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Abstract
We study global controllability of ’rotating’ multidi-

mensional rigid body (MRB) controlled by application
of few torques. Study by methods of geometric control
leads to analysis of algebraic structure introduced by
the quadratic term of Euler-Frahm equation. We dis-
cuss problems, which arise in the course of this anal-
ysis, suggest solutions for some of them and estab-
lish several controllability criteria for damped and non
damped cases.
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1 Introduction
In recent work [Agrachev and Sarychev, 2005;

Agrachev and Sarychev, 2008; Rodrigues, 2006] one
proceeded with study of controllability of Navier-
Stokes (NS) equation on a 2D domain controlled by
means of low-dimensional forcing. Approximate con-
trollability criteria have been obtained for torus, sphere,
hemisphere, rectangle and generic Riemannian surface
with boundary. To achieve this goal geometric control
approach has been employed. According to it one starts
with original system controlled by low-dimensional
control and constructs a sequence of Lie extensions
which add to the original system new controlled vec-
tor fields. These latter are calculated via iterated Lie-
Poisson brackets of the drift vector field (corresponding
to zero control), and the controlled vector fields.
In above cited publications one started with small

number of original constant controlled vector fields,
whose values belong to the set of ’equilibrium points’
of Euler equation, representing so-called ’steady flows’
([Arnold and Khesin, 1998]). Computation of double
Lie bracket of drift vector field with two such constant
controlled vector fields amounts to a new constant field

(direction). This defines bilinear operator on the alge-
bra of flows. Extending controlled directions are ob-
tained by iterated application of this operator to small
set of original controlled directions. At each step we
must guarantee expansion of set of the extending con-
trolled directions.
Tracing these iterations is by no means easy. All cases

analyzed in [Agrachev and Sarychev, 2005; Agrachev
and Sarychev, 2008] are related to an explicit descrip-
tion of the set of steady flows - a basis in the space of
flows - and to specific representation of the above men-
tioned bilinear operator with respect to this basis. The
results so obtained are heavily dependent on choice of
initial controlled directions and on geometry of the do-
main of NS system. In particular the method does not
allow to conclude structural stability of controllability
property with respect to perturbations of controlled di-
rections and/or domain.
In the present contribution we address controllability

issues for a finite-dimensional ”relative” of NS system -
Euler-Frahm equation for rotation of multidimensional
rigid body (MRB) subject to few controlling torques
and to possible damping. In particular we investigate
how the inertia operator of MRB (which stays for the
domain in NS model) and the choice of controlled di-
rections influence the controllability property. We es-
tablish several criteria of controllability for damped and
non damped multidimensional body controlled by one,
two or three torques. We do not only concentrate on
a choice of minimal set of (two) controlled torques,
which are able to guarantee global controllability of
MRB, but also search for criteria which are structurally
stable with respect to perturbation of inertia operator of
MRB and of (some of the) controlled directions.

2 Euler Equation for Generalized Rigid Body
We follow [Arnold, 1997] for definition of ’general-

ized rigid body’. Let G be a Lie group, g its Lie al-
gebra and let left-invariant Riemannian metric on G be
defined by scalar product 〈·, ·〉 on g.



Introduce I : g 7→ g∗ - a symmetric operator, which
corresponds to the Riemannian metrics by formula:
〈ξ, η〉 = Iξ|η, where ·|· is the natural pairing between
g and g∗. The operator I is called inertia operator of
generalized rigid body.
The trajectory of the motion of generalized rigid body

is a curve g(t) ∈ G. One can introduce angular ve-
locity in moving frame, corresponding to this motion:
g 3 Ω = Lg−1∗ġ, where Lg is left translation by g.
The image of angular velocity Ω under I is angular

momentum in moving frame M ∈ g∗. Energy of the
body equals 〈Ω,Ω〉 = M |Ω.
Finally Euler equation for the motion of generalized

rigid body is

Ω̇ = B(Ω,Ω), (1)

where bilinear operator B : g × g 7→ g is defined by
formula:

〈[a, b], c〉 = 〈B(c, a), b〉, (2)

[·, ·] staying for Lie bracket.

