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Abstract
A control synthesis problem for planar motion of a

wheeled robot is considered. The control goal is to
bring the robot to a given path and to stabilize motion
of a certain target point along it. The trajectory is as-
sumed to be an arbitrary smooth curve with bounded
curvature. A simple actuator is introduced into the
vehicle model, and the rate of angular rotation of the
steering wheels is taken as the control, which is subject
to two-sided constraints. In addition, because of phase
constraints, the system under consideration is hybrid:
at different stages of its motion, it is governed by dif-
ferent systems of differential equations. A control law
is synthesized for an arbitrary target path. Qualitative
analysis of the straight line case is given. Results of
numerical experiments are presented.
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1 Introduction
There are many applications (e.g., in road construc-

tion or agriculture) where a vehicle is to be automati-
cally driven along some path with high level of accu-
racy. This can be achieved if the robot is equipped with
satellite and inertial navigation tools, see [Cordesses,
Cariou, and Berducat, 2000], [Thuilot et al., 2002], and
[Rapoport et al., 2006].
Control problems for mobile robots are considered

in many papers (e.g., [Cordesses, Cariou, and Berd-
ucat, 2000], [Thuilot et al., 2002], [Samson, 1995],
[Kolmanovsky and McClamroch, 1995], [Guldner and
Utkin, 1994], and references therein). Control laws are
designed that stabilize motion along a straight line or
motion towards a given point in the plane. The con-
trol can be either continuous ([Cordesses, Cariou, and
Berducat, 2000], [Thuilot et al., 2002]) or discontin-
uous ([Guldner and Utkin, 1994], [Kolmanovsky and

McClamroch, 1995]). Here, we consider the control
design problem with regard to the actuator dynamics
and boundedness of controls.
The control goal is to bring the robot to a given path

and to stabilize motion of a certain target point along
it. The path is assumed to be an arbitrary smooth curve
with bounded curvature. A control law that brings the
vehicle in the vicinity of the target path from an arbi-
trary initial position and guarantees a specified rate of
exponential convergence in some neighborhood of the
path is constructed. Qualitative analysis of the case of
a straight target path is given, and a numerical example
is considered.

2 Problem Statement
The goal of the control is to place the robot (vehicle) in

the desired trajectory on the plane and stabilize its mo-
tion along the target curve. The trajectory is assumed to
be an arbitrary smooth curve satisfying some additional
constraints on its curvature to make it feasible for the
given vehicle. We consider the case of a parameterized
representation, and, for the parameter, take the curve
lengths (natural representation). The target trajectory
(path) is described by a pair of functions(X(s), Y (s)),
whereX(s) andY (s) arex- andy-coordinates of the
current point on the curve. The functionsX(s) and
Y (s) are assumed to be three times differentiable and
k(s) denotes the curvature of the trajectory given by

k(s) =
X ′′

s Y ′
s −X ′

sY
′′
s

[(X ′
s)2 + (Y ′

s )2]3/2
, (1)

where the prime denotes differentiation with respect to
s. The curvature is assumed to be bounded,|k(s)| ≤
kmax, wherekmax is determined by the minimum turn-
ing radius of the vehicle,kmax = 1/Rmin.
To take into account that the angle of the steering

wheels cannot be changed instantaneously, we intro-
duce a simple actuator in the vehicle model and take



the rate of angular rotation of the steering wheels for
the control.

3 Kinematic Scheme and Governing Equations
The model of a wheeled robot is represented in Fig. 1

(see [Rapoport, 2006] for detail). The target pointC
is located at the middle of the rear axle of the platform
and is denoted byXc = (xc, yc)T. For the planar case,
the orientation is defined by angleθ between the center
line of the platform and thex-axis. Every pointXp of
the platform has its own instantaneous velocity vector
v. Vectors, orthogonal to the instant velocities inter-
sect a single pointX0 known as instantaneous center
of velocity.
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Figure 1. The kinematic scheme of the wheeled robot.

