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Abstract— A robust formulation is given for the problem
of optimal rejection of persistent exogenous disturbances in
dynamic systems subjected to matrix uncertainties. The solution
technique based on the invariant ellipsoids concept is developed.
The approach is exemplified through a well-known benchmark
control problem for a mechanical two-mass-spring system.

I. INTRODUCTION AND A MOTIVATING EXAMPLE

Description and control of real-life physical systems sug-
gests accounting for exogenous disturbances and uncertain-
ties in the system coefficients. There exist various models
for both; in this paper we adopt the unknown-but-bounded
model [1], [2] due to its adequacy to many mechanical, elec-
tric and other systems encountered in practice and minimum
a priory requirements imposed. Namely, no statistical proper-
ties, rates of variation, etc., are involved; the uncertainties are
assumed to be arbitrary, and only bounds for their admissible
values are known.

This viewpoint leads to the so-called guaranteed set-
membership approach to various problems in control and
system theory [1], [2] and the invariant sets ideology [3].
This ideology has got diverse applications in estimation,
filtering, minimax control in the presence of uncertainty,
etc., because it provides simple yet somewhat accurate outer
approximation of reachable sets of dynamic systems.

In many cases, of the most adequate models of exogenous
disturbances are the so-called persistent disturbances, which
are the subject of l1-optimization theory [4]. However, l1-
optimization technique often leads to high-dimensional con-
trollers and is very hard to implement in the continuous-
time case. Also, precise description of reachable sets for
systems subjected to persistent disturbances is extremely
cumbersome.

A natural way to overcome these difficulties is to appeal
to the invariant sets ideology in order to reduce complexity
and attain the control objectives. Among various possible
“shapes” of invariant sets utilized in the research areas above,
ellipsoids should be distinguished because of their simple
structure and direct connection to the quadratic Lyapunov
functions approach. On top of that, in the framework of the
ellipsoidal description, a powerful apparatus of linear matrix
inequalities (LMI) and semidefinite programming (SDP) [5]
can be used as a technical solution tool. Among the first
papers in this direction is [6], also see [7].

To further motivate the setup in this paper, consider the
following simple mechanical system referred to as a double
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oscillator or two-mass-spring system, [8]. It consists of the
two rigid bodies having masses m1 and m2 which are linked
together by a spring with elasticity coefficient k and are
allowed to slide without friction along a fixed horizontal rod
as shown in Fig. 1. The bodies are subjected to exogenous
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Fig. 1. The mechanical two-mass-spring system.

disturbances w1 and w2, respectively,

w =
(
w1 w2

)T ∈ R2,

for which the only available information is boundedness at
any time instant: wTw ≤ 1. The left body is governed by
the control input u ∈ R aimed at compensating the effect of
exogenous disturbances.

Letting x1, x2 and v1, v2 denote the position coordinates
and the velocities of the bodies, the state vector of the system
writes

x =
(
x1 x2 v1 v2

)T ∈ R4.

Finally, let the output of the system be taken in the form

y =
(
u x2

)T ∈ R2;

i.e., it is characterized by the control input and the coordinate
of the right body, which is not directly affected by control.

With this description at hand, the laws of the classical
mechanics lead to the following continuous-time model of
disturbed oscillations of the system:
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0 0 1 0
0 0 0 1

− k
m1

k
m1

0 0
k

m2
− k

m2
0 0


x +




0
0
1

m1

0


u +




0 0
0 0
1

m1
0

0 1
m2


w,

y =
(

0 0 0 0
0 1 0 0

)
x +

(
1
0

)
u.

Moreover, the uncertainty can be incorporated in the model
description in the form of imprecise knowledge of the masses
and/or the elasticity coefficient. The problem is then to design
a static linear state feedback to optimally reject the effect
of exogenous disturbances robustly against all admissible
uncertainties.



Precise formulations for the notions of persistent distur-
bance, invariant ellipsoids, optimal rejection, etc., will be
given below.

This two-mass-spring system often serves as a benchmark
for various control techniques (e.g., see [8]) due to its real-
life nature, simple formulation and reasonable dimensions
(four states, one control, two exogenous disturbances, one
or two scalar uncertainties, and two outputs).

In this paper we propose an approach to such kind of prob-
lems, which is based on the method of invariant ellipsoids.
The main contribution is extension of the results in [6], [7]
to the presence of uncertainty in the model.

II. INVARIANT ELLIPSOIDS. THE ROBUST ANALYSIS
PROBLEM

In this section, we give a precise general description of the
uncertain dynamical system, formulate the analysis problem,
and provide its solution using the invariant ellipsoids tech-
nique.