3 Inertia operator and Euler-Frahm equation for
MRB

Readers may consult [Fedorov and Kozlov, 1995] for
detailed presentation of dynamics of MRB. This is a
particular case of generalized rigid body, where Lie
group G is SO(n) - group of orthogonal (n × n)-
matrices with det = 1, and Lie algebra g = so(n)
consists of skew-symmetric (n×n)-matrices - angular
velocities. We consider angular velocities in moving
frame (see previous Section).
A point of MRB, whose position in the moving (at-

tached to the body) frame is defined by vector ρ ∈ Rn,
possesses at moment t the velocity Ωtρ, where Ωt ∈
so(n) is angular velocity of MRB.
The kinetic energy of MRB, seen for simplicity as a

set of N material points of masses mi, i = 1, . . . , N ,
is defined by formula:

T (Ω) = 〈Ω,Ω〉 =
1
2

N∑
i=1

mi (Ωρi) · (Ωρi) , (3)

where · stays for scalar product in Rn. Invoking some
basis in Rn we represent the energy as
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where C =
∑N

i=1mi[ρi ⊗ ρi] is the sum of N rank-1
matrices [ρi⊗ρi]`s = ρi

`ρ
i
s and (·, ·)K stays for natural

scalar product - Killing form - defined on so(n):

(Ω,Ω′)K = −tr (ΩΩ′) = 2
∑
j<h

ΩjhΩ′jh.

Note that C is symmetric positive semidefinite matrix.
If one identifies so(n) with so∗(n) by means of

Killing form, then thinking of momentum M as of
skew-symmetric matrix we conclude that the inertia op-
erator is identifiable with the map

IC : Ω 7→ 1
4

(ΩC + CΩ) = (4)

= M ∈ so(n)(n)
K∼= so∗(n).

Then 〈Ω,Ω〉 = T (Ω) = (ICΩ,Ω)K .
By direct computation

(ICΩ1,Ω2)K = (ICΩ2,Ω1)K ,

i.e. operator IC is symmetric.
Symmetric bilinear form (scalar product) correspond-

ing to the quadratic form T , is defined as

〈Ω1,Ω2〉 =
(
ICΩ1C,Ω2

)
K
. (5)

Operator (4) maps so(n) into itself and by Sylvester
theorem ([Gantmacher, 1960]) is invertible if and only
if the eigenvalues σi ofC satisfy the relations σk+σj 6=
0, ∀k 6= j. This certainly would hold true for positive
definite matrix C.
Now we derive Euler equation for MRB. According to

formulae (2) and (5)

〈B(Ω1,Ω2),Ω3〉 =
〈[Ω2,Ω3],Ω1〉 =
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Therefore

〈B(Ω1,Ω2),Ω3〉 =
(
ICI−1

C
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]
,Ω3

)
K

=
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C
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and

B(Ω1,Ω2) = I−1
C

[
ICΩ1,Ω2

]
. (6)



Euler-Frahm equation for rotation of MRB is there-
fore

Ω̇ = I−1
C [ICΩ,Ω] = I−1

C [C,Ω2]. (7)

We will study also rotation of MRB, subject to damp-
ing. A simplest way of introducing damping into (7)
results in equation

Ω̇ = I−1
C [C,Ω2]− νΩ, ν ≥ 0. (8)

Non damped rotation (7) corresponds to ν = 0.

4 Controllability of rotating MRB: problem set-
ting and main results

Controlled rotation of MRB is described by equation

Ω̇ = I−1
C [C,Ω2]− νΩ +

r∑
i=1

Giui(t), ν ≥ 0. (9)

We are interested in global controllability of (9). This
property means that for any two ’points’ Ω̃, Ω̂ of the
state space so(n) there exists a control u(t) = (U −
1(t), . . . , ur(t)) which steers (9) from Ω̃ to Ω̂ in some
time T ≥ 0. We are interested in achieving global
controllability by small number r of controls; we will
prove that r can be taken ≤ 3.
Note that equation (9) is particular case of control-

affine system with quadratic(+linear) drift vector field
and constant controlled vector fields.
The following genericity condition is assumed to hold:

symmetric matrix C in (9) is positive definite and has
simple eigenvalues.
Our first result claims global controllability of MRB

by means of two controlled torques.

