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Abstract
In this paper we consider blinking systems, i.e. the

systems randomly changing its structure in each sequen-
tial fixed period of time. Our goal is to find ghost attrac-
tors which arise in a blinking system being unexpectively
different with respect to the attractors of composing sys-
tems. We study two blinking systems. One of them is a
nonlinear rotator with switching torque and another is a
blinking piecewise-linear Lorenz-type system. We prove
the existence of ghost attractors in both cases for certain
parameter ranges.
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1 Introduction
The behaviour of a large number of living and tech-

nical systems can be represented as a process with in-
stantaneous random changes in their structures. In net-
works of neurons and technical devices, interaction be-
tween nodes may be a subject for such changes [Mills,
1991; Parastesh et al., 2019]. The behaviour of pulse
power converters can be modelled by a dynamical sys-
tem, which parameters randomly and independently
change their values in a piecewise-constant manner im-
plying switching [Tse and Di Bernardo, 2002]. In litera-
ture such random and independent switching have been
called blinking by analogy to blinking of an eye [Belykh
et al., 2004], and systems with such o sort of switching
got the name blinking systems.

Later it turned out that the blinking systems may ex-
hibit non-trivial unexpected behaviour, which means, for
example, the emergence of dynamics which is not met
in each of the composing systems [Hasler et al., 2013b;
Belykh et al., 2013; Barabash and Belykh, 2018a]. The

attracting set corresponding to this behaviour has been
called a ghost attractor.

In this talk we give examples of such systems in which
we managed to find ghost attractors, and also offer a way
to find them in the general case.

2 The Blinking Model
We consider the blinking system [Hasler et al., 2013a;

Barabash and Belykh, 2018b]

ẋ = F (x, s(t)), (1)

where x ∈ RN , s(t) is a random discrete scalar value
equalled a constant si, i = 1, 2, . . . ,M with the proba-
bility pi at each k-th time interval t ∈ [kτ, (k + 1)τ),
k ∈ Z+. Here τ = const is a switching period.

The trajectories of the system (1) are glued at t = kτ
from the trajectories of M autonomous systems

ẋ = F (x, si), i = 1, 2, . . . ,M, (2)

given at each interval t ∈ [kτ, (k + 1)τ) with the prob-
ability pi. We assume that each i-th N -dimensional sys-
tem (2) considered at the whole interval of time has an
attractor Ai.

For sufficiently fast switching s = s( tτ ), τ � 1 there
are two characteristic times in the system (1): slow time
t and fast time t′ = t

τ . Expressing slow time in the
blinking system (1) through fast time t = τt′ and set-
ting x(τt′) → x(t′) we obtain the system in the form
of the averaging approach [Bogoliubov and Mitropol-
sky, 1966; Khas’minskii, 1966; Skorokhod et al., 2002;
Kifer, 2009; Hasler et al., 2013a]

dx

dt′
= τF (x, s(t′)), (3)
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Figure 1. Bifurcation diagram of the system (6) for a = 1. To be
short we list only stable limit cycles and stable equilibria in different
regions. Region I. Two stable rotating limit cycles O+

r for ϕ̇ > 0
and O−r for ϕ̇ < 0. Region II. Globally stable rotating limit cycle
O+
r . Region III: Globally stable oscillating limit cycle Oc. Region

IV. Stable rotating limit cycle O+
r and stable oscillating limit cycle

Oc. Region V. Stable equilibrium Oe and stable rotating limit cycle
O+
r . Region VI. Globally stable equilibrium Oe. Region VII. Glob-

ally stable rotating limit cycleO+
r .

where τ plays the role of a small parameter.
The autonomous N -dimensional averaged system as-

sociated with the system (3) has the form

dx

dt
= E[F (x, s(t))] =

M∑
i=1

piF (x, si), (4)

where E[ · ] is the expectation.
We assume this system to have an attractor Ā which

serves an approximation of the blinking system dynam-
ics for sufficiently fast switching.

The problem of the interrelation between attractorsAi,
i = 1, 2, . . . ,M , and the attractor Ā was widely dis-
cussed in [Hasler et al., 2013b]. Here we consider a par-
ticular case of the ghost attractor [Belykh et al., 2013;
Barabash and Belykh, 2018a]. We call

Definition. If the averaged system (4) is not topologi-
cally conjugated to any i-th autonomous system (2) and
the attractor Ā is missing among Ai, then Ā we call the
ghost attractor of the blinking system (1).

