly δ-
persistently exciting (uδ-PE) with respect to x1 if for each x ∈ D1 there exist δ > 0, T > 0 and
µ > 0 s.t. ∀t ∈ R,

|z − x| ≤ δ =⇒
∫ t+T

t
|φ(τ, z)| dτ ≥ µ . (6)

�
If φ(·, ·) is uδ-PE with respect to the whole state x then we will simply say that “φ is uδ-PE”. This

notation will allow us to establish some results for nonlinear systems with state x by imposing, on a
certain function, the condition of uδ-PE w.r.t. only part of the state.

Furthremore, the following characterizations are useful to establish certain proofs.

Our first “characterization” of uδ-PE is actually a relaxed property. It states that when dealing
with the particular (but fairly wide) class of uniformly continuous functions, it is sufficient to verify the
integral in (6) only for each fixed x such that x1 6= 0 (i.e., for “large” states).

Lemma 1 If x 7→ φ(t, x) is continuous uniformly in t then φ(·, ·) is uδ-PE with respect to x1 if and only
if

(A) for each x ∈ D1 there exist T > 0 and µ > 0 such that, for all t ∈ R,∫ t+T

t
|φ(τ, x)|dτ ≥ µ . (7)

�

The following Lemma helps us to see that Definition 4 state in words that “a function φ(t, x) is uδ-
PE with respect to x1 if t 7→ φ(t, x) is PE in the usual sense2 whenever the states x1 (or similarly,
the trajectories x1(t)) are large”. This is important since it is the central idea to keep in mind when
establishing sufficiency results based on the uδ-PE property. This idea also establishes a relation with
the original but also technically different definition given in [14].

Lemma 2 The function φ(·, ·) is uδ-PE w.r.t. x1 if and only if

(B) for each δ > 0 and ∆ ≥ δ there exist T > 0 and µ > 0 such that, for all t ∈ R,

|x1| ∈ [δ, ∆] , |x2| ∈ [0, ∆] =⇒
∫ t+T

t
|φ(τ, x)| dτ ≥ µ . (8)

�

The last characterization is useful as a technical tool in the proof of convergence results.

Lemma 3 The function φ(·, ·) is uδ-PE w.r.t. x1 if and only if
(C) for each ∆ > 0 there exist γ∆ ∈ K and θ∆ : R>0 → R>0 continuous strictly decreasing such that,

for all t ∈ R,

{ |x1| , |x2| ∈ [0, ∆]\{x1 = 0} } =⇒
∫ t+θ∆(|x1|)

t
|φ(τ, x)| dτ ≥ γ∆(|x1|) . (9)

�
2That is, as defined for functions which depend only on time: that the function A : R≥0 → Rm×n, m ≤ n is PE if there

exist T > 0 and µ > 0 such that for all unitary vectors z ∈ Rn we have that
R t+T

t
z>A(s)>A(s)z ds ≥ µ.
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2.3 uδ-PE is necessary and sufficient for UGAS

We present in this section our main results. We will show that for a fairly general class of nonlinear
time-varying systems the property of uδ-PE is necessary and sufficient for uniform attractivity of the
origin. In other words, we establish that for UGS systems uδ-PE is necessary and sufficient for UGAS.

The following result, contained in [2, Theorem 6.2], gives conditions under which uδ-PE of the
right-hand side of a differential equation is necessary for uniform asymptotic stability. The technical
conditions that we use permit a relatively straightforward proof, based on Gronwall’s lemma, without
recourse to the notion of limiting equations which are used in [2, Theorem 6.2].

Theorem 1 (UGAS ⇒ uδ-PE) Assume that F (·, ·) in (1) is Lipschitz in x uniformly in t. If (1) is UGAS,
then F (·, ·) is uδ-PE with respect to x ∈ Rn. �

Our main results on sufficiency of uδ-PE for UGAS of MRAC systems derive from the sufficient
conditions for UGAS that we have recently established in [13].

Theorem 2 Under Assumptions 1-6 below, the origin of (1) is UGAS �

Assumption 1 The origin is UGS.