Let θ̇ be an instantaneous angular rate of the rotation
of the platform. Then, the following relationship holds:

|θ̇| = ‖v‖/‖Xp −X0‖. (2)

Hereinafter,‖ · ‖ denotes the Eucledian vector norm.
The condition that each of the wheels move without
lateral slippage means that the vectors of instantaneous
velocities of the axles’ endpoints are collinear to the
planes of the wheels; the normals to each of these vec-
tors intersect at the pointX0.
The two rear wheels are driving and the front wheels

are steering. For straight-line motion, the pointX0 is
located at infinity and expression (2) yields zero an-
gular rate. For the rear axle, the instantaneous center
of velocity coincides with the instantaneous center of
curvature. Particularly, for the target point the value

‖Xc − X0‖ is the instantaneous radius of curvature
of the trajectory (dashed line in Fig. 1) circumscribed
by the target pointXc. The reciprocal to the radius
1/‖Xc − X0‖ is the instantaneous curvature denoted
by u. Let L andH be dimensions of the platform, as
shown in Fig. 1. Then, the relationship between the
curvature and the steering angles is given by

uL

1− uH/2
= tanα1,

uL

1 + uH/2
= tanα2. (3)

Positive curvature and steering angles are associated
with the left (counterclockwise) turn, which is shown
in Fig. 1.
It follows from (3) thatα1 andα2 are not independent.

For simplicity, instead of two angles, we introduce an
“average” angleα by the equation

tan α = uL. (4)

To take into account the actuator dynamics, we assume
that the steering angle is controlled by specifying the
angular velocityV of the driving shaft of the actuator,
α̇ = V . This kind of actuator dynamics describes, e.g.,
step motors often met in practice.
Finally, denoting byvc the scalar linear velocity of the

vehicle, we arrive at the following well-known model
describing motion of a simple controlled vehicle with
regard to the actuator dynamics:

ẋc = vc cos θ,
ẏc = vc sin θ,

θ̇ = vcu(α),
α̇ = V,

(5)

whereu(α) is determined by (4).
The limitations on the steering angle impose two-

sided phase constraints:

−ū ≤ u ≤ ū (−αmax ≤ α ≤ αmax), (6)

whereū = tan αmax/L. This implies that, when the
phase variableα (oru) reaches its upper (lower) bound,
the controlV must be set equal zero, whatever con-
trol strategy was applied before. After this, the system
moves in the hyperplaneu = ū (u = −ū), and its mo-
tion is governed by the first three equations in (5) (the
order of the system reduces by one). When the control
is turned on again (clearly, the sign ofV must change),
the system is governed again by equations (5).
Thus, the presence of phase constraints (6) makes the

system under consideration not only nonlinear, but also
hybrid: at different stages of its motion, it is governed
by different systems of differential equations. This fact
makes the analysis of the system and the design of a
control law for it more complicated. Another source



of the nonlinearity of the system under consideration
is related to the bounded control resource,|V | ≤ V̄ ,
whereV̄ is the maximum value of the angular velocity
of the actuator driving shaft. Finally, even without the
phase and control constraints, the system of equations
(5) is not linear because of the presence of trigonomet-
ric functions. We are going to reduce it to a linear
one by applying the feedback linearization technique.
To achieve this goal, we first simplify the system by
changing variables.

4 Change of Variables
For the independent variable, we take the pathξ

passed by the robot and replace the time derivatives in
(5) by the derivatives with respect toξ. By virtue of
the equationξ̇(t) = v, the latter is easily implemented
for an arbitrary functionf(t) by the evident formula
ḟ = vf ′. Here and in what follows, the dot denotes dif-
ferentiation with respect to time, and the prime without
a subscript denotes differentiation with respect toξ. If
a derivative is taken with respect to a different spatial
variable, this is explicitly indicated in the subscript (as,
e.g., in (1)).
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Figure 2. Explanation to change of variables.

Let us introduce some notation explained in Fig. 2.
Here,A is the point on the target trajectory that is clos-
est to the current robot positionC, andO is the instan-
taneous center of curvature of the trajectory at the point
A, OA = R(s) ≡ 1/k(s). Let τ be the angle between
the tangent line to the trajectory atA and thex-axis,
and letψ = θ − τ . Motion of the vehicle along the
target curve in the positive direction is associated with
ψ ≈ 0, whereasψ ≈ π corresponds to motion along
the curve in the opposite direction.