Non-stationary attractor Ã for the blinking system (1)
due to the averaging theory for infinitesimal switching
period τ is close to the ghost attractor Ā.

This definition shows the way how to find ghost attrac-
tors. For this purpose it is necessary to compare the at-
tractorsAi, i = 1, 2, . . . ,M and Ā and to verify whether
the attractor Ā is different from each attractor Ai or not.

In this paper we consider two examples of blinking
systems.

The first system is the model of blinking nonlinear ro-
tator switching between two systems having only rota-
tional modes. We show that there exist an interval of
switching period 0 < τ < τ∗ for which the blinking
nonlinear rotator has oscillating ghost attractor.

The second model is a blinking piecewise-smooth
Lorenz-like system which is a non-autonomous version
of the system considered in [Belykh et al., 2019]. Sur-
prising that in this case the averaged blinking system
composed from two globally asymptotically stable sys-
tems has the globally stable singularly hyperbolic attrac-
tor.

3 Blinking Nonlinear Rotator
Here as an example we consider the equation of blink-

ing nonlinear rotator

ϕ̈+ (λ− a cosϕ)ϕ̇+ sinϕ = s(t), (5)

where ϕ is the phase of the rotator, λ and a are posi-
tive parameters and s(t) is a randomly switching func-
tion which is chosen as s1 = γ, s2 = −γ with proba-
bilities p1 = p2 = 1

2 . Here the parameter γ is a positive
torque.

We consider the small switching period τ � 1. In this
case the system (5) due to (4) can be averaged over a
fast time t′ = t

τ and as a result the random function s(t)
can be replaced by its average time value 〈s(t′)〉t′ =
p1γ − p2γ = 0. Thus, the averaged system corresponds
to the case of the autonomous system (5) with s(t) ≡ 0.

Consider the case of fixed values of the switching func-
tion s(t) ≡ γ. The equation (5) gets the form of the
autonomous system

ϕ̇ = y,
ẏ = γ − sinϕ− (λ− a cosϕ)y.

(6)

This system is invariant under involution ϕ → −ϕ,
y → −y, γ → −γ. Hence without loss of generality
we consider only non-negative values of γ.

The partition of the parameter space D : γ ≥ 0, λ ≥
0, a, whose domains correspond to different phase pic-
tures of the system (6), was considered in [Belyustina
and Belykh, 1973]. This partition for a = 1 is depicted
in Fig.1.

As far as the averaged system in our particular case is
the system (6) with γ = 0 we describe this case in de-
tails. Namely consider the case γ = 0 and λh < λ < a,
where λ = λh is the symmetrical homoclinic bifurcation
and λ = a is Andronov-Hopf bifurcation (region III for
γ = 0 in Fig. 1). Increase of the parameter λ from re-
gion I to region III at homoclinic bifurcation λ = λh two
stable rotating limit cyclesO+

r andO−r disappear and os-
cillating cycleOc is born. As a result for λh < λ < awe
obtain the phase picture of Fig.2(left). When λ reaches
the value λ = a = 1 the stable oscillating limit cycles
disappears via Andronov-Hopf bifurcation.

For γ > 1 (the region VII in Fig.1) the system (6) has
the globally stable rotating cycle O+

r in the upper half-
cylinder y > 0 (Fig.2(right)) and for γ < 1 due to the
symmetry the system (6) has the globally stable rotating
cycle O−r in the domain y < 0.
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Hence, our two systems composing the blinking non-
linear rotator (5) have the globally stable cycles O±r as
the attractors. On the other hand the attractor Ā of the
averaged system (6), γ = 0, has the globally stable os-
cillating limit cycle. Hence, according to Definition Ā is
the ghost attractor of the blinking system (5).

The interesting question on the system (5) behaviour
for non-small period τ arises. In order to obtain an an-
swer to this question we present the result of numer-
ical simulation. In Fig. 3 the phase pictures of the
blinking system (5) for three periods τ = 0.01(left),
τ = 0.07(center) and τ = 0.3(right) are presented. The
globally stable limit cycle Oc (yellow in Fig. 3) of the
averaged system (the system (6) for γ = 0) acts as a
ghost attractor of the blinking system (5), and the steady
trajectory of the stochastic dynamical process (blue in
Fig. 3) lyes in the neighbourhood of Oc.