Assumption 2 There exist integers j, m > 0 and for each ∆ > 0 there exist

• a number µ > 0

• locally Lipschitz continuous functions
Vi : R× Rn → R, i ∈ {1, . . . , j}

• a (continuous) function φ : R× Rn → Rm,

• continuous functions Yi : Rn × Rm → R,
i ∈ {1, . . . , j}

such that, for almost all (t, x) ∈ R× B(∆),

max {|Vi(t, x)| , |φ(t, x)|} ≤ µ, (10)
V̇i(t, x) ≤ Yi(x, φ(t, x)) . (11)

Assumption 3 For each k ∈ {1, · · · , j} we have that3

(A): { (z, ψ) ∈ B(∆)× B(µ) , Yi(z, ψ) = 0 ∀i ∈ {1, . . . , k − 1} }

implies

(B): { Yk(z, ψ) ≤ 0 } .

Assumption 4 We have that

(A): { (z, ψ) ∈ B(∆)× B(µ) , Yi(z, ψ) = 0 ∀i ∈ {1, . . . , j} }

implies

(B): { z1 = 0, ψ1 = 0 } .

Remark 1 In Assumption 4, there is no requirement that the size of z1 matches the size of ψ1. �

3For the case k = 1 one should read Assumption 3 as Y1(x, φ(t, x)) ≤ 0 for all (z, ψ) ∈ B(∆)× B(µ).
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Assumption 5 The first component of φ(t, x) i.e., φ1, is independent of x1, locally Lipschitz in x2

uniformly in t, uδ-PE w.r.t. x2 and zero at the origin.

Assumption 6 For all (t, x) ∈ R × B(∆), we have |F2(t, x)| ≤ ρ∆(x1, φ1(t, x)) where ρ∆ is continuous
and zero at zero.

The following corollary covers [2, Theorem 6.3].

Corollary 1 If the origin of (1) is UGS and the following assumptions hold then, the origin of (1) is also
UGAS. �

Assumption 7 For each ∆ > 0 there exist

• a number µ > 0

• a locally Lipschitz continuous function
V : R× Rn → R,

• a continuous function Y : Rn × Rn → R,

such that, for almost all (t, x) ∈ R× B(∆),

max {|V (t, x)| , |F (t, x)|} ≤ µ, (12)
V̇ (t, x) ≤ Y (x, F (t, x)) . (13)

Assumption 8 We have that

(A): { (z, ψ) ∈ B(∆)× B(µ)}

implies

(B): { Y (z, ψ) ≤ 0 } .

Assumption 9 We have that

(A): { (z, ψ) ∈ B(∆)× B(µ) , Y (z, ψ) = 0}

implies

(B): {ψ = 0 } .

Assumption 10 (t, x) 7→ F (t, x) is locally Lipschitz in x uniformly in t and uδ-PE with respect to x.

3 Main results

We consider MRAC-type systems or, systems with matching nonlinearities, of the general form (1)
where

F (t, x) :=
[
A(t, x) +B(t, x)
C(t, x) +D(t, x)

]
(14)

for which it is assumed that all functions are zero at x = 0. Moreover, we will make the standing
hypothesis that the system is UGS.
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The reason why we decompose F (t, x) in 4 terms is that we will impose different conditions on each
of them. Roughly speaking, we will require that ẋ1 = A(t, x) is UGAS with respect to4 x1, A and C
vanish at x1 = 0, D and B vanish at x2 = 0 and moreover that the remainder of B(t, x), i.e. when
x1 = 0, is uδ-PE.

The UGS assumption implies by converse Lyapunov theorems that there exists V (t, x) with a nega-
tive semidefinite derivative. Roughly speaking, this requires that the nonlinearities from the ẋ1-equation
“match” with those in the ẋ2-equation. This motivates the title of the subsection. To illustrate further
this idea we stress that though restrictive in general, the hypothesis on UGS holds for a large class of
systems, including systems with the following interesting structure:

ẋ1 = Ã(t, x1)x1 +G(t, x)x2 (15a)

ẋ2 = −P−1G(t, x)>
(
∂W (t, x1)

∂x1

)>
, P = P> > 0 (15b)

where x1 ∈ Rn1 , x2 ∈ Rn2 and W : Rn1 × R≥0 → R≥0 is a C1 positive definite radially unbounded
function such that

∂W (t, x1)
∂x1

Ã(t, x1)x1 ≤ 0 . (16)

Indeed, it is sufficient to take V (t, x) := W (t, x1) + 0.5x>2 Px2 to see that the system is UGS since
V̇ (t, x) ≤ 0. Notice that for this inequality to hold it is instrumental that the nonlinearities in the
x2-equation match with the second term in the x1-equation. This motivates the title of the subsection.