Consider the continuous-time dynamic system given by

ẋ =
(
A + ∆A(t)

)
x +

(
D + ∆D(t)

)
w, x(0) = 0,

y = Cx,
(1)

where A ∈ Rn×n, D ∈ Rn×m, C ∈ Rl×n are fixed
known matrices, x(t) ∈ Rn is the state vector, y(t) ∈ Rl

is the output, and w(t) ∈ Rm is the persistence exogenous
disturbance satisfying the L∞-norm constraint

wT(t)w(t) ≤ 1, ∀ t ≥ 0. (2)

Next, the model uncertainty is specified in the form

∆A(t) = FA∆A(t)HA, ∆D(t) = FD∆D(t)HD, (3)

where FA, FD, HA,HD are known “frame” matrices of
appropriate dimensions, and the matrix uncertainties ∆A(t)
and ∆D(t) satisfy the condition

‖∆A(t)‖ ≤ 1, ‖∆D(t)‖ ≤ 1 ∀t ≥ 0, (4)

where ‖ · ‖ denotes the spectral or Frobenius matrix norm.
Throughout the exposition, it is assumed that the nominal
system (1) (i.e., the one without uncertainty) is stable (the
matrix A is Hurwitz), the pair (A,D) is controllable, and C
is a full-rank matrix.

Note that the system is subjected to both matrix uncer-
tainty and exogenous disturbances. These two sources of
uncertainty give rise to the reachable set of the system, which
is by definition the set of all states of (1)–(4) attainable by
the system at any time under any admissible uncertainty and
disturbance. This set can be thought of as a characterization
of the accumulated uncertainty in the system’s state as time
evolves.

We now introduce the notion of invariant ellipsoids. The
ellipsoid

Ex =
{
x ∈ Rn : xTP−1x ≤ 1

}
, P > 0, (5)

centered at the origin and specified by the matrix P is said
to be invariant with respect to the variable x (state-invariant)

for the dynamic system (1)–(4), if the condition x(0) ∈ Ex

implies x(t) ∈ Ex for all t ≥ 0. In other words, starting
at any point in Ex, the state of the system is guaranteed to
remain confined within Ex for all admissible disturbances (2)
and uncertainties (3), (4).

It is important to note that every invariant ellipsoid con-
tains the reachable set of the system, and our first goal in
this section is to characterize invariant ellipsoids for system
(1)–(4). The result is given below.

Theorem 1: Ellipsoid Ex (5) is state invariant for the
dynamic system (1)–(4), if its matrix P satisfies the LMIs




Ω D PHT
A 0

DT −αI 0 HT
D

HAP 0 −ε1I 0
0 HD 0 −ε2I


 ≤ 0, P > 0,

for some α, ε1, ε2 > 0, where Ω = AP + PAT + αP +
ε1FAFT

A + ε2FDFT
D .

The first point to note is that the Hurwitz property and
the controllability condition mentioned above are necessary
for the the theorem to have a “nontrivial output,” i.e., for the
LMI to be feasible. Strictly speaking, these conditions should
be satisfied robustly for all admissible uncertainties, which
is not immediate to check in advance. However, if this is not
the case, solving the LMI above will result in its infeasibility
thus indicating the absence of invariant ellipsoids.

Next, it is noted that for ∆A(t) = ∆D(t) ≡ 0 we arrive
at the uncertainty-free setup which was analyzed in [6], [7],
[9] from the invariant ellipsoids viewpoint. Here, the robust
version of the problem is addressed in a completely similar
LMI style. The robust formulation above also extends to
cover possible uncertainty in the initial state x(0) = x0.
Within the ellipsoidal framework, it is natural to specify this
uncertainty in the form xT

0 P−1
0 x0 ≤ 1, where P0 > 0 defines

the ellipsoid E0 of initial uncertainty. Then the requirement
E0 ⊂ Ex is formulated as P ≥ P0 and incorporated into the
LMI constraints above.

Another important point is sufficiency of the conditions
in Theorem 1. Without going deep into details, we note
that matrix uncertainty of the form (3), (4) has been first
introduced and studied in [10] (as applied to the disturbance-
free LQR problem). To prove Theorem 1, we developed a
generalization of the technical result in [10] to the case of
multiple matrix uncertainties. Such a generalization is only
possible in the form of sufficient condition thus leading to
the sufficiency of the main result.