The size of this neighbourhood increases with increase
of the period τ (see Fig. 3). First the trajectories of
the blinking system fill out an annulus with respectively
small divergence from the limit cycle Oc (Fig. 3 (left)).
Then the hole of the annulus disappears (Fig. 3 (center)).
The further increase of the period τ leads to emergence
of trajectories getting in the neighbourhood of rotating
limit cycles O±r (Fig. 3 (right)).

4 Ghost Attractor of Lorenz Type
Consider a 3-D piecewise-linear blinking system com-

posed from subsystems As, Al and Ar of the form

As :
ẋ = x,
ẏ = −αy,
ż = −ν(t)z,

(x, y, z) ∈ Gs

Al :
ẋ = −λ(x+ 1) + ω(z − b(t)),
ẏ = −δ(y + 1),
ż = −ω(x+ 1)− λ(z − b(t)),

(x, y, z) ∈ Gl

Ar :
ẋ = −λ(x− 1)− ω(z − b(t)),
ẏ = −δ(y − 1),
ż = ω(x− 1)− λ(z − b(t)),

(x, y, z) ∈ Gr

(7)
where α, ω, λ and δ are positive parameters and b(t),
ν(t) are blinking functions. These subsystems are de-
fined in the domains Gs, Gl and Gr, respectively such
that

Gs : |x| < 1, y ∈ R1, z < b(t),

Gl :


x ≤ −1 for z ≤ b(t)
x ≤ −1 for z > b(t) and y ≥ 0,

x < 1 for z > b(t) and y < 0,

Gr :


x ≥ 1 for z ≤ b(t)
x ≥ 1 for z > b(t) and y < 0,

x > −1 for z > b(t) and y ≥ 0.

(8)

In our recent paper [Belykh et al., 2019] we introduced
and described in details this system for the case of con-
stant b and ν, providing a rigorous analysis of the strange
attractor existence and its bifurcations. The main re-
sult of [Belykh et al., 2019], which is necessary here for
studying the blinking Lorenz-type system (7), is stated
in the following Theorem.

Theorem [Belykh et al., 2019]. Let the system (7) for
constant parameters ν and b satisfies the conditions

δ > δcr = ω ln 2
π ,

b < bcr = 2
√

1 + λ2

ω2 exp

{
λ
ω

(
arctan ω

λ + π
)}
,

(9)

providing the absence of sliding motions in the absorb-
ing domain. Then the next statements are true.
1. In the parameter regions

0 < b ≤ bh = exp
3πλ

2ω
,

bh < b < bhet = γhet exp
3πλ

2ω
,

where γhet(ν) is the inverse function of ν = 1+ ln 2−ln γ
ln(γ−1) ,

stable foci el(−1,−1, b) and er(1, 1, b) are the only at-
tractors of the system (the regions I and II in the Figure
4, respectively).
2. In the parameter region

bhet ≤ b < ν−1 exp
3πλ

2ω
,

a Lorenz-type strange chaotic attractor exists, born of a
heteroclinic bifurcation for b = bhet and coexists with
two stable foci el and er (the region III in the Figure 4).
3. The surface

bAH = ν−1 exp
3πλ

2ω

corresponds to Andronov-Hopf bifurcation for which two
symmetrical saddle cycles stick to stable foci el and er.
4. In the parameter region

bAH ≤ b ≤ bcr (10)

a strange singular-hyperbolic attractor is the only at-
tractor of the system (the region IV in the Figure 4).

The system (7) is the extension of original system from
[Belykh et al., 2019] when parameters b and ν become
the next functions of time

ν(t) = s(t)(ν2 − ν1) + ν1,
b(t) = s(t)(b2 − b1) + b1,

(11)

where the random function s(t) ∈ {0, 1} has the same
properties as in the Sect.3 and switches the system (7)
between two systems. Namely a state s(t) = 0 switches
on the system A(ν = ν1, b = b1) and the state s(t) = 1
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Figure 2. Phase pictures of the autonomous system (6). (Left) The globally stable oscillating cycle Oc and the unstable equilibria Oe for
γ = 0. (Right) The globally stable rotating cycleO+

r for γ = 1.2. Note, that for γ = −1.2, the stable rotating cycleO−r is odd symmetric
toO+

r and lyes in the bottom phase semi-cylinder y < 0. The parameters λ = 0.75, a = 1.