For the first new phase variablez1, we take the dis-
tance (CA in Fig. 2) from the robot to the target path.1

From Fig. 2, it is not difficult to see thaṫz1 = v sinψ.
Replacing the time derivative by the derivative with re-
spect toξ, we obtain

z′1 =
ż1

ξ̇
= sin ψ. (7)

For the second phase variable, we take the right-hand
side of equation (7),z2 = sin ψ. Differentiating both
sides of this equation with respect toξ, we get

z′2 = cos ψ · ψ′ = cos ψ · (θ′ − τ ′). (8)

The derivativeθ′ is easily found from (5),θ′ = θ̇/ξ̇ =
u. The derivativeτ ′ can be found as follows. First,
we replace differentiation with respect toξ by that with
respect to the curve parameters:

τ ′ = τ ′s
ds

dξ
= k(s)s′. (9)

The derivation of the formula fors′ is explained in Fig.
2. Indeed, it is not difficult to see that

ds

dξ cosψ − o(dξ)
=

R

R + z1
.

where o(dξ) is a small quantity with respect todξ.
Hence,

s′ =
cos ψ

1 + kz1
. (10)

Substituting (10) into (9), we obtain

τ ′ =
k cosψ

1 + kz1
. (11)

Substitution of (11) into (8) yields

z′2 = cos ψ ·
(

u− k cos ψ

1 + kz1

)
. (12)

Let us define the third phase variable as

z3 = cos ψ ·
(

u− k cosψ

1 + kz1

)
(13)

1We do not discuss here the problem of finding the distance to
the curve, which may be solved differently for different curves. For
example, for a straight line or circular arc, this is a trivial problem.
For an arbitrary curve, it can be solved numerically. For B-spline tra-
jectories ([Pesterev, Rapoport, and Gilimyanov, 2007]), the problem
is solved by introducing the quasi-distance function, which admits
efficient calculation.



and differentiate it with respect toξ.
Omitting intermediate calculations, which are similar

to those above, we obtain

z′3 = ±
√

1− z2
2 ·

(
Lu2 +

1
L

)
· sV̄ (V )

v
−f(z), (14)

where

f(z)=
z2z

2
3

1− z2
2

− kz2z3

1 + kz1
−k2z2(1− z2

2)
(1 + kz1)2

±k′s(1− z2
2)

3
2

(1 + kz1)3
,

(15)
k′s is the derivative of the curvature functionk(s) and
the signs of the first term in (14) and the last term in
(15) are the same as that on the right-hand side of the
equation

cosψ = ±
√

1− z2
2 . (16)

Now, the set of governing equations (5) is rewritten in
thez-coordinates as

z′1 = z2,
z′2 = z3,

z′3 = ±
√

1− z2
2

(
Lu2 + 1

L

)
V
v − f(z),

(17)

wheref(z) is given by (15). Note that the old vari-
ableu is used here only for convenience of notation.
Clearly, u can be expressed in terms of the new vari-
ables by means of (13) and (16), and the right-hand
of equations (17) is rewritten in terms of only thez-
variables.
By virtue of the definition ofz2, we have

−1 ≤ z2 ≤ 1. (18)

The phase constraints (6) in the new variables take the
form

−ū ≤ z3√
1− z2

2

+
k
√

1− z2
2

1 + kz1
≤ ū. (19)

These constraints define the domain of the system un-
der consideration in thez-coordinates.
Constraints (19) hold as equalities when the steering

angle is equal to±αmax. The set of all points for which
one of constraints (19) holds as the equality is a two-
dimensional manifold enclosing the domain of the sys-
tem. When the system governed by (17) reaches the
manifold defined by constraints (19) (α becomes equal
to±αmax), the control must be set equal zero (further
increase/decrease of the steering angle is impossible).
The trajectory of the subsequent motion of the system

belongs to the manifold and is governed by the equa-
tions

z′1 = z2,
z′2 = z3,
z′3 = −f̄(z),

(20)

wheref̄(z) is the restriction off(z) to the manifold.
Thus, there does not exist a unique system of equa-

tions governing motion of the closed-loop system in
the entire domain. In the interior of the domain, the sys-
tem is governed by equations (17), and on the boundary
manifold, by equations (20).
The form of the manifold enclosing the system do-

main depends on the target trajectory. In Section 6,
we consider the simplest case of the target trajectory,
where the trajectory is a straight line, and study in de-
tail the manifold and the phase portrait of the system.