Theorem 4.1. For multidimensional rigid body with
generic inertia operator IC there exists a pair of di-
rections g1, g2 ∈ so(n) (depending on C), such that
(9) is globally controlled by means of torques applied
along g1, g2. �

Remark 4.1. In the formulation there are no a priori
bounds for the magnitude of the controlled torques. �

The proof of Theorem 4.1 is constructive and is based
on computations in a special basis of so(n) in which
’multiplication table’ for the bilinear operator (6) takes
simple form; g1, g2 have explicit expressions in this
basis. This proof brings about certain disadvantage.
The computation, on which the proof is based, does
not withstand perturbations of controlled directions.
Therefore one can not conclude (desirable and plausi-
ble) structural stability of global controllability prop-
erty.
We pass now to formulation of some structurally sta-

ble criteria starting with controllability of non damped

MRB. In this case, given recurrence of drift (un-
controlled) Euler-Frahm dynamics, bracket generating
property suffices for guaranteeing global controllabil-
ity. This property means that (evaluations at each point
of) iterated Lie brackets of drift and controlled vec-
tor fields span so(n). Given high dimension of so(n)
and fixed and small number of controlled vector fields,
proving bracket generating property is a nontrivial task.
Still we are able to establish this property and derive
from it global controllability by means of single con-
trol applied along generic direction.

Theorem 4.2. Let r = 1, and ν = 0 in (9). For generic
inertia operator IC the system

Ω̇ = I−1
C [C,Ω2] + gu(t), (10)

is globally controllable for all g from some open dense
subset of so(n). �

Remark 4.2. The controllability property hods if one
bounds control by |u| ≤ b for any b > 0. �

We now pass to the damped case. Our method re-
quires one of the controlled directions to correspond to
stationary rotation of MRB.

Definition 4.1. Principal axis of MRB, is a matrix ĝ ∈
so(n) such that

IC ĝ = αĝ, α ∈ R.

Stationary direction for MRB is a matrix ĝ for which
[IC ĝ, ĝ] = [C, ĝ2] = 0; equivalently ĝ is an equilib-
rium point of (7).

Remark 4.3. Obviously all principal axes are station-
ary directions. The contrary is true for n = 3 but not
for n > 3. �

The results obtained for the damped case differ for odd
and even n.

Theorem 4.3. Let ν ≥ 0, n be odd, r = 2 in (9),
and the inertia operator IC be generic. For a station-
ary direction g1 and generic g2 ∈ so(n) (element of a
dense open subset of so(n)) the system (9) is globally
controllable. �

An additional symmetry in the case of even n, obliges
us to involve additional controlled direction for achiev-
ing global controllability.

Theorem 4.4. Let ν ≥ 0, n be even in (9), r = 3 and
the inertia operator IC be generic. For a stationary di-
rection g1 ∈ so(n) and generic pair (g2, g3) of direc-
tions (element of a dense open subset of so(n)×so(n))
the system (9) is globally controllable. �



Let us mention preprint [Deryabin, 2007], in which
author proved that non damped multidimensional rigid
body is controllable by using of a pair of controlled
’flywheels’. This is different kind of ”internal-force
controls” modeled by bilinear control system on Lie
group.
The next Sections contain geometric control ideas

which underly proofs of the above formulated control-
lability criteria. In particular we will sketch proofs of
Theorems 4.1 and 4.2.

5 Controllability of control-affine systems by Lie
extensions

First result - Bonnard-Lobry theorem - is well known
and widely used. We formulate it for control-affine sys-
tem on smooth manifold M

q̇ = f(x) +
r∑

i=1

gi(x)vi(t), (11)

with drift vector field f being complete and possess-
ing recurrence property. This property means that all
points are nonwandering for the flow etf : for each
neighborhood W of each point x and each T > 0 there
exists T ′ > T such that eT ′f (W ) ∩W 6= ∅.

Theorem 5.1 ([Bonnard, 1981; Lobry, 1974]). Let f
be complete and recurrent and system of vector fields
{f, g1, . . . , gr} be bracket generating. Then system
(11) is globally controllable. �

To verify recurrence property of the vector field at
the right-hand of (7) we observe that kinetic energy
E = 〈Ω,Ω〉 is preserved by the flow of (7). Any en-
ergy level E = c is compact and by Liouville theorem
([Abraham and Marsden,1978]) there exists an invari-
ant measure on it. Therefore all points of each level are
nonwandering for the uncontrolled dynamics.
For establishing controllability of damped MRB,

where recurrence property is missing, it does not suf-
fice to evaluate all Lie brackets. One has to select some
specific Lie brackets which ’contribute’ to controllabil-
ity. This can be formalized in terms of Lie extensions.
Lie extensions amount to finding vector fieldX which

are compatible with control system in the sense that
closures of attainable sets of the control system are in-
variant for X . There are various methods of choosing
iterative Lie brackets which result in compatible vector
fields. If one is able to prove global controllability of
the system extended by adding some compatible vector
fields, then controllability of the original system can
be concluded by standard argument ([Jurdjevic, 1997;
Sarychev, 2006]).
Key Lie extension, we employ, is described by the fol-

lowing Proposition, formulated for two-input control-
affine system

ẋ = f(x) + g1(x)v̂1 + g2(x)v̂2. (12)