Consistent with the control objectives and physical mo-
tivation, our primary goal is to characterize the magnitude
of the output y rather than the state x. In that respect, it is
seen that associated with the state-invariant ellipsoid (5) is
the bounding ellipsoid for the output variable y specified by

Ey =
{
y ∈ Rm : yT

(
CPCT

)−1
y ≤ 1

}
, (6)

where P is the matrix of the state-invariant ellipsoid. Our
goal is to distinguish the minimal bounding ellipsoid (6),



where P satisfies the LMI in Theorem 1. There exist var-
ious meaningful criteria of minimality; here we adopt the
following trace criterion:

f(P ) = tr
[
CPCT

]
, (7)

which characterizes the “size” (the sum of squared semiaxes)
of the corresponding ellipsoid. An important thing to note is
that for every fixed α > 0, this trace criterion is linear in
P, ε1, ε2; hence, for α fixed, the minimization of (7) under
the LMI constraints above is a semidefinite program.

In other words, for system (1)–(4), the problem of finding
the trace-optimal bounding ellipsoid (6) in the family spec-
ified by Theorem 1 reduces to solving an α-parametrized
SDP with respect to one matrix and two scalar variables
(P = PT ∈ Rn×n and ε1, ε2 ∈ R) with subsequent
one-dimensional optimization in α. Computationally, this is
easily accomplished using any of the numerous appropriate
toolboxes that are presently available, e.g., MATLAB-based
packages SeDuMi and Yalmip.

III. ROBUST OPTIMAL DESIGN PROBLEM

We now incorporate the control term into description and
consider the system

ẋ=
(
A+∆A(t)

)
x +

(
B1+∆B1(t)

)
u +

(
D+∆D(t)

)
w,

y=Cx + B2u, x(0) = 0,
(8)

where u ∈ Rp is control, B1 ∈ Rn×p, the model uncertainty
is specified in the same form as above:

∆A(t) = FA∆A(t)HA,

∆B1(t) = FB1∆B1(t)HB1 ,

∆D(t) = FD∆D(t)HD,

(9)

with FA, FB1 , FD, HA, HB1 , HD being fixed known
matrices of compatible dimensions, and the matrix uncer-
tainties ∆A(t), ∆B1(t) and ∆D(t) satisfy the norm-bound
constraint (4). The rest of the quantities involved have the
same meanings as in Section 2. The matrix A is not assumed
to be Hurwitz, but the pair (A,B1) is controllable and
BT

2 C = 0.
We are aimed at finding a gain matrix K for the linear

static state feedback

u = Kx

which stabilizes the closed-loop system robustly against all
matrix uncertainties and minimizes the trace of the bounding
ellipsoid Ey defined above. It is this minimization that
we refer to as the optimal rejection of exogenous distur-
bances w(t).

We have the following result.

Theorem 2: Let P̂ > 0 and Ŷ be solutions to the mini-
mization problem

tr
[
CPCT + B2ZBT

2

] −→ min (10)

under constraints



Ω D PHT
A Y THT

B1
0

DT −αI 0 0 HT
D

HAP 0 −ε1I 0 0
HB1Y 0 0 −ε2I 0

0 HD 0 0 −ε3I



≤ 0, (11)

Ω = AP + PAT + B1Y + Y TBT
1 + αP+

+ ε1FAFT
A + ε2FB1F

T
B1

+ ε3FDFT
D , (12)

(
Z Y

Y T P

)
≥ 0, α > 0, (13)

with respect to the scalar variables α, ε1, ε2, ε3 ∈ R, and
matrix variables P = PT ∈ Rn×n, Y ∈ Rp×n, Z = ZT ∈
Rp×p.

Then the state-feedback controller with matrix

K̂ = Ŷ P̂−1

robustly stabilizes system (8), (2), (9), (4) and rejects the
effect of disturbances w(t), and the matrix P̂ defines the
invariant ellipsoid for the closed-loop system.

Important remarks analogous to those following Theo-
rem 1 are valid. Namely, due to the linearity of the trace
criterion with respect to P, Z, for any fixed value of the pa-
rameter α, the problem above reduces to the minimization of
the linear function (10) subject to the LMI constraints (11)–
(13); i.e., to a well-defined semidefinite program. The sub-
sequent scalar optimization over the parameter α leads to
a (sub)optimal stabilizing controller, i.e., to the one that
minimizes the trace criterion for the bounding ellipsoid of
the closed-loop system. As far as the uncertainty in the initial
state is considered, it can be specified and incorporated in
the LMI constraints exactly in the same way as it was done
in the analysis problem (Section 2).

Another comment relates to the issue of worst-case un-
certainties and disturbances in the system. In proving The-
orem 2, we build a quadratic Lyapunov function V (x) for
the closed-loop system having the property V̇ (x) ≤ 0 for
V (x) ≥ 1 and wT(t)w(t) ≤ 1. It is natural to determine
exogenous disturbances w̃(t) and matrix uncertainties ∆̃A(t),
∆̃B1(t), ∆̃D(t), which maximize V̇ (x). These are referred
to as worst-case ones. The explicit formulae for such worst-
case uncertainties and disturbances are given by the lemma
below.