5 Control Law Design
Suppose that the point representing the system in the

z-coordinates belongs to the interior of the system do-
main determined by constraints (18)–(19). The choice
of controlV in (17) in the form

V = ± v[f(z)− σ(z)]√
1− z2

2(Lu2 + 1/L)
, (21)

where the sign on the right-hand side of the equation is
selected the same as in the third equation in (17) andσ
is a linear function ofz given by2

σ = λ3z1 + 3λ2z2 + 3λz3, λ > 0, (22)

makes the closed-loop system linear:

z′1 = z2,
z′2 = z3,
z′3 = −σ.

(23)

This system is equivalent toz′′′1 + 3λz′′1 + 3λ2z′1 +
λ3z1 = 0, which implies the exponential convergence
with the rate−λ of all components of vectorZ =
(z1, z2, z3)T .
However, in general, control (21) does not satisfy the

two-sided constraints|V | ≤ V̄ , and we should take
control in the form

V = ±sV̄

(
v[f(z)− σ(z)]√

1− z2
2(Lu2 + 1/L)

)
, (24)

2Note that it is not necessary to takeσ in exactly this form. The
particular form of this function determines poles of the closed-loop
system. For the given function, the system has one pole−λ of mul-
tiplicity 3. The other forms of theσ function will imply different
poles. The only requirement here is that the poles must have negative
real parts.



wheresV̄ (V ) is the saturation function given by

sV̄ (V ) =

{−V̄ for V ≤ −V̄ ,
V for |V | < V̄ ,
V̄ for V ≥ V̄ ,

(25)

which, however, does not guarantee exponential de-
crease of the solution.
When the system reaches the manifold enclosing the

system domain, the control is set equal zero, and the
subsequent motion of the system is governed by equa-
tions (20). At this stage of system motion, the steering
angle is fixed, and the trajectories are obtained by map-
ping the circles of radiusRmin in the original space
into the space ofz-coordinates. They belong to the sur-
face (manifold) enclosing the system domain.
The control is turned on again when the right-hand

side of (21) changes the sign, which happens when ei-
ther the functionf̄(z)−σ(z) or cosψ changes its sign.
In the former case, the system leaves the manifold and
is governed again by equations (23). The latter case
takes place whenψ passes throughπ/2 or −π/2 (z2

reaches1 or −1, respectively). The analysis of this
case is, generally, not specific to the form of the tar-
get path and is given in the next section, where the case
of the straight target trajectory is discussed. Here, we
note only that, in this case, the control switches rapidly
between−V̄ andV̄ (chattering phenomenon), and the
system keeps moving on the manifold along the “equa-
tor line” z2 = 1 (or z2 = −1), z3 = 0 separating the
“top” and “bottom” parts of the manifold (the vehicle
approaches the target trajectory in the perpendicular di-
rection withψ = π/2 (or−π/2)). Whenf̄(z) − σ(z)
changes sign, the system leaves the equator line and
continues moving on the “opposite” part of the mani-
fold (i.e., if α was equal toαmax, it turns to−αmax,
and vice versa).

6 Straight Trajectory: Qualitative Analysis
If the target trajectory is a straight line, we have

k(s) = k′s(s) ≡ 0, and constraints (19) take the form

−ū
√

1− z2
2 ≤ z3 ≤ ū

√
1− z2

2 . (26)

Taking constraints (18) into account, we easily find that
the domain of the system under consideration is the
cylinder with thez1-axis being the symmetry axis. The
cross-section of the cylinder by the planez1 = const
is the ellipse with the axes directed along thez2- and
z3-axes; the corresponding semiaxes are equal to 1 and
ū, respectively. The functionf(z) defined by (15) is
simplified for the straight line and given by

f(z) =
z2z

2
3

1− z2
2

. (27)