Proposition 5.1. Let

[g1, g2] = 0, [g1, [g1, f ]] = 0. (13)

Then the system

ẋ = f(x)+g1(x)ṽ1+g2(x)ṽ2+[g2, [g1, f ]]v12, (14)

is Lie extension of (12). �

Remark 5.1. The conclusion of the Proposi-
tion means that vector fields ±[g2, [g1, f ]] and
f + [g2, [g1, f ]]w, w ∈ R are compatible with
(12). The Lie bracket [g2, [g1, f ]] is called extending
controlled vector field. �

One can employ Proposition 5.1 repeatedly. For ex-
ample, assuming that g1 and g12 = [g2, [g1, f ]] com-
mute, we can extend (14) once more ’upgrading’ it to
4-input system

ẋ = f(x) + g1(x)ṽ1 + g2(x)ṽ2 +
+[g2, [g1, f ]]v01 + [[g1, [g2, f ]], [g1, f ]]v001,

with [[g1, [g2, f ]], [g1, f ]] being another extending con-
trolled vector field.
If one arrives after a series of extensions to a sys-

tem with full-dimensional input (dimension of the ex-
tended input coinciding with the dimension of the state)
then global controllability of the extended and original
systems can be easily concluded (see [Agrachev and
Sarychev, 2005]).

6 Controllability of damped Euler-Frahm equa-
tion via Lie extensions; proof of Theorem 4.1

We will apply Proposition 5.1 repeatedly for proving
global controllability of (9) with two controls.
At each iteration the first one of the assumptions (13)

will be trivially satisfied as long as original and extend-
ing controlled vector fields will be constant and hence
commuting.
Being drift vector field f in (9) quadratic, and (orig-

inal or extending) controlled vector field g1 constant,
double Lie bracket [g1, [g1, f ]] is constant vector field
with value [ICg

1, g1] = [C, g1g1]. The second relation
(13) would hold if and only if g1 is stationary direction
for MRB. In fact we will manage to choose at each step
of our proof g1 to be principal axis of MRB. We start
with describing the set of principal axes of MRB.

6.1 Diagonalization of inertia operator and princi-
pal axes of MRB

Let symmetric matrix C in (4) be represented as C =
Ad SD = SDS−1 with S being orthogonal and D =
diag{I1, . . . , In}, I1 < I2 < · · · < In.
Introduce matrices Θrs = 1rs − 1sr ∈ so(n), where
r < s and 1rs stays for matrix with (the only) unit
element at row r and column s.



Lemma 6.1. Matrices Ωrs = Ad SΘrs are eigenvec-
tors of the operators (ad C) and IC with eigenvalues
Ir − Is and Ir + Is respectively. �

The proof goes by direct computation.

Corollary 6.1. Matrices Ωrs = Ad SΘrs are eigen-
vectors of the operator I−1

C ◦ad C with the eigenvalues
Ir−Is

Ir+Is
. These matrices form set of principal axes of the

MRB. �

Remark 6.1. The set of stationary directions of n-
dimensional rigid body is much richer, when n ≥ 4,
on the contrast to the 3-dimensional case where these
two sets coincide. �

6.2 Computing Lie extension for Euler-Frahm
equation

For drift vector field f from (9) and two constant con-
trolled vector fields g1, g2 ∈ so(n) the extending con-
trolled vector field g12 = [g2, [f, g1]] is constant; its
value is B(g1, g2), with B defined by (6). The corre-
spondence

(g1, g2) 7→ B(g1, g2) = I−1[C, g1g2 + g2g1]. (15)

is bilinear operation on so(n).

Lemma 6.2. If g1, g2 are (extending or original) con-
stant controlled vector fields (directions), then (15) de-
fines extending controlled direction. �

’Multiplication table’ for B with respect to the basis
Ωrs from the previous Subsection, is described by the
following

Lemma 6.3. For r < s:

B(Ωrs,Ωk`) = 0, if r, s, k, ` are distinct

B(Ωrs,Ωrs) = 0

B(Ωrs,Ωr`) =
I` − Is
Is + I`

Ωs`. �

Proof. It suffices to verify these computations for S =
I , matrixC coinciding withD = diag{I1, . . . , In} and
Ωrs = Θrs.

Using this multiplication table one can provide con-
structive proof of Theorem 4.1.