Lemma 1: For system (8), (2), (9), (4), with Frobenius
matrix norm in (4), the worst-case exogenous disturbance
w̃(t) is given by

w̃(t) =

(
D + FD∆D(t)HD

)T
P̂−1x(t)

∥∥(
D + FD∆D(t)HD

)T
P̂−1x(t)

∥∥ .



The worst-case matrix uncertainties ∆̃A(t), ∆̃B1(t) and
∆̃D(t) are defined by

∆̃A(t) =
FT

A P̂−1x(t)xT(t)HT
A∥∥FT

A P̂−1x(t)xT(t)HT
A

∥∥
F

,

∆̃B1(t) =
FT

B1
P̂−1x(t)xT(t)(HB1K̂)

T

∥∥FT
B1

P̂−1x(t)xT(t)(HB1K̂)
T∥∥

F

,

∆̃D(t) =
FT

D P̂−1x(t)wT(t)HT
D∥∥FT

D P̂−1x(t)wT(t)HT
D

∥∥
F

.

Finally, we note that both Theorem 2 and Lemma 1 can
be extended to the case of matrix uncertainties of a more
general form (cf. (9)):

∆A(t) =
r∑

i=1

F i
A∆i(t)Hi

A

(and same for ∆B1(t), ∆D(t)), where ∆i(t), i = 1, . . . , r,
satisfy constraints (4). The associated formulas are bulky and
are not presented here.

IV. APPLICATION TO THE TWO-MASS-SPRING SYSTEM

We turn back to the benchmark problem described in
Section 1 and illustrate the theoretical results of Section 3.

For simplicity, we consider the case where the masses m1,
m2 are assumed known and both equal to unity, and the
uncertainty is concentrated in the elasticity coefficient, which
is specified in the form

k = 1 + δ∆(t), δ = const.

This leads to system (8), (9) with one scalar uncertainty ∆(t),
|∆(t)| ≤ 1.

Application of Theorem 2 gives the optimal controller K̂
that minimizes the trace criterion for the two-dimensional
bounding ellipse.

For the numerical solution of the SDP problem (10)–
(13) we made use of the SeDuMi and Yalmip Toolboxes in
MATLAB. For the specified value δ = 0.2, the calculations
yielded the gain matrix

K̂ ≈ (−3.3443 1.6057 −2.7810 −2.1620
)

and the associated bounding ellipse.
Figure 2 depicts the minimal bounding ellipse for the

system with controller K̂ in the feedback loop. The figure
also shows the output trajectory y(t) corresponding to a
certain initial position inside this ellipse and the worst-
case uncertainty ∆̃(t) and exogenous disturbances w̃1(t),
w̃2(t) calculated according to Lemma 1. These worst-case
uncertainty and disturbances are depicted in Fig. 3 along
with the optimal control u(t).

¿From Fig. 2 it is seen that the sample output trajectory
nearly touches the boundary of the calculated invariant
ellipse; experiments show that this behavior is typical for
the system. In other words, the proposed characterization of
the reachable set by means of invariant ellipsoids is deemed
to have low degree of conservatism.
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Fig. 2. The optimal bounding ellipse for the two-mass-spring system.
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Fig. 3. The worst-case disturbances w̃1(t), w̃2(t) and uncertainty ∆̃(t),
and the optimal control u(t).

The case where the masses contain uncertainty reduces
to the setup mentioned at the end of Section 3 and can be
completely analyzed in a similar way using the respective
modifications of Theorem 2 and Lemma 1.

V. CONCLUSION

We have proposed a simple yet universal approach to re-
jection of unknown-but-bounded exogenous disturbances ro-
bustly against norm-bounded matrix uncertainties by means
of linear static state feedback. This approach is based on
the method of invariant ellipsoids, by which means the opti-
mal control design problem reduces to finding the minimal
invariant ellipsoid for the closed-loop system.

By using the invariant ellipsoids ideology, the original
problem can be reformulated in terms of linear matrix
inequalities, and the control design problem directly reduces
to semidefinite programs and one-dimensional minimization,
which is straightforward to implement numerically.



The efficacy of the approach is illustrated through ap-
plication to a benchmark problem, which has a transparent
physical motivation.

Another attractive property of the approach is that it is
equally applicable to discrete-time systems. These results
are not presented here and will be addressed in the journal
version of the paper.
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