Figure 3. Non-stationary attractors of the blinking nonlinear rotator (5) (blue) for switching periods τ = 0.01 (left), τ = 0.07 (center)
and τ = 0.3 (right). Red are the stable limit rotating cycles O+

r and O−r of the composing autonomous systems (6) for γ = 1.2 and
γ = −1.2, respectively. The stable oscillating limit cycleOc (yellow) is the ghost attractor. A larger switching period τ corresponds to a larger
neighbourhood of the ghost attractor Oc, in which the non-stationary attracting set of the blinking system lyes. The rest parameters λ = 0.75,
a = 1.

switches on the system B(ν = ν2, b = b2) with equal
probabilities p1 = p2 = 1

2 .
We define the systems A and B in the parameter re-

gions II and I, respectively (see Figure 4), for which sta-
ble foci el, er are the only attractors of each system.

The averaged system of blinking system (7) is obtained
according to the transition from the blinking system (1)
to the averaged system (4). In our case the averaged sys-
tem (4) takes the form of the system (7) with constant

parameters ν∗ =
1

2
(ν1 + ν2) and b∗ =

1

2
(b1 + b2). Call-

ing this averaged system C we note that its parameters
lye in the region IV (see Fig. 4), corresponding to the ex-
istence of the unique strange attractor. Hence we obtain
the next statement.

Statement. The singular-hyperbolic attractor Ā of
the averaged system C is the ghost strange attractor of
the blinking system (7). It implies that for sufficiently
small switching period τ � 1 the trajectories of the
blinking system (7) are close to this ghost attractor.

To illustrate a ghost attractor of Lorenz type first we
define certain systems A(ν = 0.51, b = 3.7) and
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Figure 4. Bifurcation diagram of the system (7) for constant ν(t) =
ν and b(t) = b. Regions I (gray) and II (white) correspond to glob-
ally stable foci er and el. In region III (yellow), the system (7) has
three coexisting attractors: a strange chaotic attractor and two stable
foci er and el. In region IV (green), the strange chaotic attractor is
the only attractor of the system. Above the horizontal line bcr the con-
ditions of the Theorem do not hold due to the appearance of sliding
motions in the absorbing domain. The systems involved in blinking
(A) ν = 0.51, b = 3.7 and (B) ν = 0.99, b = 1.9, and the
averaging system (C) ν = 0.75, b = 2.8. Parameters: ω = 2,
α = 2, δ = 0.588, λ = 0.294.

B(ν = 0.99, b = 1.9) (see Fig. 5A, 5B) from the
parameter regions II and I, respectively (see Fig. 4).
This systems are globally asymptotically stable having
equilibria el(−1,−1, b) and er(1, 1, b) as the attractors.
Unexpectably the average system C having parameters
ν = 0.75, b = 2.8 has unique Lorenz-type strange at-
tractor (see Fig. 5C).

Similarly to the case of the blinking nonlinear rotator
we present numerical results for the system (7) show-
ing the change of the attracting set under the period τ
increase (see Fig.6).

For sufficiently small switching period τ = 0.001
a non-stationary attractor of the blinking system (7) is
close to the ghost attractor of the average system C (see
Fig. 6(left)).

For τ = 0.1 we already observe the significant change
of the non-stationary attractor (see Fig. 6(center)). This
change can be related to the of emergence of sliding mo-
tions in the blinking system (7).

The transition to the period τ = 10 (see Fig.6(right))
leads to the stabilisation of the non-stationary attractor
due to the increasing impact of sliding motions [Belykh
et al., 2020].

5 Conclusions
In this paper we presented blinking systems with

instantaneous random switching between several au-
tonomous (composing) systems in each fixed period of
time. Ghost attractors as attractors of averaged systems
being different from attractors of composing systems are

introduced. We considered the problem of the existence
of ghost attractors in the cases of blinking nonlinear rota-
tor and three-dimensional blinking piecewise-linear sys-
tem of Lorenz type. For rather fast switching using aver-
aging approaches we found the ghost attractors for both
systems. The complexity of the problem arises when
switching period increases. Via numerical modeling we
obtained the interval of switching period linking to zero
for which non-stationary attractors of blinking systems
lye in the vicinity of ghost attractors. For large switch-
ing periods in the piecewise-linear blinking system we
revealed a phenomena of the attractor stabilisation due to
appearance of sliding motions. Details of this stabilisa-
tion is not considered in the present paper and demands
a separate study.
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