6.3 Proof of Theorem 4.1
Let C = Ad SD, g1 = Ad SΩ12 and

g2 = Ad S
(
Ω23 + Ω34 + · · ·+ Ωn−1,n

)
. (16)

Remark 6.2. Here g1 is principal axis, while g2 is nei-
ther principal axis nor stationary direction. �

By Lemma 6.3

g3 = B(g2, g1) = B(Ω12,Ω23) =
I2 − I3
I2 + I3

Ω13, (17)

is principal axis. Calculating subsequently

gi = B(gi−1, g2), i > 3,

we see that gi coincide up to a nonzero multiplier with
Ω1,i, and are principal axes.
According to Lemma 6.2 all matrices Ω1i, i =

2, . . . , n are extending control directions.
By Lemma 6.3

B(Ω1i,Ω1k) = ((Ik − Ii)/(Ik + Ii))Ωik,

and again by Lemma 6.2 all matrices Ωik are extending
controlled directions.
Thus we have arrived to the system

Ω̇ = I−1[C,Ω2]− νΩ +
∑
i<j

Ωijuij(t),

with full-dimensional input. This system is globally
controllable and the original system (9) is globally con-
trollable as well ([Agrachev and Sarychev, 2005]).

Remark 6.3. If one perturbs in generic way the vec-
tor field g2 in (16) then computation of extending con-
trolled direction by Lemma 6.2 does not result in a sta-
tionary direction on contrast to (17). Thus we would
not be able to iterate application of the Proposition 5.1.
Hence the provided construction would not allow to
conclude structural stability of global controllability
property. �

7 Non damped MRB: bracket generating prop-
erty and Hautus criterion

As we explained in Section 5 global controllabil-
ity of (10) would follow from ’bracket generating
property’ of the couple of vector fields: f(Ω) =
I−1

C [C,Ω2], g(Ω) ≡ g, on so(n). While for n = 3
the generating brackets can be constructed explicitly,
for high n and generic g the problem can hardly be at-
tacked via direct computation.
To cope with the problem we look at the Lie bracket

[f, g], which is Ω-linear vector field:

[f, g](Ω) = I−1
C [C, (Ωg + gΩ)] = F (g)Ω, (18)

where F (g) is Jacobian operator of [F, g], acting on
Ω ∈ so(n)..
Vector fields, defined iteratively as

G− 1 = g, gi+1 = [gi, [f, g]] = F (g)gi, i ≥ 1,



are all constant; gi = (F (g))ig. If forN = n(n−1)/2

spanR
{
g, F (g)g, . . . (F (g))N−1g

}
= so(n), (19)

then bracket generating property would immediately
follow. The relation (19) is Kalman condition for con-
trollability of the pair (F (g), g).
Unfortunately direct computation of iterated applica-

tions in (19) for generic g ∈ so(n) is also hardly real-
izable. Instead we invoke another controllability con-
dition - so called Hautus controllability test ([Sontag,
1998]).

Proposition 7.1. The pair F (g), g is controllable if
and only if for N = n(n− 1)/2:

rank(F (g)− zI|g) = N, ∀z ∈ C. � (20)

Corollary 7.1. The pair of vector fields f(g), g is
bracket generating if (20) holds. �

Therefore proof of Theorem 4.2 will be deduced from

Proposition 7.2. For generic inertia operator IC the
condition (20) holds for g from an open dense subset of
so(n). �

Let us interpret condition (20) as non intersection of
the family z 7→ Φ(z; g) = (F (g) − zI, g), z ∈ C of
complex (N × (N + 1))-matrices with stratified mani-
foldMd of (N × (N + 1))-matrices of rank < N .
Note that codimension ofMd equals

(N − (N − 1))((N + 1)− (N − 1)) = 2.

Transversality of the family z 7→ Φ(z; g) toMd would
imply lack of intersection.
We will conclude such transversality for generic g ∈
so(n) from the following

Proposition 7.3. For generic inertia operator IC the
map (z, g) 7→ Φ(z; g) is transversal to the stratified
manifoldMd. �

For the lack of space we postpone proof of the last
Proposition to a later publication.
It rests to to observe that if Proposition 7.3 holds, then

according to [Golubitsky and Guillemin, 1973, Ch. 2,
§4] the set of g ∈ so(n) for which ’individual’ maps
z 7→ Φ(z; g) are transversal toMd is open and dense.
For any such g bracket generating property and Theo-
rem 4.2 is now derived from Corollary 7.1.
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