On the surface of the cylinder, by virtue of (26),f(z)
is a linear function:

f̄(z) = ū2z2. (28)

It is this function that is used in the third equation in
(20).
In this section, to simplify the analysis, we assume

that the controlV is not bounded and take into account
only phase constraints (26). The system “lives” in this
cylinder and is governed by equations (23) and (20) in
its interior and on the surface (where|α| = αmax),
respectively.
Any trajectory on the surface is an image of a circle

of radiusRmin in the original coordinates to the phase
space of thez-coordinates. The projection of this tra-
jectory onto the (z1, z2)-plane is the ellipse

ū2(z1 − zC1)2 + z2
2 = 1, (29)

wherezC1 is the distance from the center of the circle
in the original coordinates to the target line, which is
easily found by the coordinates of any point belonging
to the surface trajectory.
Let us assume that, in the original coordinates, ini-

tially, cos ψ is always positive; i.e.,−π/2 ≤ ψ ≤ π/2.
This assumption implies that the initial orientation of
the vehicle agrees with the desired direction of motion
along the target line (ifcosψ < 0, the projection of the
vehicle velocity on the target line is negative). Then,
the right-hand side of equation (21) has the plus sign,
and the sign of the controlV is determined by the sign
of the functionf(z)− σ(z).
The equationf(z) − σ(z) = 0 defines a surface

passing through the origin; it divides the cylinder into
two half-cylinders. In the left half (includes the neg-
ative semi-axisz1), the function is positive, and, in
the right half (includes the positive semi-axisz1), neg-
ative. On the surface of the cylinder, the equation
f(z)−σ(z) = 0 defines aswitching line,the curve sep-
arating the cylinder surface into two—“positive” and
“negative”—parts. By virtue of (28), this curve is an
ellipse obtained by the intersection of the cylinder sur-
face and the plane

ū2z2 − λ3z1 − 3λ2z2 − 3λz3 = 0. (30)

Figure 3 shows the top view of the “phase cylinder.”
The oblong ellipse in the center of the cylinder shows
the switching line for a vehicle model with̄u = 0.236
(Rmin ≈ 4.24 m) for λ = 1. The solid line is the
visible part of this line on the top cylinder surface, the
invisible part of the line on the bottom surface is de-
picted by the dashed line. The other two elliptic tra-
jectories girding the cylinder are solutions to equations
(20) corresponding to different initial conditions; the
equations of the projection of these 3D curves on the
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Figure 3. Top view of system domain.

(z1, z2)-plane are given by (29). The solid and dashed
lines correspond to the fragments of these curves on the
top and bottom surfaces, respectively. The arrows show
the direction of motion. Any trajectory on the surface
is obtained from another by simply shifting it along the
z1-axis.
Consider an arbitrary point in the cylinder represent-

ing an initial position of the vehicle. Let, for definite-
ness, it be located in the left half-cylinder. Then,V
is positive, the angleα increases, and the represent-
ing point moves toward the top surface. Note that the
system cannot appear on the bottom surface of the left
half-cylinder. Further, we have two possibilities. First,
if the steering angle does not reach its maximum value,
the trajectory lies in the interior of the cylinder and con-
verges exponentially to the origin, which corresponds
to stabilization of motion along the target line. This
case takes place if the initial position is close enough
to the origin or/andλ is relatively small. In the general
case, however, the trajectory reaches the upper surface
of the cylinder. At this point, the control must be set
equal zero, and the subsequent motion of the system
is governed by the system of equations (20). The sys-
tem moves along one of the surface trajectories simi-
lar to the left trajectory in Fig. 3. Consider two possi-
ble cases of mutual location of this trajectory and the
switching line, namely, the cases where, on the top sur-
face, these curves (1) intersect and (2) do not intersect
(as in Fig. 3).
In the former case, the controlV given by (21)

changes the sign at the intersection point, and the angle
α starts to diminish. Hence, the system leaves the sur-
face and goes inside the cylinder. Further, it can either
stay inside the cylinder and converge exponentially to
the origin or come down the bottom surface and start to
move along one of the trajectories similar to the right
ellipse in Fig. 3.
In the latter case, we have the following picture. When