It may be also apparent that the structure (15) is roughly, a direct generalization of linear positive
real systems and strictly positive real systems in the case when (16) holds with a bound of the form
−α(|x1|), with α ∈ K. To better see this, let us restrict W (t, x1) to be quadratic then, we can view
(15) as two passive systems interconnected through the nonlinearity G(t, x), i.e., the x1 equation defines
a passive map x2 7→ x1 (output feedback passive5 if (16) holds with −α(|x1|), with α ∈ K) and the
x2 equation is an integrator (hence passive). See [6] for a real-world example and [15, 5] for further
discussions.

We address two cases: when D(t, x2) ≡ 0 and when D(t, x2) 6≡ 0. With reference to the observations
above, if we regard x2 as an input, we restrict G(t, x) to depend only on x1, and regard ẋ2 as an output,
these two cases actually correspond to those of relative degrees 1 and 0 respectively. This may be more
clear if we restrict further our attention to linear time-varying systems and define: W (t, x1) := 1

2 |x1|2,
z := x1, ż = A(t)z + B(t)u with B(t) = G(t), u := x2, and output y := C(t)z + D̃(t)u with C(t) :=
P−1B(t) and D̃(t)u =: D(t, u).

We also present some concrete examples in the following subsections: we first revisit some stabi-
lization results for feedforward systems a la [16] and then, we see how our results apply to closed-loop
identification (or adaptive control) of mechanical systems.

We now present the main results of this section. To that end, let us define

B◦(t, x2) := B(t, x)
∣∣
x1=0

(17)

and notice that necessarily, B◦(·, 0) ≡ 0.

We also introduce the following hypothesis which together with (16), roughly speaking, is related
to the attractivity of the set {x1 = 0} or in other words, to the inherent stability of ẋ1 = A(t, x) with
respect to x1 which, in particular implies that x1(t) → 0 as t→∞. Notice also that in the case that A
in (15) is linear time-independent and under (16), the following assumption is equivalent to requiring
that Ã is stable.

4We recall that a system is stable with respect to part of the state if, roughly speaking, the classical Lyapunov stability
properties hold for that part of the state. See [38] for details.

5See [33] for a precise definition
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Assumption 11 For the system defined by (14) Assumption 7 holds and for the function Y (·, ·) in (13)
we have that

(A): { (z, ψ) ∈ B(∆)× B(µ) , Y (z, ψ) = 0}

implies

(B): {x1 = 0 } .

The next hypothesis imposes a regularity condition on B(·, ·) and that A and C vanish when x1 = 0.
Within the framework of linear adaptive control systems, we may say that the first part is a general-
ization of the global Lipschitz assumption on the regressor function. See [28] for further discussions.

Assumption 12 The functions A, B and C are locally Lipschitz in x uniformly in t. Moreover, for each
∆ ≥ 0 there exist bM > 0 and continuous nondecreasing functions ρi : R≥0 → R≥0 such that
ρi(0) = 0 and for almost all t ∈ R and x ∈ Rn

max
{
|B◦(t, x2)| ,

∣∣∣∣∂B◦∂t
∣∣∣∣ , ∣∣∣∣∂B◦∂x2

∣∣∣∣} ≤ ρ1(|x2|) , (18)

and for all (t, x) ∈ R× Rn, |x2| ≤ ∆,

|B(t, x)−B◦(t, x2)| ≤ ρ2(|x1|) (19)

max
|x2|≤∆

{|A(t, x)| , |C(t, x)|} ≤ ρ3(|x1|) (20)

The following theorem generalizes related results in the previously cited papers, including [25, 8, 28].
See the last reference for a detailed but non exhaustive literature review.