the surface trajectory intersects the equator linez2 = 1,
the right-hand side of (21) changes the sign (due to
cos ψ), and the control turns on. Since the control is

very large (whenψ passes through the angleπ/2, the
right-hand side of (21) jumps from+∞ to −∞), the
steering angle rapidly diminishes and reaches its mini-
mum value−αmax; the angleψ starts to decrease and
becomes again less thanπ/2. As a result, the control
V changes the sign again, and so on. Hence, we have
chattering, when the control switches from large nega-
tive values to positive ones, and vice versa; the steering
angle also rapidly varies between−αmax and+αmax,
and the vehicle moves along the line perpendicular to
the target line withψ = π/2. In thez-coordinates, the
representing point does not leave the surface and moves
along the equator line. Thus, we arrive at the following
proposition.
Proposition. No matter how far the initial point from

the target line, the system will necessarily come in the
vicinity of the line.
Indeed, the above reasoning shows that, starting from

an arbitrary initial point, the system will come up
(down) the top (bottom) surface; then, if the point is far
from the line, will reach the equator line; and, moving
along this line, will reach the switching line. The dis-
tance from the intersection point to the target line de-
pends onλ and is easily found by substitutingz2 = ±1
andz3 = 0 into (30) resulting in|z1| = (3λ2− ū2)/λ3.
Then, given that the system came to the equator line

from the top surface, after intersecting the switching
line, it starts moving along an elliptic trajectory on the
bottom surface withα = −αmax. It can easily be seen
from the figure (see also Fig. 4) that the point of inter-
section of the latter trajectory with the switching line is
closer to the origin (|z2| < 1 and|z1| is less than that of
the previous intersection point). Note that the motion of
the system on the top surface of the right half-cylinder
is impossible.
Moreover, our analysis and numerical experiments

make us assume that, if the system trajectory intersects
the switching line, then the system will necessarily con-
verge to the origin (i.e., the system stabilizes along the
target line). This assumption is based on the observa-
tion that the subsequent points of the intersection of a
trajectory approach the origin (see numerical example
below). However, it has not been strictly proved yet.

7 Numerical Example
To illustrate the above said, we modeled the controlled

motion of a vehicle withαmax = π/6 andL = 2.45 m
(ū = 0.236) moving with a speedv = 2 m/s located
initially at the distance of 7 m from the target line with
θ = 0 (z1 = −7, z2 = 0, andz3 = 0). The value
of λ in the control law (21) was set equal to 1.5. Fig-
ure 4 shows the projection of the phase trajectory onto
the (z1, z2)-plane. The dots on the trajectory show the
points of intersection of the trajectory with the equator
and switching lines and the points where the trajectory
comes up (down) the surface. The fragments of the tra-
jectories lying on the top surface are depicted by the
solid lines, and those on the bottom surface or inside
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the cylinder, by the dashed lines.

As can be seen, the trajectory rapidly reaches the
top surface and consists of six segments (separated by
dots). The first segment belongs to the top surface and
corresponds to the circular motion withα = αmax.
Next, the vehicle moves perpendicular to the target
line (along the equator line in thez-coordinates). Af-
ter passing the switching line, the steering angle turns
to −αmax, and the vehicle moves on the bottom sur-
face (the third segment). After passing the switching
line, in the fourth segment, the vehicle moves inside
the cylinder until it comes up the top surface. The fifth
segment—motion on the top surface withα = αmax—
is short and ends up after intersection of the switching
line. The last, sixth, segment belongs to the interior of
the cylinder and terminates at the origin.

The corresponding physical trajectory in the original
(x, y) coordinates is shown in Fig. 5. The target straight
path is depicted by the dashed line.

8 Conclusions
The control problem for a mobile robot with regard to

the actuator dynamics has been considered. By apply-
ing change of variables, the system is reduced to the
form for which the equilibrium stability problem can
be set. For this system, a control law has been synthe-
sized with regard to phase constraints and constraints
on control. For a straight target path, qualitative analy-
sis of the system is given, and phase trajectories are
studied. Results of numerical modeling are presented.
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