Theorem 3 Consider the system (1), (14) under Assumptions 1, 7, 8, 11 and 12. Suppose also that

(Assumption 13) there exists a continuous non decreasing function ρ4 : R≥0 → R≥0 such that ρ4(0) = 0,

|D(t, x)| ≤ ρ4(|x2|) (21)

and Statement C holds with θ∆ and γ∆ such that for all x2 6= 0

e−θ∆(|x2|)γ∆(|x2|) ≥ 3ρ1(∆)ρ4(|x2|) . (22)

Then, the origin is UGAS. �

Remark 2 Notice that for the common case when D ≡ 0, Assumption 13 reduces to requiring that
B◦(·, ·) is uδ-PE with respect to x2. Also, in this case the necessity of the latter follows directly from
Theorem 1 by observing that uδ-PE of F (·, ·) as defined in (14) implies by virtue of (20), that B◦(·, ·)
is uδ-PE with respect to x2. �

Proof of Theorem 3. We appeal to Theorem 2. Assumption 1 is our standing hypothesis. To verify
the rest of the assumptions of Theorem 2 we introduce V1(t, x) := V (t, x) where V (t, x) comes from
Assumption 7 and the locally Lipschitz (due to Assumption 12) function

V2(t, x) = −x>1 B◦(t, x2)−
∫ ∞

t
e(t−τ) |B◦(τ, x2)|2 dτ (23)
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hence, j = m = 2 in Assumption 2. We also introduce

φ(t, x) :=
[

x2

F (t, x)

]
. (24)

With these definitions, it is clear that (10) holds since all the functions are locally Lipschitz in x
uniformly in t and Vi(t, 0) ≡ φ(t, 0) ≡ 0. To see that (11) also holds, we observe first that it is satisfied
for V1(t, x) in view of (13) hence, we only need to check that there exists a continuous function Y2(·, ·)
satisfying the required conditions. To that end, we evaluate the total time derivative of V2(t, x) along
the solutions of (1), (14) to obtain

V̇2(t, x) = −x>1
(
∂B◦
∂t

+
∂B◦
∂x2

[C(t, x) +D(t, x)]
)

+ V2(t, x) + x>1 B◦(t, x2)

−[A(t, x) +B(t, x)−B◦(t, x2)]>B◦(t, x2)

−
(∫ ∞

t
e(t−τ)B◦(τ, x2)>

∂B◦(τ, x2)
∂x2

)
[C(t, x) +D(t, x)] a.e. (25)

Notice also that by the uδ-PE condition on B◦(·, ·) and in view of Assumption 12 we have that

V2(t, x) ≤ |x1| ρ1(|x2|)− e−θ∆(|x2|)γ∆(|x2|) . (26)

Furthermore, using this and Assumption 12 again, we can over-bound several terms on the right hand
side of (25) as follows. Define bM := ρ1(∆) and ρ̄(r, s) := bM [ 3r + (r + 3)ρ3(r) + rρ4(s) + ρ2(r) ] then,
for almost all (t, x) ∈ R× B(∆),

V̇2(t, x) ≤ ρ̄(|x1| , |x2|)− e−θ∆(|x2|)γ∆(|x2|) + 2bMρ4(|x2|) =: Y 2(x, φ(t, x)) . (27)

Define Y2(x, φ(t, x)) := max{− |x2| , Y 2(x, φ(t, x))}. In view of (22) and since ρ̄(0, s) ≡ 0 we have that
Y2(x, φ(t, x)) ≤ max{− |x2| , −1

3e−θ∆(|x2|)γ∆(|x2|)} ≤ 0 when x1 = 0. Thus, Assumption 3 holds for
k = 1 due to Assumption 8 (we recall that here, Y1 = Y ) and for k = 2, because Y2(x, φ(t, x)) ≤ 0 when
x1 = 0.

Assumption 4 holds due to the following. Let Y1(x, φ(t, x)) = Y2(x, φ(t, x)) = 0. Then, by Assump-
tion 11 we have that x1 = 0 while by definition, Y2(x, φ(t, x)) = 0 implies that x2 = 0.

Assumption 5 trivially holds and Assumption 6 holds with ρ∆(x1, x2) := ρ4(|x2|) + ρ3(|x1|). �

In support to the discussion at the beginning of the section it is worth remarking that Assumptions
1, 7, 8 and 11 hold under the following more restrictive but commonly satisfied hypothesis, at least for
a large class of passive systems. Below, we present a concrete example concerning the adaptive tracking
control of mechanical systems.

Assumption 14 There exists a locally Lipschitz function V : R × Rn → Rn, class-K∞ functions α1, α2

and a continuous, positive definite function α3 such that

α1(|x|) ≤ V (t, x) ≤ α2(|x|) (28)

and, almost everywhere,
V̇ (t, x) ≤ −α3(x1) . (29)

It may be more clear from this assumption that part of the conditions in Theorem 3 are in the spirit
of imposing that the system be asymptotically stable with respect to the x1-part of the state. Then,
for the convergence of the x2-part of the trajectories we impose the uδ-PE exciteness condition. The
following result which covers a class of systems similar to those covered by the main results in [15,
Appendix B.2], [25, 28] is a direct corollary of Theorem 3.
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Proposition 1 The system (1), (14) with D ≡ 0 and under Assumptions 12, 14 is UGAS if and only if
B◦(·, ·) is uδ-PE w.r.t. x2 . �

For clarity of exposition we present separately the following result, for systems when the
“feedthrough” term D(t, x) is present.

Proposition 2 Consider the system (1), (14) under Assumptions 12, 14 and 13. Then, the origin is
UGAS. �

We close the section with the counterparts of Propositions 1 and 2 which establish sufficient condi-
tions for ULES.

Proposition 3 Consider the system (1), (14) under Assumptions 12, 13, and 14 and assume further that
αi(s) := αi s

2, i = 1 . . . 3, ρj(s) = ρj s, j = 1 . . . 4 for small s and assume that the function B◦(t, x2) is
uδ-PE in the sense that Statement C holds with functions γ∆(s) and θ∆(s) such that e−θ∆(s)γ∆(s) ≥ µ s2

for small s and µ ≥ 3bMρ4. Then, the origin is ULES. �

Proposition 4 Consider the system (1), (14) with D(t, x) ≡ 0 and let Assumptions 12, 13 and 14 hold
with αi(s) := αi s

2, i = 1 . . . 3, ρj(s) = ρj s, j = 1 . . . 3 for small s and assume that the function B◦(t, x2)
is uδ-PE. Then, the origin is ULES. �

Proof of Propositions 3 and 4. We provide a combined proof for both propositions, based on standard
Lyapunov theory.

Let ∆ be generated by the uδ-PE assumption on B◦(t, x2). Let 0 < R ≤ ∆ be such that ρi(s) = ρi s,
αi(s) := αis

2 and e−θ∆(s)γ∆(s) ≥ µ s2 for all s ≤ R. Let r := R
√

α1
α2

then, from (28) and (29) we obtain

that |x◦| ≤ r implies that |x(t)| ≤ R. In the sequel, we will restrict the initial conditions to x◦ ∈ B(r).

Consider the Lyapunov function candidate V(t, x) := V (t, x) + εV2(t, x) where V2(t, x) is defined in
(23) and ε is a small positive number to be chosen. Notice that V2(t, x) satisfies on R× B(R),

−ερ1 |x2|2 − ερ1 |x1| |x2| ≤ εV2(t, x) ≤ ερ1 |x1| |x2| − εµ |x2|2 . (30)

So we have that for sufficiently small ε there exist α′1 > 0 and α′2 > 0 such that for all (t, x) ∈ R×B(R),

α′1 |x|
2 ≤ V(t, x) ≤ α′2 |x|

2 . (31)

The total time derivative of V(t, x) on the points of existence and along the systems solutions yields,
using (29) and (27),

V̇(t, x) ≤ −(α3 − ενR) |x1|2 + ενR |x1| |x2| − εµ |x2|2 + 2εbMρ4 |x2|2 a.e. (32)

where νR > 0. Next, using the condition imposed on µ we obtain that

V̇(t, x) ≤ −(α3 − ενR) |x1|2 + ενR |x1| |x2| − εbMρ4 |x2|2 a.e. (33)

In the case that D ≡ 0 we have that ρ4 = 0 and completing squares in (32) we obtain that for sufficiently
small ε and sufficiently large α3 there exists c > 0 such that V̇(t, x) ≤ −c |x|2. Otherwise, the latter
holds from (33) under similar arguments. ULES follows invoking standard Lyapunov theorems.

�

4 Conclusions

. . .
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[4] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski. Nonsmooth analysis and control
theory. Graduate Texts in Mathematics. Springer-Verlag, 1998.
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[8] M. Janković. Adaptive output feedback control of nonlinear feedback linearizable systems. Int. J.
Adapt. Contr. Sign. Process., 10(1):1–18, 1996.

[9] Z. P. Jiang. Iterative design of time-varying stabilizers for multi-input systems in chained form.
Syst. & Contr. Letters, 28:255–262, 1996.

[10] A. N. Kolmogorov and S. V. Fomin. Introductory real analysis. Dover, Mineola, N.Y., 1970. ISBN:
0-486-61226-0.
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